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Abstract

We illustrate the potential of a number of recently-developed semi-parametric
estimators, in the context of an analysis of the relationship between firm growth and
mortality on the one hand and size on the other, conditioning the analysis also on age
and industry dummies. These estimators produce results that suggest quite serious
misspecification of the conventional firm mortality probit models, and slight but
significant functional misspecification of the usual linear growth-size regression. The
semi-parametric methods lead to a significantly different estimate of the joint
mortality/growth distribution conditional on initial size age and industry.
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SEMI-PARAMETRIC ESTIMATION OF THE COMPANY
GROWTH-SIZE RELATION

1 Introduction

In the applied literature, a common finding of studies covering the last
fifteen years or so has been that firm growth and failure rates decline
with firm size and age (Schmalensee (1989), Hall (1987), Evans
(1987a,b), Storey et al (1987), Dunne and Hughes (1994)). This is in
contrast to studies covering earlier periods for the United Kingdom
which showed that firm growth was positively related to size (Singh and
Whittington (1968, 1975), Samuels (1965), Prais (1976), Hart (1965),
Kumar (1984), Samuels and Chesher (1972)). Both sets of studies
contradict a celebrated hypothesis attributed to Gibrat which holds that
growth is independent of firm size. It has been argued that the result for
earlier periods may reflect higher rates of growth by merger amongst
larger companies (Hannah and Kay (1977), Hughes (1993)), whilst the
result for more recent years may be attributable to selection bias.

When we estimate growth-size relationships with company panels, an
unavoidable problem is sample attrition. Some companies may cease to
exist during the period covered by the panel. Whereas slow growing
large firms may simply slip slowly downwards through the size
distribution for a considerable length of time before ceasing to trade, a
smaller company is likely to hit the boundary of extinction much sooner.
Small firms which have slow or negative growth may be more likely to
disappear from the sample in any given time interval than are large
firms. If slow growing small firms have a greater likelihood of failure
than slow growing large firms, then estimates of growth by size, based
on surviving firms only, will be biased towards finding a negative
growth-size relationship. However, as we discuss below, there are some
conceptual difficulties with this line of reasoning, and also serious
identification problems. Recent applied studies have in any case found
that a negative growth-size relationship remains even after correctin g for
possible sample selection bias (Dunne and Hughes (1994)).

The main focus of the present paper is methodological: to examine the
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robustness of these results to decisions that are typically made about
econometric specifications (usually linear regressions and probits) to be
used in the analysis. We do this by implementing some recent semi-
parametric estimators which are based on the Nadaraya-Watson kernel
approach, and which generalise the standard regression and probit
estimators. We focus on the relationship between two aspects of firms’
development - their growth and failure rates - and firm size, allowing
also for the influence of age and broad industrial sector. We do this for
alarge stratified sample of UK quoted and unquoted companies covering
the whole coporate sector size range in the period 1976-1982. We find
results which give grounds for concern about the use of standard linear
parametric techniques.

The paper proceeds as follows. Section 2 discusses alternative
econometric approaches and introduces a decomposition of the joint
mortality/growth distribution which simplifies the application of semi-
parametric estimators. Section 3 surveys semi-parametric estimation
techniques available for estimation of each component of the joint
distribution. Section 4 describes our data set. Sections 5 and 6 report and
analyse estimation results produced by the parametric and semi-
parametric approaches respectively. Section 7 compares the joint
distribution of firm growth and mortality based on the alternative
approaches and section 8 concludes.

2 Alternative approaches

Define the following notation: y, and y, are measures of the size of the
firm in periods O and 1. If the firm dies between these two dates, y, 18
undefined, and a dummy variable { takes the value 1 if death occurs and
0 otherwise. A vector z contains a number of other variables to be used
to explain or describe firm growth. Our objective is to study the
distribution of {y, , {} conditional on {¥ » 2}, which underlies the
evolution of the company population through time. Note that we are
dealing here only with the processes of firm growth and death, not with
the births of new firms.




Our first objective is to estimate the conditional probability density/mass
function of {y, , £} conditional on {y, , z}. Since we are seeking to
analyse the relation between growth and size (and death and size), we
focus particular attention on the role of y,. We are particularly anxious
to avoid imposing a priori assumptions about the way in which y, enters
the distribution. To estimate the distribution of {y,, L | y,, z} directly
would be possible using classical parametric methods, notably maximum
likelihood. These methods are widely available in standard software
packages, and are consequently very widely used (see Dunne and
Hughes (1994) for a typical example in the context of company growth).
However, the parametric approach brings with it additional incidental
assumptions (typically normality and linearity), which may have a
critical influence on the results. Under the parametric approach, the joint
distribution of {y, , {} would be specified as a partially-observed
bivariate normal distribution with mean vector specified to be linear in
¥o and z. These assumptions could be relaxed within the parametric
framework, for example by specifying flexible distributional forms (see,
for example, Lee (1994), Gallant and Nychka (1987), Gabler, Laisney,
and Lechner (1993)), and with more general specifications used for the
conditional mean vector. However, these generalised specifications are
not often used in practice,

An alternative approach is to use techniques that are non-parametric as
far as possible. To introduce the idea of non-parameitric regression,
consider the following regression model, which ignores firm death and
any other explanatory variables besides y,:

E(y1|y0) = 8(}’0) (1)

The non-parametric approach consists in estimating the entire function
g(.) without restricting it to some parametric family such as the set of
linear functions. The best-known of these methods use variants of the
Nadaraya-Watson kernel smoothing technique (see Silverman (1986)
and Hiirdle (1990) for surveys, and Deaton (1989) and Pudney (1993) for
examples of their application in economics). The Nadaraya-Watson
estimator of the value of the mean function g(y,) at an arbitrary point Yg
is as follows:



? (Yo = Yoi)
k( OA. 7 ] Yoj
£y, = ! (2)
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A

j=1
where k(.) is a suitable kernel function (usuvally symmetric and non-
negative), which integrates to unity. The estimator (2) can be interpreted
as a sample analogue of the population regression

E(y, 1y, =] Y AF v,y / I} dF(y,), where F is used as generic notation
for a cumulative distribution function (cdf). It can also be viewed as a
(rather sophisticated) smoothed form of a simple bar chart plotting group
means of y, against ranges of values for y,. The degree of smoothing in
(2) is controlled by a set of bandwidth parameters A; which may vary (for
instance, to give a higher degree of smoothing in regions where
observations are sparse). Wherever we apply expressions like (2) in this
study, we use the two-stage adaptive method of Breiman ef al (1977) to
generate bandwidths. It is convenient for our purposes to use a globally
differentiable kernel such as the Gaussian pdf, to avoid difficulties with
gradient-based optimisation techniques.

Estimators of this type have the enormous theoretical advantage of
robustness against functional misspecification. However, there are
circumstances in which kernel-type estimation performs poorly. One
such case involves discrete explanatory variables, Although kernel
regression has good asymptotic properties in such cases (see Bierens
(1994}), it will nevertheless tend to work very badly in finite samples
when the explanatory variables contain dummies which define a very
fine partition of the sample into cells. For example, consider the
following model where y, is continuous and (for simplicity) assume 7 is
a vector of 0/1 dummies:

E( 19,2) = g(34:2) (3)

In this case, for a sufficiently small bandwidth, kernel estimation of g()
is equivalent to computing separate non-parametric regressions of y, on

4



Yp in each of the cells of the sample cross-classification defined by the
dummies z. When there is a very large number of cells defined by the
partition z, within-cell sample sizes will be small and thus the separate
cell-specific regressions subject to high degrees of sampling error. This
type of model is the rule rather than the exception in micro-
econometrics, so this is an important drawback. A second limitation of
kernel techniques is that their performance deteriorates very rapidly as
we increase the number of explanatory variables. Again, high
dimensionality tends to be a feature of micro-econometrics.

An intermediate approach is semi-parametric: we specify the statistical
problem in such a way that it involves both non-parametric and
parametric elements. In the previous regression example, this might
amount to the following specification:

E(y, |702) = 8(pz'y) (4)

leading to the problem of estimating the unknown bivariate function g(.)
and unknown vector 7. This has two obvious advantages over (2): the
dimension of g(.) is reduced and the linear form z* v is continuously-
variable if z contains a continuous variable, and usually moves us much
closer to continuous variability even if z is entirely discrete,

In practice there is no clear dividing line between the semi-parametric
approach and a suitably general parametric approach. In the former, we
treat the degree of flexibility of the estimated functional forms
essentially as something to be estimated automatically from the data,
while in the latter we treat it formally as fixed a priori, but in practice
usually determine it by means of ad hoc model selection criteria (such
as a score test for misspecification, or a likelihood-based criterion like
that of Akaike). It is interesting to note that Gallant and Nychka (1987)
proposed a technique based on a particular series-expansion as a semi-
parametric method, with the order of the expansion treated as a quantity
increasing with the sample size according to a pre-defined rule, whereas
Gabler, Laisney, and Lechner (1993) implemented it as a fully-
parametric technique with the order of the expansion fixed at a level
suggested by model selection criteria. One could regard the latter
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approach as a formal adaptive version of the former, in which case its
statistical properties could in principle be derived. In the hands of an
intelligent applied statistician, there may in any case be little to choose
between the two interpretations.

The presence of firm death in the process complicates matters
significantly, since it divides the sample into two separate regimes.
Rather than estimate the distribution of {y, , { |y, ,z} directly, we break
it down into separate components which can be more easily estimated in
arobust way using simple semi-parametric estimators. Consider the joint
probability density/mass function' fy, , y,, { | z), which has two
components. Each component can be decomposed as follows:

Dying firms
SO 1 C=1,2) f({=1]2)
=11y, (5)
S Iy() Z) f(}’g IZ)
Surviving firms

FO1:0=0130,2) = fO; 130, € =0,2) (1=£(Z=1 | 3,2))

J(o 1¢=0,2) (1 -f(C=1]z2))
Fo 1 2)

= f(y1 |}’0, ¢=0,z)

(6)

where we use the symbol f as generic notation for any pdf. The
expressions (5) and (6) are particularly convenient for applied work,
since the components on the right hand sides appear in forms that are
relatively easy to estimate using semi-parametric methods.

Note that our objective here is only to estimate as flexibly as possible a
conditional distribution. There is a further question, not addressed in this
study, concerning the structural significance that can be attributed to
such a distribution. It is well known, for example, that a dynamic model
containing firm-specific random or fixed effects will be inconsistently
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estimated by simple regressions, either on a full panel or a simple cross-
section (see Nickell (1981), Arellano and Bond (1991), Pesaran and
Smith (1995)). This is an issue concerning the estimation of distributions
conditional not only on y,, z, but also the unobservable effects. It does
not affect our ability to estimate the purely observable distribution (5)-
(6), which may be attributed a descriptive rather than structural role. Our
aim here is not to construct a model that is structural in any sense, but to
focus on other possible biases that might stem from the use of
conventional linear regression and probit models, rather than more
flexible forms.

3 Estimation techniques

There are four separate components of the distribution (5)-(6). The
probability f{l=1 |z) is a binary response function of the sort which is
conventionally estimated using maximum likelihood probit or logit
analysis. The pdfs f{y, | z) and f{y, | {=1, 2) can be thought of as (not
necessarily normal or linear) regressions of y, on z in the full population
and the subpopulation of dying firms respectively. The conditional
distribution f{y, | y,, {=0, z) is again a regression relationship, this time
defined on the population of surviving firms, but involving both y, and
z as conditioning variables. We consider three separate estimation
approaches for these three classes of relationship.

3.1 Binary response models

There is now a long list of available semi-parametric estimators for the
simple binary response model, although relatively few applications of
them as yet. Table 1 lists some of the semi-parametric estimators that
have been proposed in the econometrics literature. There is a standard
interpretation of the binary response model involving the specification
of a latent indicator which generates a positive response by crossing a
(zero) threshold. Thus:



{ = m@/Bru>0) Y

where z/B is a fixed parameter vector (subject to an arbitrary

normalisation); T(A) is the indicator function, equal to 1 if the event A
is true and O otherwise; and v is an unobservable satisfying E(vlz)=0
(or some analogous location restriction). Note that the distributional
form of v and the skedasticity function var(v | z) are left unspecified.

An alternative model is the following direct specification for the
response probability:

fC=1]2) = G('B) (8)

where G(.) is an arbitrary non-negative function. This model is
equivalent to the latent variable model only under special assumptions.
For instance, when v and z are independent and heteroskedasticity is
ruled out, then G(.) is the common cdf of -v whatever value of z we
choose to condition on. If there is heteroskedasticity in the latent variable
model then the skedasticity function is var(v | z) = 6%(z) and:

fC=1]2) = G[ z"’] ®)

o(z)

where G(.) is now the cdf of -v/o(z). Thus (8) is not generally valid as
a representation of (7) unless ¢ happens to be a function of the same

linear form z’B as appears in the latent indicator. Even in that case,

the resulting function of z/@ that gives the response probability will

not necessarily have the properties of a cdf, as is assumed in probit or
logit analysis. Note that it is not always possible to express the model (8)
in the form of a heteroskedastic latent indicator model (9), since the
implied function 6(z) may not exist or may be negative.




The estimators detailed in Table 1 are all based on the optimisation of
some objective function. Specifically:

MSCORE
B = arg max y (2m(g;=1) - 1) -n:.(zi’ﬁz()) (10)
B i=1

Smoothed MSCORE

A

B = arg max ) (2n(g=1) - 1) @
P

i=1

i‘i) (11)

Semi-parametric ML

B = arg max | max ! {,InG(z/B) +
B G() 21: | P (12)

(l—Ci)ln(1-G(z‘.’ﬁ))) )

Klein-Spady

)

- S A / +
B = arg ;nax § (C;’lnG(zi B) (13)

(1-¢)In(1-G(z/p)))

Maximum rank correlation

s

B n ; /
b = arg max ;‘ ;‘ (m(¢>0,) n(z/B>z/B) + a4
n({<L) n(z/ B<z/B) )



In these expressions, |, is a bandwidth sequence, ®( . ) is the normal

cdf,and G(.) isa non-parametric kernel regression of {on z/p .

Table 1  Estimation methods for the binary response model

Technique Reference Comments
Maximum score Manski (1975) Estimator of scaled coefficients of latent
estimator (MSCORE) regression only; no assumption of
homoskedasticity; unknown limiting
distribution; convergence at rate slower
than Vu
Smoothed MSCORE Horowitz (1992) Estimator of scaled coefficients of laient

Semi-parametric
maximum likelihood

Empirical likelihood

Maximum rank
correlation

Cosslett (1983)

Klein and Spady (1993)

Han (1987)

regression only; no assumption of
homoskedasticity; convergence at rate Vn
to normal limiting distribution;
asymptotically efficient in the absence of
further assumptions

Estimator of o and G( . ); assumes
homoskedasticity {o(z) = 0); convergence
at rate Vi to normal limiting distribution;
asymptotically efficient under
homoskedasticity.

Estimator of oL and G( .. }; assumes
homoskedasticity; convergence at rate ¥n
to normal limiting distribution;
asymptotically efficient under
homoskedasticity.

Estimator of & only; no assumption of
homoskedasticity; convergence at rate Vn
to normal limiting distribution.

3.2 Regressions on z

The most general form of semi-parametric regression would involve the

following conditional expectation function:

g(z'B) (15)

E(}’o |z) =
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where g( . ) is some unknown function and f is again a normalised

parameter vector.” Models of this kind are not easy to estimate. If there is a
continuously-distributed variable in the z vector, then an appealing approach
is to use the following kernel least squares estimator. For any given value

B , we compute the non-parametric kernel regression of y, on the

constructed index variable z’P and evaluate the residual sum of squares.
An optimisation algorithm is then used to minimise the residual sum of

squares with respectto § . Thus:

n

p = argmgﬂ)j(yg,-—g(z,/m)z 16) -

i=1

. . . o
where g(.) is the non-parametric regression of y, on /z/fﬂ .
3.3 Regressions on y, and z

Ideally, one would like to estimate the distribution f{(y, | y,, (=0, z) by fitting
a very flexible model of the following form:

E(yilygacmoaz) = g(yo,Z’B) (17)

where g( ., . ) is an unknown function and B is a (normalised) parameter

vector. This specification suggests a least-squares estimator that minimises
the following criterion:

n

3=MM?ZM@%@M2 (18)

i=1



In the application discussed below, we simplify this procedure still further by
introducing an additivity assumption so that the model becomes:

E(; 1%,2) = &) + 2/ (19)

The reason for this is that trivariate kernel regression produces estimates that
converge ataslower rate than bivariate kernel regression (O,(n""”) rather than
O,(n*?)), so that if the additivity assumption is valid the properties of the
estimator should be considerably improved.

Least squares estimation of this type of model is equivalent to the estimator
discussed by Robinson (1988) (see also Hirdle (1990, section 9.1)). The
additive semi-parametric regression estimator can be motivated by an
analogue of the formulae for partitioned linear regression, where:

M~

p o= (22)7 27, (20)

g = P(y,-zp) 21

where Z, X and y are data matrices, § = y~Py and Z = Z-PZ are the

residuals from regressions of Z and y, on y, and P is the projection matrix
Yoo’ ¥o) ¥y " . In the semi-parametric case, the transformation P is replaced
by a kernel smoother, P*, with 1,j th element:

k( (z,-z)'p ]

A,
Dy; .

? k( (z,' __zr)fBJ
A

r

(22)

r=]

Experimentation has revealed little need in this case for the use of a trimming
function as suggested by Robinson (1988) to eliminate the influence of
observations with small estimated x-densities.
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4 Data

Our estimates make use of a dataset prepared at the ESRC Centre for
Business Research, Cambridge. The dataset is based on a size stratified
sample of UK. companies whose computerized accounts for the years 1976 -
1982, prepared by the Business Statistics Office, Newport were available via
the ESRC Data Archive at the University of Essex. We describe the salient
features of this sample and the way in which we have checked and
augmented it for the analysis reported in this paper (and for the analysis in
companion papers dealing with the economics of company failure and
acquisition activity (Cosh and Hughes (1994, 1995), Cosh, Hughes and
Kambhampati(1993)). This has involved, inter alia, the analysis of the
microfiche records of several hundreds of individual company records
obtained from Companies House, London and Cardiff to trace the fate of
companies leaving the sample in the course of the sample period; to augment
the accounting records of sample companies with details of company age; to
obtain information on the characteristics of directors; and to extract
accounting data for acquired companies in the aftermath of acquisition. The
first two of these data augmentation exercises are directly relevant to this
paper.

4.1 The Business Statistics Office Sample

The sample of companies whose accounts form the basis of our analysis is
one of a number of samples which have been constructed by the Board of
Trade and successor government departments in the aftermath of the 1948
Companies Act to assist in the National Accounts analysis of company
profitability and finance. Summary statistics relating to these samples have
appeared regularly in Business Monitor MA3 -Company Finance and its
predecessor publications. Until the late 1970s the analysis was based on a
panel of the largest (primarily quoted) companies which was periodically
rebased to exclude companies falling below certain size criteria and to
include companies newly rising above them (Lewis (1979)). This exclusion
of smaller companies was then rectified by the construction of a size-
stratified sample of around 3000 independent industrial and commercial
companies drawn from the official list of all companies registered in Great
Britain in 1975. This sample, which we have used as the basis for our work,
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consisted of the largest 500 companies, a sample of one in two of the next
1000 largest, a sample of one in seventy of "medium" sized companies, and
a one in three hundred and sixty sample of the remainder. This sample was
in turn replaced, in the mid 1980s, by a futher sample of around 3000
companies, again based on the Companies House Register, but including the
top 2000 companies in 1981 and a one in three hundred sample of the
remainder. After minor adjustment to the larger companies component of this
sample in 1985 there was a major rebasing in 1990 to ensure the inclusion of
the largest 2000 companies of 1987.

Of these three potential sources of company data the first contains very few
small and medium sized companies and covers a relatively distant historical
time period. Of the other two the third and most recent sample appears, at
first, to offer a number of potential advantages. First, compared to both of the
other samples, it is the most comprehensive in its treatment of births and
deaths. This is partly because of improvements in the management of the
underlying records system at Companies House. It has been estimated that in
the face of chronic failure to submit accounts on time and pressures arising
from keeping pace with the high rates of business registration of the late
seventies and early eighties the Companies Registers contained accounts for
less than half of all companies which should have been filing by 1984/85
(Knight (1987)). On the other hand the increasing use by small and medium
sized companies of dispensation to submit modified accounts has greatly
reduced the range of data available for small and medium sized companies,

The analysis in this paper focuses therefore on the stratified sample drawn in
1975.

For each of these sampled companies our accounting data is available in
principle from 1976 to 1982 or until their exclusion from the panel before
1982. In addition to accounting data each company in the panel has a number
of indicators, including indicators of "death" either by acquisition, liquidation
or other cause. For the purpose of this paper we excluded 168 property
companies because of accounting inconsistencies with other industrial and
commercial companies in term of asset valuation. Companies with total
‘assets of less than £50,000 were also excluded from our analysis of growth
because of the high incidence of missing data and inconsistent asset records
in this size class. The final sample for growth analysis consists of 2142
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companies of which 527 ‘died’ between 1976 and 1982 and 1615 were ’alive’
in both these years.

In the analysis which follows we use total assets as our measure of size (S);
this is because sales figures are not universally available and the relatively
high ratio of current liabilities to total assets amongst small companies made
net assets an inappropriate measure of size for a small but significant portion
of our sample,

Figure 1 shows a non-parametric kernel estimate of the initial size
distribution (in log form). This reveals a very strongly bimodal distribution,
reflecting the non-uniform sampling scheme used originally by the Board of
Trade. The strong rightwards shift in the distribution between 1976 and 1982
1s the result of both company growth in real terms and inflation, since assets
are valued in nominal historic cost terms. Figure 2 shows a similar non-
parametric estimate of the distribution of log age in 1976. Possibly as a result
of the non-uniform sampling, there are multiple modes at 6, 16 and 43 years.

«
o
o

0.20
T

0.16

SAMPLE DENSTY FUNCTION
0.88 .12

0.04

0.00

~¥6

LOG SiZE

Figure 1 Distributions of 1976 and 1982 firm size
(In £ billion asset value; _ _ = 1976;
= 1982)
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Figure 2 Distribution of firm age

Table 2 provides a summary of the dynamics of growth and company "death"
in our sample, in the form of a matrix cross-classifying companies by
opening and closing total asset size class. Inflation creates a tendency for cell
frequencies to be higher to the right of the main diagonal. The matrix
nevertheless reveals a clear clustering of firms along the diagonal. Most firms
therefore remain in their opening size class (in the case of largest size class
only demotions are of course possible). There are a handful of cases of
extremely rapid growth with five companies, for instance, whose 1976 total
assets fell in the £100,000-£500,000 range, increasing in size to over £2.5m
by 1982. The matrix also reveals a tendency for death rates to fall once the
£2.5m size boundary is crossed. For the largest size class the failure rate is
approximately one half of that in the 3 smallest size classes. A separate
analysis (Cosh and Hughes (1994)) shows that the higher death rate of the
smallest size classes is primarily due to liquidation and bankruptey, since
merger deaths are relatively less significant for them than for the middle
sized companies.
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Table 3 Mean growth rates by size of company: survivors only

Whole 50- 100- 500- 2500- 12500-  >62500
Sample 100 500 2500 12500 62500
No. of Survivors 1615 218 448 167 189 336 257
percentage points over [976-1982
Mean 121 139 142 130 114 99 100
Median 86 76 96 84 91 80 81
St. Dev, 170 233 189 231 131 103 107
Kurtosis 4715 1722 2688 7081 1014 402 335
* Size groups measured by total assets in 1976 (size £'000).
Table 4 Significance Tests of Differences in Mean and Median Growth Rates
Size (£'000) 100-500  500-2500  2500-12500 12500-62560 over 62500
50- 100 - + + ++ ot
100 - 500 + el 4+ ot
+ + +
500 - 750 + ++ +
- + +
2500 - 12500 + +
+ +

12500 - 62500

Notes: +row av. > column av.; ++ sig. at the 10% level; +++ sig. at the 5% level

- oW av. < colurnn av.; --sig. at the 10% level; --- sig. at the 5 % level
Upper entry in each cell is the test of means and the lower entry is the test medians

The pattern of variations in growth rates of the surviving companies by total
asset size class in 1976 is shown in Table 3. In addition to the mean and
median of growth rates for all survivors and for each of our 6 size classes this
table also reports measures of dispersion, skewness and kurtosis. Table 4
reports a matrix summarizing tests of significance of differences in mean and
median survivor growth rates across all pairs of size classes. This analysis
reveals that the smallest 3 size classes have much greater variance of growth
rates than the 3 largest. It also shows that the distribution of growth rates is
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positively skewed especially in the smaller size classes, and that the median
is therefore a more appropriate measure of central density than the mean. The
analysis of differences in means across size classes suggests that the smallest
two size classes have significantly higher growth rates than the two largest
size classes. In addition it shows that size class 2 has a higher mean growth
rate than size class 4, and that a similar though less significant result applies
in a comparison of size class 4 against size class 5. However, none of these
results is significant when we compare median growth rates. In fact, only one
significant difference emerges, and that is the superior median growth rate at
the lower end of size distribution where size 2 compares favourably with size
class 1.

5 Parametric Estimation Results
5.1 Linear regression and probit

Conventional estimation of relationships like those embodied in the
distribution defined by equations (5) and (6) above is based on linear
regression and probit analysis. The first four columns of Table 5 give the
results of applying these methods. The first column gives the regression of
y; ony,andz, using the sample of surviving firms. The coefficient of y, is not
significantly different from unity, implying that, in this conditional sense,
Gibrat’s law cannot be rejected. Growth is negatively related to the age of the
firm, and there are significant industry effects, with industries 2 and 4
(miscellaneous manufacturing and services) tending to grow faster over the

period. The degree of fit is extremely high for a cross-section relation, with
an R* of 0.95.

A conventional approach to testing the validity of a cross-section regression
model like this is to use Ramsey’s RESET test (Ramsey (1969)), which
involves using the square of the fitted value as an additional regressor and
testing its relevance using a t-test (in this case used in its asymptotic % form).
The low value of the RESET test statistic indicates no evidence of
misspecification of functional form. Heteroskedasticity is part of the
maintained hypothesis underlying the RESET test, and we investigate this
using a score test of the null hypothesis of homoskedasticity, which involves
essentially a regression of the squared residual on the square of the fitted
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value with an intercept. The score test then amounts to a t-test on the slope
coefficient (again presented in asymptotic x* form here). Once more there is
no significant evidence of heteroskedasticity, so this conditional growth
regression appears to conform to the assumptions of classical linear
regression in these two important respects.

Columns 2 and 3 of Table 5 give the regressions of initial size, Yo, ON lOg age
and the industry dummies, for the full sample and the subset of dying firms
respectively. Age has a strong positive effect, with an elasticity of 1.0 or
greater. Relative to the norm, industries 1 and 2 (engineering and
manufacturing) tend significantly towards large firm sizes and industry 3
(retailing etc.) tends towards small firms. The degree of fit is low, with R?
below 0.3 in both cases: a result that simply confirms the heterogeneity of the
stock of firms in existence at a given time. For these two regressions,
conventional specification tests give a more negative verdict, The RESET test
is highly significant, indicating that the distribution of initial firm size
(whether conditioned on subsequent survival or not) has a nonlinear
conditional mean function. There is no indication of heteroskedasticity, but
the result of the test may be distorted by misspecification of the mean.

The fourth column of Table 5 gives the results of fitting a probit model for
the probability that the firm dies between 1976 and 1982. This probit has log
age and the industry dummies as explanatory variables; firm size is excluded,
so that the result is directly comparable with the semi-parametric estimates
of the distribution f{{=1 | z) appearing in equation (5). We find that the
probability of death declines with the age of the firm, but that there are no
significant industry effects. We have computed an analogue of the RESET
test for this model by testing the significance of the constructed variable

(z'B)* as an additional explanatory variable. Again, we apply the RESET
specification, in the form of a score test for the irrelevance of an additional

explanatory variable definedas (z/B)? ,and find arather marginal result that

causes some concern. The null hypothesis is rejected at a 10% significance
level, but not at the more conventional 5% level.
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Table 5 Parametric Estimation Results (Standard errors in parentheses)

Linear regression / probit ﬂ Selectivity model
Covariate y,° ¥o* ¥,© | Pr(death)® II Pr(death)®
Constant 0.772 3.139 3810 -0.365 0.766 -0.216
(0.067) (0.210) (0.366) | (0.115) (2.154) (0.122)
Yo 0.991 - - - 0.991 -0.045
(0.007) (0.067) {0.012)
In{age) -0.052 1.310 1.040 -0.122 -0.052 -0.067
(0.020) (0.063) (0.112) | (0.032) (0.111) (0.036)
Industry 1 0.035 0.873  0.658 0.06%9 0.035 0.107
(0.051) (0.173) (0.325) | (0.095) (0.170) (0.096)
Industry 2 0.113 1.043  0.737 0.089 0.112 0.136
(0.048) (0.161) (0.313) | (0.089) (0.206) (0.091)
Industry 3 0.054 0306 -0.232 0.110 0.055 0.097
(0.051) (0.168) (0.317) | (0.095) (0.159) (0.095)
Industry 4 0.185  -0079 -0.545 0.007 0.184 0.0006
(0.059) (0.199) (0.350) | (0.115) {0.061) (0.111)
Number of 16135 2142 527 2142 2142 2142
observations
o 0.642 2428 2292 - 0.641 -
(0.023)
RESET test %*(1) 0.067 115.88 22.468 2.792 - 3.580
LM heteroskedasticity 0.227 0.696  0.645 - - -
XD
Selectivity correlation - - - - 0.014 -
(5.224)
R? 0.95 0260 0214 - - -

* based on the sample of surviving firms only;
" based on the full sample;
¢ based on the sample of non-surviving firms,

Assuming homoskedasticity, we use these four parametric estimates in
section 7 below to construct an estimate of the distribution (5)-(6), as an
alternative to the semi-parametric estimates presented in section 6. Before
turning to these, we consider the possible use of estimates ccrrected“ for
sample attrition.
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5.2 Adjustments for attrition

The regression of y, on y, and z presented in the first column of Table 5 is
conditioned on the event that the firm survives through the period 1976-82.
There is a large literature in econometrics dealing with the problems of
estimating a relationship (such as the growth-size relation) when there exists
another correlated process (in this case company death), which randomly
excludes individuals from the sampling procedure. Following the work of
Heckman (1974) and Hausman and Wise (1979), ML and 2-step parametric
estimators are widely available for the following model:

y, = Biyﬁ + z’Bz + U (23)

y, observed if y,y, +z'y +v > 0 (24)

where 1 and v have a correlated bivariate normal distribution. Note that
equation (24) specifies a linear probit model that is a direct specification of
the conditional probability defined by equation (5) above. Thus the final
column of Table 5 can be regarded as a conventional estimate of (5).

This selectivity model is widely used, and selectivity-corrected estimates of
the firm growth-size relation have been published by Dunne and Hughes
(1994). Although firm death can indeed be interpreted as a selection process,
1t is not obvious that the model (23)-(24) makes sense in this context. In plain
language, (23) says that there is a simple relationship that governs the
tendency of firms to grow through time, while the probit (24) states that there
is another separate relationship determining whether or not a firm dies. An
estimate of (23) thus amounts to a prediction of the rate of growth that a firm
either actually achieves or (if it in fact dies) would have achieved. One might
argue that this kind of prediction is very hard to interpret in any useful way,
In some (but not all) cases®, the processes of growth and death are
inseparable. Unsuccessful businesses may die because they encounter
difficult periods when demand (and thus size) contracts. On this view,
negative growth and death are simply two aspects of the same event, and it
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makes little sense to ask what would have happened to firm growth if the
possibility of death had somehow been artificially removed.

Whether or not these reservations are accepted, the ML selectivity estimates
appearing in the last two columns of Table 5 add little to the simple
regression in the first column (see Dunne and Hughes (1994) for a similar
result). The estimated correlation between u and v turns out to be very small,
with a huge standard error, and consequently the selectivity-corrected firm
size regression is virtually identical to the uncorrected regression. Essentially,
the selectivity correlation is unidentifiable in this case (as in many other
practical applications), and we pursue the approach no further,

6 Semi-parametric Estimation Results

As discussed in section 3, we estimate four separate components of the
distribution (5)-(6); the binary response function for {; regressions of y, on
z for the whole sample and for dying firms; and a regression of y, on y, and
Z.

6.1 The model for probability of death

There are still rather few published applications of semi-parametric
estimators for the binary response model. In modelling the probability of a
firm’s death during the sample period, we initially considered three
approaches: Horowitz’ (1992) smoothed maximum score estimator;
Ichimura’s (1993) semi-parametric least squares estimator applied to a
regression of { on z; and Klein and Spady’s (1993) empirical maximum
likelihood estimator, We encountered serious problems in optimising the
objective function for Horowitz’ estimator, because of the existence of
numerous local optima. Even the use of very good starting values in Monte
Carlo experiments failed to achieve reliable convergence, and there is a clear
need for robust global optimisation algorithms (such as the method of
simulated annealing used by Horowitz (1993)) in computing this estimator.
We finally opted for the Klein-Spady estimator, which is asymptotically
efficient under fairly restrictive assumptions. However, Monte Carlo
experiments suggest that Ichimura’s (inefficient) least-squares estimator
performs nearly as well in finite samples.
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Figure 3 Klein-Spady Estimation Results
( = result from full sample; - - = 90% empirical
confidence interval; - - - = mean of bootstrap replications)
Table 6 Klein-Spady estimation results
(Standard errors from 40 bootstrap replications)
Standard Normalised
Covariate Coefficient error linear probit’
Log(age) 1.000 - 1.000
Industry 1 -0.005 0.230 -.566
Industry 2 0.566 0.219 -0.730
Industry 3 0.074 0.156 -0.092
Industry 4 -0.004 0.154 -0.057

" Coefficients from table 5; cach coefficient divided by that of log{age).




Figure 3 and Table 6 report the resuits of applying Klein and Spady’s
estimator. When we normalise the coefficient of log age to be unity, the
estimate of the unknown function G(.) in (8) turns out to be a decreasing

function of regression index z/P for most of the range. Thus, as in

parametric estimation, the probability of firm death is predicted to decline
- with age. For comparison, we also include in Table 6 the coefficients from
an analogous probit model, rescaled so that the coefficient of log age is unity.
In the semi-parametric case, the second of the industry dummies produces a
significant effect, implying a lower inherent survival rate for firms in the non-
engineering sectors of manufacturing industry. In contrast, the corresponding
linear probit estimate is not statistically significant.

6.2 Regressions of y, on z

Table 7 Semi-paramelric regression results for full sample (Standard errors computed from 40
bootstrap replications)

Regression Skedasticity

Covariate {(dependent variable = log initial size) (dependent variable = squared residual)

Coefficient  Standard Errors Coefficients  Standard Errors
Log(age) 1.000 - 1.060 -
Industry 1 0.239 0.084 0.338 0.206
Industry 2 0.359 0.064 0.194 0.144
Industry 3 -0.114 0.061 0.635 0.374
Industry 4 | -0.060 0079 | 0.6l 0.374

R? 0.318 10.021

We estimate the regression of y, on z, g(z’ B), using Ichimura’s (1993) semi-
parametric least squares estimator first for the whole sample. The results are
presented in Figure 4(a) and Table 7. The estimates of the unknown function
g(.) turns out to be nearly convex and increasing over most of the range of
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z' . The 90% bootstrap confidence interval suggests that g(.) is estimated
with good precision and is significantly nonlinear. The implied age-initial
size relation (after controlling for industry effects) appears predominantly
positive, as in the linear regression of Table 5. There are three significant
industry effects, with industries 1 (imetal/engineering) and 2 (miscellaneous
manufacturing) characterised by larger firm sizes and industry 3 (retailing
etc.) by smaller firm sizes. Again, this conclusion is qualitatively similar to
that of the linear regression, but the relative effects of age and industry are
quite different. In Table 5, the ratios of the coefficients of industry dummies
to that of log age are more than double the comparable semi-parametric
coefficients in Table 7. The fit as measured by R? is also considerably
improved. Thus semi-parametric estimation does appear to offer a real
improvement in flexibility over linear regression here.

In addition to the regression function itself, we have also estimated a
skedasticity function by computing a similar semiparametric regression,
using the squared residual as a dependent variable. This procedure estimates
the following function:

var(y, |2) = w(z'y) (25)

The estimate of y(.) is plotted in figure 4(b) and the bootstrap confidence
intervals suggest that there is no significant variation in the residual variance.
The low R* and insignificant coefficients in the estimate of Y also confirm
this. Finally, figure 4(c) plots a kernel estimate of the density function of the
regression residual. There is rather strong evidence of positive skewness in
the distribution.

Figure 5 and Table 8 show the results of an analogous semi-parametric
regression for initial size in the subsample of firms which are observed to die
before the end of the observation period. The results are similar, with strong
evidence for an increasing and mildly convex relationship. Industry effects
are less clear, with only industry 2 (miscellaneous manufacturing) implying
a strongly significant increase in size relative to other industries. Again, the
semi-parametric regression yields a much better fit than the linear regression
in Table 5, and also estimated industry effects that are much smaller relative
to the age effect. |
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Table 8 Semi-parametric regression results for subsample of dying firms (Standard errors
computed from 40 bootstrap replications)

; Regression Skedasticity

Covariate | (dependent variable = log initial size) (dependent variable = squared residual)

Coefficient Standard error Coefficient Standard error
Log(age) 1.000 - 1.000 -
Industry 1 0.105 0.103 -0.303 0.199
Industry 2 0.365 0.132 0.700 0.263
Industry 3 -0.140 0.116 0.485 0.231
Industry 4 -0.327 0.182 -0.286 0.177

R? 0.276 0.034

The evidence on heteroskedasticity is quite mixed in this case. There is some
evidence for a lower residual variance for firms near the bottom of the
estimated range of values of z’v, and the coefficient estimates suggest that
this is linked to age and industries 2 (miscellaneous manufacturing) and 3
(retailing, etc). However, the R? is low, and heteroskedasticity is not a
striking feature of the model.

6.3 Regression ofy, ony, and z

The final element required for construction of the joint distribution (5)-(6) is
the density of y, conditional on y, and z. We estimate this first by using the
additive semi-parametric regression estimator described in section 3.3 above.
The results are reported in figure 6 and Table 9. They turn out to be very
similar to the ordinary linear regression estimates of Table 5. The estimate of
the function g(.) is shown in figure 6(a); it is close to linear, with a gradient
slightly less than one. To illustrate the implications more clearly, we plot in
figure 6(c) the function g(y,) - y,. Using the pointwise bootstrap confidence
intervals as a guide to statistical significance, there is'some evidence of a
tendency for relatively rapid growth among small firms (with asset values of
£0.05m - £0.15m) and also among medium-large firms (asset values in the
range £3m - £13m). This is a form of nonlinearity that would be difficult to
capture using conventional parametric specifications, although the departure
from linearity is admittedly not large. This finding is reflected in the fact that
R* is almost identical for the parametric and semi-parametric regressions.

29



P)

WNOIS3Y

(suoneondar densiooq jo ugowt = - - -

-JBAIBIUT BOUIPLIOD 9506 = ~ 7~ ‘uorssaidor ojdures = )

UOISs1891 Imois omourered-ruias SALIPPE SWIL] SWAIAING

E43

(q)

XIORI AUDLEVEINSOUILIN

R Y]

DE St 0t g0 oo

F 0¢ ot

o'y

Sy

3ONYIHVA TWNOIS Y

¢ 2andygy

9 00~ 20~ ¥'0~ 90~ g0~ O~

+8

0

)
o4
mu. 1 4] oL g g *
Wb
L ~ .,,
(®)
o4

g T 21 ot B © A4

RO

21 "
(945

4]

]

Br

4w (005

30



Table 9 Additive semi-parametric least squares estimation results (Standard errors computed
from 40 bootstrap replications)

Regression Semi-parametric skedasticity function
Covariate {dependent variable = log final size) {dependent variable = squared residual)
Coefficient Standard error Coefficient Standard error
Log(age) -0.047 0.021 I -
Industry 1 0.046 0.052 0.265 0.237
Industry 2 0.118 0.053 0.285 0.457
Industry 3 0.056 0.056 0.270 0.444
Industry 4 0.188 0.070 0.380 0.326
Lo@ - - 0.900 2.000
R 0.949 0.014

Turning to the coefficient estimates in Table 9, we find very similar estimates
to the regression coefficients in Table 5, although with slightly larger
standard errors as one would expect. Growth is found to slow with the age of
the firm and to be significantly faster than the norm in industries 1, 2 and 4
(engineering, etc., miscellaneous manufacturing and services).

We have chosen to investigate the role of heteroskedasticity through the
following model:

var(yl lyg): z) = W(Z/Y + "/Qyo) (26)

with the first element of the vector Y normalised to unity. The function y and
the parameters y and v, are then estimated by Ichimura’s semi-parametric
least squares regression technique. There is in fact no significant evidence of
heteroskedasticity. The estimated function y(.), plotted in figure 6(b) together
with the pointwise bootstrap confidence interval, shows no significant
departure from a constant value. The estimated coefficients presented in
Table 9 have very large standard errors, and, indeed, are unidentifiable if the
true function W(.) is invariant. The distribution of the standardised residuals
plotted in figure 6(d) is close to the normal.
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8 The implied distribution of firm growth

The estimates presented above provide three alternative ways of constructing
the joint distribution of firms size and death. This mixed discrete/continuous
distribution is as follows:

FOe 1 C=1,2) f({=1]z)
f(yo IZ)

fC=1]yp2) = (27)

1> €=0130:2) = F; 16,0 =0,2) (1 = £({ =1 y,2) (28)

The three possibilities are:

(1) Estimate the three components of the right-hand side of (27)
using the static normal-linear regressions and probit in columns
2-4 of Table 5 and the first component of the right-hand side of
(28) using the regression in column 1 of Table 5.

(ii)  As (i), except that the left-hand side of (27) is estimated directly,
using the probit model in column 6 of Table 5.

(iii) All components of the right-hand side of (27) and the first
component of (28) are estimated semi-parametrically.

The three approaches entail an increasing degree of flexibility. Approach (i)
constructs the distribution from a linear probit and a linear regression. Thus
the estimated distribution depends on only two parameter vectors, estimated
within the linear-homoskedastic-normal framework. Approach (i) maintains
the assumptions of linearity, homoskedasticity and normality, but introduces
further flexibility through the decomposition of (27) into three components.
Thus the estimated distribution involves four separately-estimated parameter
vectors. Approach (iii) takes this a step further by relaxing the linearity,
normality and homoskedasticity assumptions by means of semi-parametric
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techniques. The three resulting estimates are plotted in Figures 7-9 below.
The two parts of the distribution (27)-(28) are plotted separately. Expression
(27) is plotted for each of the five industrial sectors, holding log age constant
at the sample mean. Expression (28) is plotted as a surface in three-
dimensions, with the four industry dummies set to zero and log age set to its
sample mean.

The main drawback of the conventional linear regression-probit approach is
clearly in the modelling of firm death. Probit estimation imposes a smooth
monotonic relationship between the probability of death and initial size, with
variations in the other explanatory variables producing moderate near-parallel
shifts in the relationship. In Figure 8, some flexibility is introduced through
the decomposition (27), and this allows non-parallel shifts in response to the
explanatory variables. Thus, industry 4 is estimated to have a quite different
schedule of size-specific mortality rates than industry 5. Taking this
flexibility still further using the semi-parametric approach, Figure 9(a)
suggests the existence of both heterogeneity across industries and non-
monotonicity with respect to size. Indeed, using these more flexible methods,
there appears to be little evidence of any simple relationship between firm
mortality and size.

In contrast, conventional linear regression seems to describe the growth
component of the distribution (expression (28)) pretty well. There is
remarkably little difference between the plots in Figures 7(b) and 9(b), and
the evidence of non-linearity in the conditional distribution of growth on size
is confined to the level of fine detail apparent in the semi-parametric
regression results presented in Figure 6(c) discussed above. Of course, this
result may be partly an artefact of the remaining assumptions that have not
been relaxed here. For example, the additivity assumption imposed on the
semi-parametric growth-size regression (19) greatly reduces the formidable
computing burden of these methods and improves statistical precision, but it
also rules out possibly important interactions between size and age or
industry.
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9 Conclusions

Conventional assumptions of linearity, homoskedasticity and normality play
important roles in applied econometric analyses of the process of firm
evolution and mortality. In this study, we have attempted to investigate the
validity of these assumptions in a simple exercise aimed at the estimation of
the joint distribution of a discrete event (firm death within the period 1976-
32) and a continuous outcome (1982 firm size) conditional on the 1976 size,
age and sector of the firm. Our approach uses a decomposition of the
conditional mortality rate into components which we estimate using kernel-
based semi-parametric generalisations of linear regression and probit
techniques, together with a partially-linear semi-parametric growth-size
regression, Estimators of this type have been discussed by many econometric
theorists and have been the subject of Monte Carlo simulations, but the
number of applications to real data remains very small.

Applying this approach to a cross-section of companies covering a wide size
range, we find that the the usual linear homoskedastic growth-size regression
fitted to the subsample of survivors gives a reasonably good broad-brush
description of the conditional distribution of growth rates, but that there is
significant evidence of nonlinearity at the level of fine detail. Overall, we
find little evidence of any relationship between growth and size, except for
a tendency towards high growth among small firms (with asset values
£0.05m-£0.15m) and medium-large firms (asset values (£3m-£13m).
However, these nonlinearities, although apparently statistically significant,
are far too fine to be detected by conventional specifications involving
quadratic terms or size dummies,

In contrast, we find that the widely-used probit model of company mortality
performs very poorly indeed. The use of a three-component decomposition
of the conditional probability of firm death introduces additional separately-
estimated parameter vectors, which greatly relax the restrictiveness of the
linear probit model. More importantly, semi-parametric estimation relaxes the
monotonicity property imposed by the probit model, and results in a quite
different estimate of the mortality process. Whereas the probit model leads
us to infer a strong negative relation between mortality and size (allowing for
the effects of age and industry), the semi-parametric approach suggests a
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non-monotonic relation rising to a peak for small-medium sized firms, then
a flat or slightly declining schedule thereafter. The shape of this relation
varies across industry, but the peak mortality rate is estimated to occur at a
size corresponding to an asset value of around £0.5m in 1976.
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Notes

1. The term probability density/mass function is henceforth abbreviated
as pdf.

2. Alternatively, one could specify a function of this type for one or more
of the quantiles of the conditional distribution. For example see
Koenker and Bassett (1978) for a discussion of linear regression
quantiles. Henceforth, we restrict attention to traditional regressions
specified in terms of the expectation function.

3.  This argument remains valid even if other causes are responsible for
some deaths. Indeed, the existence of multiple possible causes of death
makes the conventional selectivity model still less plausible, since the
probit (24) is then attempting to approximate a probability that would
involve the parameters of all the separate cause-of-death processes.
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Appendix

Definition of Industries

Industry 1

Industry 2

Industry 3

Industry 4

Industry 5

Metal, Mechanical & Instrument Engineering, Electrical &
Electronic Engineering; Office Machinery etc.,
Shipbuilding, Vehicles, Metal goods.

Food, Drink, Tobacco, Chemicals and Man-Made Fibres,
Textiles, Leather and Leather Goods, Footwear: Clothing,
Non Metallic Mineral Products, Timber; Furniture, Paper;
Printing; Publishing, Other Manufacturing, Mixed
Activities in Manufacturing: companies with over 50% of
activity in manufacturing and which are engaged in 3 or
more activities none of which account for 40% or more of
activity.

Wholesaling (other than petroleum products), Retailing;
Hotels and Catering; Repair of consumer goods and
vehicles,

Business services; leasing, other services, mixed activities
in non manufacturing: companies with over 50% activity in
non manufacturing and which are engaged in 3 or more
activities non of which account for 40% or more of activity.

Agriculture; Fishing and Forestry, Mineral and Ore

Extraction, Oil, Construction, Transport and
Communication.
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