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Abstract

The paper investigates the issue of local geographic spillovers between
university research and innovative activity by small high technology firms in the
USA, using Small business Administration innovation data for 125 metropolitan
regions (MSAs) and four different high technology sectors (drugs and
chemicals, machinery, electronics and instruments). The analyses employ an
explicit spatial econometric perspective to implement the classic Griliches-Jaffe
knowledge production framework. This incorporates a multivariate approach
allowing for factors such as the importance of large firms, of existing high
technology industry, and of business services. However, in contrast to Jaffe’s
finding of only weak evidence of knowledge spillovers, the results of the spatial
econometric analyses reveal a positive and significant relationship between
university research and regional rates of innovation, both directly and indirectly
through its impact on private sector R&D. Spillovers of university research on
innovation extended over a range of 75 miles from the innovating MSA, and
over a range of 50 miles with respect to private R&D. University spillovers
appear to be particularly strong for innovations in the electronics and
instruments sectors.

Note

This paper was presented by Professor Acs at the international conference on
“Innovation and Performance of Small and Medium-Sized Enterprises”
organised by the ESRC Centre for Business Research and Warwick University
SME Centre on 17 March 1997, in Cambridge. Other papers from this
conference will also be published in due course in the CBR Working Paper
Series.

Further information about the ESRC Centre for Business Research can be found on
the World Wide Web at the following address: http://www.cbr.cam.ac.uk



ENTREPRENEURSHIP, GEOGRAPHIC SPILLOVERS AND
UNIVERSITY RESEARCH: A SPATIAL ECONOMETRIC
APPROACH

1. introduction

The systematic relationship between output and productivity growth
rates suggests that technological progress probably is not a random
process, but rather one guided by market forces. Schmookler (1966)
argued in great detail that it is the expected profitability of inventive
activity, reflecting conditions in the relevant factor and product
markets, that determine the pace and direction of industrial
innovation. Schumpeter (1942) had expressed a similar view more
than 20 years earlier when he wrote, “it is quite wrong...to say, as so
many economists do, that capitalist enterprise was one, and
technological progress a second, distinct factor in the observed
development of output; they were essentially one and the same thing
“(p.110). While there is some powerful econometric evidence that
investment in education, capital equipment and R&D plays an
important role in productivity growth, Baumol (1993) has argued
that  productivity —growth rates are also influenced by
entrepreneurship, investment in the innovation process, and
technology transfer.

The accumulation of knowledge and its spillover into productive
capacity through technological change is a central theme in the new
theory of endogenous economic growth [e.g., Romer (1986, 1990,
1994), Grossinan and Helpman (1991, 1994)]. An interesting aspect
of this perspective has been the renewed attention to the geographic
scope of the spillovers between knowledge creation and production,
or, the extent of Marshallian spatial externalities [e.g., as exemplified
in the new economic geography of David and Rosenbloom (1990),
Krugman (1991), Glaeser et al. (1992), and others].

An important aspect of studies of technological innovation at the
regional scale is the role of spatial interaction and spatial structure,
as expressed in the form of organizational networks of entrepreneurs,
regional  innovation complexes and  regional knowledge
infrastructure [e.g., Stohr (1986), Von Hippel (1988), Storper and
Walker (1989), DeBresson and Amesse (1992), Feldman (1994),
Saxenian (1994)]. Universities play a central role in this process, not



only as producers of basic research, but also by creating human
capital in the form of higher skilled labor. Both of these aspects have
received considerable attention in the literature, from a theoretical as
well as from an empirical perspective. The importance of basic
(university) research in the stimulation of technological innovation
(and higher productivity) is derived from the public good nature of
the research, and the resulting positive externalities to the private
sector in the form of knowledge spillovers. The initial
conceptualization of this process was provided by Arrow (1962) and
Nelson (1959) and further refined by Griliches (1979), Nelson
(1982), Von Hippel (1988), Cohen and Levinthal (1989), among
others [for recent reviews, see, e.g., Dosi (1988), Acs and Audretsch
(1990), Griliches (1990, 1992), Mansfield (1991), Florax (1992),
Feldman (1994)].

In a recent paper (Anselin, Varga, Acs, forthcoming) we have been
able to shed additional light on the issue of local geographical
spillovers between university research and high technology
innovations. Our point of departure was Jaffe’s (1989, p. 968) often
cited finding that “there is only weak evidence that spillovers are
facilitated by geographic coincidence of universities and research
labs within the state.” We approached this issue from an explicit
spatial econometric perspective and implemented the classic
Griliches-Jaffe knowledge production framework for high
technology innovations in 43 U. S. states as well as in 125
Metropolitan Statistical Areas (MSAs). This yielded more precise
insight into the range of spatial externalities between innovation and
R&D in the MSA and university research both within the MSA and
in surrounding counties.

In this paper we extend the empirical evidence in three important
respects:

(1) We broaden the cross-sectional basis for empirical analysis by
utilizing data for four high technology sectors at the MSA
level. The number of observations vary by sector. This is the
first time MSA-level data are used at the sectoral level, which
avoids many problems associated with the inappropriate spatial
scale of a state as the real unit of analysis. MSA-level results
are obtained by using R&D laboratory employment as a proxy
for R&D activity, based on a specially compiled data set.
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(2) We focus on more precise measures of local geographic
spillovers. At the MSA scale, we formalize the spatial extent of
the geographic spillovers by means of so-called spatial lag
variables that capture the research activities in concentric rings
around the MSA as well as in the MSA itself.

(3)  We explicitly consider the potential for spatial effects such as
spatial autocorrelation that may invalidate the interpretation of
econometric analyses based on contiguous cross-sectional data.
In the existing literature, these effects are typically ignored or
treated inappropriately (e.g., by the application of time series
techniques). We implement a spatial econometric approach by
both testing for the presence of spatial effects and, when
needed, by implementing models that incorporate them
explicitly [Anselin (1988, 1990), Anselin and Hudak (1992)].

In the remainder of the paper, we first introduce the formal model
underlying the knowledge production function and briefly review the
current empirical evidence on geographic knowledge spillovers of
universities. We next elaborate on the data set, and outline the
distinctive characteristics of a spatial econometric approach.
Subsequently, we present the results of our disaggregated analysis at
the MSA level. We conclude with a summary and evaluation of our
findings.

2. The Knowledge Production Function
2.1 Model

The conceptual framework for analyzing the geographic spillovers of
university research on regional innovative capacity is based on the
knowledge production function of Griliches (1979) [see also Jaffe
(1986, 1989)]. In essence, this is a two-factor Cobb-Douglas
production function that relates an output measure for “knowledge”
to two input measures: research and development performed by
industry; and research performed by universities. Formally, this is
expressed as:

log(K) = by, log(R) + by, log(U) + e (1)
where K is a proxy for knowledge (either patents or innovation
counts), R is industry R&D and U is university research, with e, as a
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stochastic error term. The analysis is typically carried out for
aggregate cross-sectional units (e.g., states), possibly for several
points in time and/or dis-aggregated by sector.

Following Jaffe (1989), the potential interaction between university
and industry research is captured by extending the model with two
additional equations that allow for simultaneity between these two
variables:

log(R) = by, log(U) + bra Z, + €4 (2)
and

log(U) = by, log(R) + by, Z, + ey (3)
where U and R are as before, Z, and Z, are sets of exogenous local

characteristics, and e, and e, are stochastic error terms. Since our
interest in university effects only, the third equation is not estimated.

2.2 Previous empirical evidence

The framework expressed in equations (1) to (3) has become the
basis of several empirical investigations which we will briefly
review. Almost all empirical investigations of geographic knowledge
spillovers of universities in the U.S. have been aggregate in nature
and based on the Griliches-Jaffe knowledge production function
framework applied at the state level. Before we consider this more
closely, it is important to note that there are also a few studies that
take a micro approach, based on surveys or using the information
included with individual patent records. For example, Mansfield
(1995) finds strong support for the importance of geographic
proximity between universities and industry R&D based on a survey
of 66 firms and 200 academic researchers. Interestingly, in his
results, there is some evidence of a trade-off between proximity and
quality of the faculty. Jaffe, Trajtenberg and Henderson (1993) use a
form of geographic control method to compare citation patterns of a
large number of patents in terms of their localization and also find a
“clear pattern of localization” at both the state and SMSA levels (p.
583). Similarly, Almeida and Kogut (1995) focus on patent citations
and stress the importance of the mobility of scientists and engineers
in explaining “spatial” patterns.

The strong evidence in micro studies of the importance of spatial
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interaction at the /ocal level does not find uniform confirmation in
the aggregate studies. As noted above, this may be somewhat due to
the fact that the unit of analysis - the state - only partially captures
this interaction. We argue in Anselin, Varga, and Acs (1996) that it is
also due to the formal specification of local spatial interaction in the
form of a geographic coincidence index. To obtain a more precise
insight into the nature of the issue, we compare the research design
and findings of four recent studies in Table 1.

These studies are all based on data for 29 U.S. states. Jaffe (1989)
uses patent counts as the dependent variable [also replicated in Acs,
Audretsch and Feldman (1992)], while Acs, Audretsch and Feldman
(1992, 1994a) and Feldman and Florida (1994) use a more direct
measure of innovative activity, based on a 1982 data set of
innovation counts compiled by the U.S. Small Business
Administration (see below for further details).

The empirical studies in the literature vary somewhat in terms of
research design, but they all find a strong and positive relationship
between innovate activity and both industry R&D and university
research at the state level. However they differ in terms of the
significance of a local geographic spillover effect. The results
concerning the role of geographic proximity are clouded, however,
by the lack of evidence that geographic proximity within the state
matters as well. There is only weak evidence that spillovers are
facilitated by geographic ceincidence of universities and research
labs within the state [Jaffe (1989)]. In the other studies, the evidence
1s non-existent, weak or mixed, only pertaining to a few individual
sectors.

3. Data and Spatial Econometric Methodology
3.1 Data and variable definitions

We extend the current empirical evidence by using a more detailed
data set and by applying the methodology of spatial econometrics.
We consider each of these aspects in turn. The dependent variable
for the geographic knowledge production function [K in (1)] in our
empirical analysis is the count of innovations as reported in the U.S.
Small Business Administration Innovation Database. This source
was used extensively in earlier work by Acs, Audretsch and Feldman
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(1992, 1994a, 1994b) and Feldman and Florida (1994). The data set
1s a compilation of innovations that were introduced to the U.S.
market in the year 1982, based on an extensive review of new
product announcements in trade and technical publications [for
details on the data set and a discussion of their limitations, see
Edwards and Gordon (1984), Acs and Audretsch (1990, chapter 2)
and Feldman (1994)].

In contrast to the earlier studies we use the innovation data at the
county level, and aggregated the original data to the MSA level.
Figure 1 shows the distribution of total innovations by county. Santa
Clara, CA is the county where the greatest number of innovations
were registered, followed by Los Angeles County, CA, Middlesex
County, MA, Cook County, IL, Norfolk County, MA, Orange
County, CA, and Bergen County, NJ. A particular striking feature
shown in Figure 1 is that the bulk of innovative activity in the United
States occurs on the coasts, and especially in Western California and
in New England stretching into the Mid-Atlantic Region. In sharp
contrast no innovative activity is registered in large parts of the
Midwest. MSAs in the traditional manufacturing belt show strong
pockets of innovative activity although the concentration is much
less than on the coasts.

We consider innovations in four “high technology” sectors. We
define these (broadly) as Drugs and Chemicals, SIC 28. Machinery,
SIC 35, Electronics, SIC 36 and Instruments, SIC 38. These four
two-digit categories contain most of the 3 and 4 digit high
technology sectors [for a recent discussion, see, e.g., Herzog,
Schlottman and Johnson (1986)]. At the two-digit SIC level, it 1s
virtually impossible to designate sectors as “pure” high technology.
To the extent that the sectoral mix in these sectors shows systematic
variation over space in terms of its “pure” high tech content, our
results in the relationship between innovation and research could be
affected. However, we are confident that we will be able to detect
such systematic variations by means of careful specification tests for
spatial effects [Anselin (1988), Anselin and Bera (1997N)].

Earlier studies of the aggregate knowledge production function were
limited to data for 29 states. This was not due to the lack of data on
innovations or patents (for which actual addresses are available), but
to data limitations for the explanatory variables in the model, in
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particular for the variable on private R&D expenditures [R in (2) and
(4)]. In Jafte (1989), and also in Acs, Audretsch and Feldman (1992,
1994a, 1994b) and Feldman and Florida (1994), this was computed
from information on total industry R&D by state, compiled by the
U.S. Bureau of the Census on the basis of survey data from the
National Science Foundation. However, this data was only
consistently reported for 29 states [for details, see, e.g., Jaffe (1989,
p. 968-969)]. Instead, we constructed a proxy for industrial R&D
activity on the basis of data on professional employment in high
technology research laboratories in the Bowker directories [Jaques
Cattell Press (1982)]. While imperfect, this approach allowed us to
construct a private R&D variable for 43 U.S. states and for 125
MSAs [see also Bania, Calkins and Dalenberg (1992, pp. 218-219),
for a similar approach]. As it turns out, our proxy variable is
remarkably similar to the R&D expenditure variable used in Jaffe
(1989), yielding a correlation of 0.91 for the 29 states common to
both studies. Clearly, the use of lab employment as a proxy for
expenditures assumes a constancy of the labor intensity and
capital/labor ratio of R&D across the units of observation. To the
extent that this is not the case, it will tend to yield heteroskedastic
and/or spatially autocorrelated error terms, which will merit special
attention in our analysis and will be addressed by means of a spatial
econometric approach,

Our data for university research expenditures [U in (1) and (2)]
follow the common approach in the literature and are compiled from
the NSF Survey of Scientific and Engineering Expenditures at
Universities and Colleges for the year 1982. Figure 2 shows the
distribution of university research expenditures by county. A
strikingly similar pattern exists between the distribution of
innovations and university research. A high concentration of
university research exists on the coast of California and in New
England.

In addition, this data set also provides the source for three exogenous
variables used in the estimation of equation (1) at the MSA level:
total educational expenditure EDUEX from the City and County
Data Book; a dummy variable for the overall academic quality of
high technology departments at universities, RANK; and a proxy for
size, the total enrollment at universities, ENRL. Note that these
variables will be used as instruments in the 2SLS estimation of
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equations (2). As shown in Table 2 we match the sectoral
aggregation of the two-digit SIC industries to university departments
using the same approach as in Feldman (1994, p. 58).

In addition we also included a number of variables compiled from
County Business Pattern data for 1982: high technology
employment, HTEMP; a location quotient for high technology
employment, LQ; employment in business services (SIC 73), BUS;
and the percent “large” firms (i.e., firms with employment exceedin g
500), LARGE. An alternative proxy for firm size is a dummy
variable for the presence of at least 10 headquarters of Fortune 500
companies in an MSA, FORTU, compiled from the May 2, 1982
listing in Fortune Magazine. FORTU is included to test for the
importance of headquarters in the location of R&D companies.
Following general practice in the literature the first three variables
are included to capture agglomeration economies [see also Feldman
and Florida (1994)], the last two to assess the effect of firm scale [see
also Acs, Audretsch and Feldman (1994a)).

Our final data set only included those MSAs for which there were
innovations in the high technology sector as well as both private
industry R&D and university research expenditures (see Appendix A
for a listing of the MSAs, innovation counts and research data by
high technology area). Admittedly, this excludes from consideration
the joint determination of “location” and “magnitude” of high
technology innovation and research. On the other hand, it avoids the
problem of “zeros”, and is motivated by a focus on the strength of
interaction between the two forms of research and the generation of
innovations where these are present. We leave the more complex
issue for future research.

3.2 Spatial Econometric Methodology

When models are estimated for cross-sectional data on neighboring
spatial units, the lack of independence across these units (or, the
presence of spatial autocorrelation) can cause serious problems of
model misspecification when ignored [Anselin (1988)]. The
methodology of spatial econometrics consists of testing for the
potential presence of these misspecifications and of using the proper
estimators for models that incorporate the spatial dependence
explicitly.'




The two forms of spatial autocorrelation that are most relevant in
applied empirical work are so-called substantive dependence, or
dependence in the form of a spatially lagged dependent variable, and
nuisance dependence, or dependence in the regression error term.
The former can be expressed as:

y=rWy+Xb+e (4)

where y is a vector of observations on a dependent variable, Wy is a
spatially lagged dependent variable for spatial weights matrix W, r is
a spatial autoregressive coefficient, X is a matrix with observations
on the explanatory variables with coefficients b, and e is an error
term. The weights matrix W is typically constructed from
information on contiguity between two spatial units, but more
general definitions are used as well, leading to a large range of
potential specifications. The resulting spatial lag Wy can be
considered as a (spatial) weighted average of the observations at
“neighboring”™ locations. Ignoring a spatially lagged dependent
variable yields inconsistent and biased estimates for the b
coefficients in the model. The second form of spatial dependence is
often expressed as a spatial autoregressive process for the error term
in a regression model, or:

y=Xb+e | (5)
with:

e=1We +i . (6)

where 1 is a spatial autoregressive coefficient and i is a standard
spherical error term. Ignoring spatial dependence in the error term
does not lead to biased least squares estimates, but the estimate of
their variance will be biased, yielding misleading inference [for
further discussion, see, among others, Anselin (1988, 1990), and
Anselin and Hudak (1992)].

In this paper the procedure is to estimate b by regressing y on X, and
then to test separately for r = 0 and 1 = 0 using LM tests. We will test
each estimated model for potential spatial autocorrelation by means
of Lagrange Multiplier (LM) or score tests. These are ideally suited
to aid in the model specification search [for recent evidence, see
Anselin et al. (1996)]. The LM test for spatial error dependence is:

LMgeg = [N.e’We/e’e] / ] W*W + W?] (7)
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where ¢ is a vector of ordinary least squares (OLS) residuals, tr is the
matrix trace operator, and the other notation is as before. This
statistic is asymptotically distributed as c* with 1 degree of freedon.
The LM test for spatial lag dependence is:

LM = [N.e’Wy/e’e] / {N.(WXbyMWXb/e’e + tr[W'W + W2} (8)

where M = [ - X(X’X)'X’, b is the vector of OLS estimates, and
WXb is a vector of spatially lagged predicted values. This statistic is
also asymptotically c¢* with 1 degree of freedom [for implementation
details and properties, see, Anselin and Hudak (1992), Anselin et al.
(1996)].

If a form of spatial dependence is detected, the model with the proper
alternative is estimated by means of maximum likelihood procedures
or robust instrumental variables procedures. All estimations and
spatial diagnostics in this paper were carried out by means of the
SpaceStat software for spatial data analysis [Anselin (1992, 1995)].

4. Local Disaggregated Geographic Spillovers at the MSA Level
4.1 Spatially lagged variables

The use of R&D lab employment as a proxy for private R&D activity
allows us to carry out an analysis of the geographic knowledge
production function at the MSA level. We constructed a data base for
125 MSAs in the U.S. for which some innovative and research
activity was present (see Appendix A for a listing). Given the
indication of a wider range of spatial interaction than purely within-
county between university and private R&D, we constructed two
new variables that we refer to as spatial lags (see Anselin, Varga,
and Acs, forthcoming). These variables are designed to capture the
effect of respectively university research and private R&D in
counties surrounding the MSA, within a given distance band from
the geographic center of the MSA. Specifically, for any MSA i, the
spatial lags URDCOVS50, and RDCOV50, are the sums of
respectively university research and private R&D in the MSA and
those counties surrounding the MSA whose geographic centers are
within 50 miles of the geographic center of the core MSA county.
Similar measures were computed for a 75 mile range as well
(URDCOV7S, RDCOV75).
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Note that since the analysis is carried out at the scale at which we
assume that the spatial interaction takes place (MSA and possibly its
surrounding counties), there is no need to create an artificial index of
geographic coincidence, as is the case at the state level. In fact, by
explicitly including both the research magnitude for the MSA as well
as for surrounding counties, we are able to get a much more precise
insight into the degree of “local” geographic spillovers.

4.2 Estimation issues

Our model consists of two equations, the knowledge production
function for K (1), and an industry research equation, R (2). The
knowledge production function contains both R and U as
explanatory variables and will be extended with the two spatial lag
variables, RDCOV50 (or RDCOV75) and URDCOV30 (or
URDCOV75). Both R and U equations contain the other as
explanatory variable, as well as the spatial lags. The form of this
system of equations raises a number of issues with respect to
estimation and identification.

First, while the system is recursive between K and R and U, the
exogeneity of the latter two in the knowledge production function
should not be taken on faith. In fact, misspecifications (e.g., errors in
variables) could easily lead to endogeneity and must be checked. We
address this by means of the Durbin-Wu-Hausman test for
exogeneity [e.g., Davidson and MacKinnon (1993, pp. 237-242)].
We also take this approach to test the extent to which R and’ U are
endogenous to each other in equation (2).

Secondly, even in a purely recursive system, ordinary least squares
estimation of the knowledge production function would only be
legitimate in the absence of inter-equation correlation, i.e.,
correlation between the error terms of the equations [e.g., Greene
(1993) p. 600]. We check this by means of a Lagrange Multiplier test
on the diagonality of the error covariance matrix for the least squares
residuals [Breusch and Pagan (1980)].

In the absence of endogeneity and cross-equation correlation, we
may proceed with an equation-by-equation estimation by means of
OLS (or 2SLS in case of endogeneity without cross-equation
correlation) and the commonly applied three stage least squares
(3SLS) procedure is unnecessary,
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Finally, the use of a cross-sectional sample potentially leads to
spatial autocorrelation in the regression equations. We assess this by
means of a Lagrange Multiplier test for spatial error dependence
using three spatial weights based on distance: the same 50 and 75
mile cut-offs as used in the construction of the lag variables, and a
squared inverse distance weights matrix. These tests are only valid
when the explanatory variables in the regression are exogenous and
should be interpreted with caution when this is not the case. They are
used here to assess the extent to which remaining unspecified spatial
spillover may be present, even after the inclusion of the spatial lags
(provided that the latter are exogenous, which turns out to be the
case in our study).

4.3 Empirical results

Table 3 presents the results of the estimation of OLS cross section
regressions for the four high technology sectors at the MSA level in
1982. All variables are in logarithms. We estimate a standard Jaffe
knowledge production function with spatial lags for university and
industrial R&D, and local economic characteristics as explanatory
variables as well.

Most regressions yield significant and positive coefficients for both
private R&D and university research (at p<0.05), confirming the
consensus result in the literature (only the most significant of
respectively RD, RDCOVS50, RDCOV75, URD, URDCOVS50 and
URDCOVT7S are reported). However, there are variations across
industries. Industrial R&D was significant for all four sectors;
however, lagged industrial R&D was insignificant, indicating that
industrial R&D spills over only within the MSA. University research
was positive and significant for only electronics and instruments.

All three local economic variables are highly significant (with
p<0.01) and have the expected sign. Concentration of business
activity (measured by LQ) has a significant effect on innovation in
the Instruments and Electronics industries. Innovative activity
depends on the presence of business services (BUS) in all sectors but
the Chemical industry and is negative for the presence of large firms
(LARGE). However, in three out of four cases (Chemicals,
Electronics and Instruments) the coefficient was insignificant. Note
that the negative sign for the presence of large companies confirms
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earlier evidence in Acs, Audretsch and Feldman (1994, 338) that
smaller firms tend to be more innovative in only the Machinery
industry. In other words, ceteris paribus, MSAs dominated by the
presence of large firms tend to show less innovative activity.

A fourth variable is added to correct for potential unmeasured
“quality” effects that may cause inter-equation correlation.
Following Jaffe (1989), a fourth variable rank (RANK) is added to
equations 2 and 4 to correct for potential unmeasured “quality”
effects that may cause inter-equation correlations. There is evidence
of heteroskedasticity in only one sector (Instruments), but there is
strong evidence of misspecification in the form of a spatial lag (at
p<0.01) in Machinery and of spatial error (at p<0.05) in Electronics.

We further tested the exogeneity of each of the four variables RD,
URD, URDCOV350, and URDCOV7S, using the Durbin-Wu-
Hausman test for a two stage least squares estimation with
Log(EMP), Log(ENRL), LOG(EDEXP), and FORTUNE as
instruments. We failed to reject the null hypothesis for each (none
achieved a p value less than 0.12). In other words, there was no
evidence against exogeneity of these variables. By and large these
results are consistent with aggregate results at the MSA level found
in Anselin, Varga and Acs (1996).

Table 4 presents revised regression results for all four sectors
corrected for spatial dependence and heteroskedasticity. Regression
(1) shows OLS regression results for the Chemical sector. While
industrial R&D spills over only within the MSA, the positive
coefficient for lagged wuniversity research (URDCOVS50) is
insignificant. Local spillovers from university research were not
signiftcant. Equation (2) shows the regression results of a spatial lag
model for Machinery. While the spatial lag has been eliminated the
coefficient for industrial R&D and university research remain
positive although insignificant. These results are broadly consistent
with Jaffe (1989) and Acs, Audretsch and Feldman (1992) that there
are no local spillovers in the Mechanical Arts sector.

The spatial error model in equation (3) shows regression results for
the electronics industry. With the exception of Log(Large) all signs
are as expected and significant at least at the (at p < 0.05) level. The
coefficient for industrial R&D and lagged university research
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(URDCOV75) are both about the same magnitude. This is consistent
with Acs, Audretsch and Feldman (1994) and inconsistent with Jaffe
(1989) who found the elasticity of industrial research to be about
twice as large as university research. While we find strong research
spillovers in electronics from both within the MSA and from up to
75 miles around the MSA, Jaffe (1989) and Acs Audretsch and
Feldman (1992) found no such spillovers. This is due to significant
spatial error autocorrelation at the state level.

The results in Table 4 can thus be reliably interpreted to indicate the
strong influence of university research in the Electronics and
Instruments industries in an MSA, not only of university research in
the MSA itself, but in the surrounding counties. By contrast, the
effect of private R&D seems to be contained within the MSA itself.
Of course, private and university R&D are not independent, and we
turn to their interaction/simultaneity in Table 5.

Following Jaffe (1989), we estimate one additional model that
explicitly incorporates the potential simultaneity between the private
R&D equation (2) in which, in addition to university research, the
spatial lag for university research is included, as well as the log of
the high technology employment (HTEMP), the FORTUNE dummy
and the RANK measure as exogenous variables (the latter to control
for potential quality effects). Strong significance of the Durbin-Wu-
Hausman test for Chemicals (p=0.01), and its marginal significance
for Instruments (p=0.16) suggest that 2SLS is the appropriate
estimation method for these two equations. University enrollment
(ENRL) and education expenditures (EDEX) were used as
instruments in the specifications reported in columns 1 and 4 of
Table S.
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Focusing on the results in Table 5 we find a strong positive and
significant effect of university research on private R&D (p < 0.05)
within the MSA for Chemicals and Instruments, and of spillovers
from up to 50 miles for Electronics and Instruments.

5. Conclusions

In this paper, we have been able to shed additional light on the issue
of local geographic spillovers between university research and high
technology innovations. Our point of departure was Jaffe’s (1989, p.
968) often cited finding that “there is only weak evidence that
spillovers are facilitated by geographic coincidence of universities
and research labs within the state.” We approached this issue from an
explicit spatial econometric perspective and implement the classic
Griliches-Jaffe  knowledge production framework for high
technology innovations in 125 MSAs for four technical areas. The
latter became possible by using a specially compiled set of data on
R&D laboratory employment. This yielded more precise insight into
the range of spatial externalities between innovation and R&D in the
MSA and university research both within the MSA and in
surrounding counties.

Overall, we confirmed the positive and significant relationship
between university research and innovative activity, both directly, as
well as indirectly through its impact on private sector R&D. We
found that the spillovers of university research on innovation
extended over a range of 75 miles from the innovating MSA; and
over a range of 50 miles with respect to private R&D.

Our findings are important in that they highlight the relevance of a
precise consideration of the spatial range of interaction in the analysis
of spatial externalities. However, some cautionary remarks are in
order as well. Our analysis is limited by the use of a single cross-
section. Unfortunately, there is currently no update of the 1982 U.S.
SBA innovation data base for later points in time, precluding a more
extensive analysis of the space-time dynamics. Also, we have elected
to focus on studying the relations between research and innovations
in those locations for which both were observed. This leaves aside the
issue of why certain locations have research and innovative activity
and others do not, especially when one of the two is present, but the
other is not. We leave this aspect of the study for a separate paper.

15



Notes

I

A more extensive treatment of spatial regression models can be
found in, among others, Paelinck and Klaassen (1979), Cliff
and Ord (1981), Ripley (1981), Upton and Fingleton (1985),
Anselin (1988), Haining (1990) and Cressie (1993). For a
recent overview from an econometric perspective, see Anselin
and Florax (1995) and Anselin and Bera (1997).
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Table 1. Research Design Characteristics in Recent Studies

Characteristic

Jaffe

AAF-92

AAF-94

FF

space
time

sectors
coincidence
index

29 U.S. states
8 years (72-77,
79, 81)

pooled + 4
logUxlogC
(C centered)

29 U.S. statcs
1582

pooled + 2
log UxlogC
(C centered)

29 U.S. states
1982

pooled
logUxlog C

(C uncentered)

29 U.S. states
1982

pooled

C (share of state
manufacturing
shipments by
larpest MSA)

auxiliary population population e population | related industry
variables | presence
industry sales
* business
Services
population
estimation OLS/3SLS OLS tobit 3SLS
zZeros log(y) = -1 dropped included fog (10(y+1))
spatial none none none Durbin-Watson
diagnostics
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TABLE 2. Linking Industries to University Departments*

Industry

University Department

SIC28: Chemicals

Medicine, Biology, Chemistry and Chemical Engineering

SIC35: Industrial

Machinery

Electrical Engineering, Astronomy, Physics, Computer Science,
Mechanical Engineering and other engineering and physical
sciences

SIC36: Electronics

Electrical Engineering, Astronomy, Mathematics and Computer
Science

SIC37:
Transportation
Equipments

Mechanical Engineering, Physics, Aeronautical Engineering,
Computer Science

SIC3R: Instruments

Medicine, Biology, Electrical Engineering, Astronomy, Physics,
Computer Science, Mechanical Engineering and other
engineering and physical sciences

*Source: Feldman (1994)
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Table 3, Industry Detailed Regression Results for Log{Innovations) at the MSA-Level

(1982) - OLS Results

Model Log(INN28) | Log(INN35) | Log(INN36) LOG(INN38)
CONSTANT -1.796 -2.041 -2.620 -1.850
(0.438) (0.275) (0.437) {(0.600)
Log(RD) 0.322 0.081 0.133 0.190
{0.126) (0.047) (0.064) (0.071)
Log{(URD) -0.013
(0.035)
Log(URDCOVS0) | 0.0361
(0.028)
Log(URDCOV75)} 0.165 0.256
' (0.063) (0.112)
Log(LQ) 0.275 0.591 0.400 0.157
(0.157) (0.156) (0.153) (0.134)
Log(BUS) 0.191 0.632 0.545 0.212
(0.126) (0.080) (0.097) (0.065}
Log(LARGE) 0.077 -0.254 -0.087 0.008
(G.114) (0.097) (0.097) (0.080)
RANK 0.337 0.237
(0.104) (0.125)
R*-adj 0.423 0.673 0.654 0.538
N 48 89 70 63
| White 16.193 28.130 21.150 41.388
LM-Err 0.583 2.338 5.908 0.425
(IDIS2) (ID1S2) (D50) (IDIS2)
LM-Lag 1.553 10.459 2.620 1.105
(IDIS2) (D50) (IDIS2) {D50)

Notes: Estimated standard errors are in parentheses; critical values for the White statistic with
respectively 5, 20 and 35 degrees of freedom are 11.07, 31,41 and 49.52 (p = 0.05}; critical values
for LM-Lag and LM-Err statistics are 3.84 (p = 0.05) and 2.71 (p = 0.10); spatial weights matrices
are row-standardized: D50 is a distance-based contiguity for 50 miles; D75 is a distance-based
contiguity for 75 miles; IDIS2 is inverse distance squared; only the highest values for a spatial
diagnostic are reported.
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Table 4. Industry Detailed Regression Results for Log(Innovations) at the MSA-Level

(1982)
Model Log(INN28) | Log(INN35) Log(INN36) LOG(INN38)
OLS v ML OLS
Spatial Lag Spatial Error Robust
CONSTANT -1.796 -2.12 -2.55 -1.850
{0.438) (0.261) (0.414) (1.883)
Log(RD) 0.322 0.029 0.132 0.190
(0.126) (0.048) (0.058) (0.095)
Log(URD) 0.002
_ (0.034)
Log(URDCOVS50) | 0.0361
(0.028)
Log(URDCOVT7S5) 0.164 0.256
(0.065) {0.122)
Log(L.Q) 0.275 0.612 0.420 0.157
(0.157) (0.147) (0.136) (0.132)
Log(BUS} 0.191 0.649 0.534 0.212
(0.126) (0.075) (0.087) (0.410)
Log(LARGE) 0.077 -0.239 -0.086 0.008
(0.114) (0.091) (0.085) (0.097)
RANK 0.255 0.237
(0.102) (0.181)
W_Log(INN) 0.199
(0.073)
{D50)
A 0.303
(0.13)
| (D50}
R*-adj 0.423 0.720 0.670 1 0.538
N 48 89 70 63
White 16.193
LR-Err 5.190
(D50)
LM-Err 0.583
(IDIS2)
LM-Lag 1.553 2,197
(IDIS2) (IDIS2)

Notes: Estimated standard errors are in parentheses; critical values for the White statistic with
respectively 5, 20 and 35 degrees of freedom are 11.07, 31.41 and 49.52 (p = 0.05); critical
values for LM-Lag and LM-Err statistics are 3.84 (p = 0.05) and 2.71 (p = 0,10); critical
value for LR-Err statistic with one degree of freedom is 3.84 (p=0.05); spatial weights
matrices are row-standardized: D50 is a distance-based contiguity for 50 miles; IDIS2 is
inverse distance squared; only the highest values for a spatial diagnostic are reported.
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Table 5. Industry Detailed Regression Results for Log(Private Rescarch) at the MSA-

Level (1982)
Model Log(RD28) Log(RD35) | Log(RD36) Log(RD38)
28LS OLS OLS 2SLS
Constant 1.197 -1.930 -1.677 -0.173
{0.500) (0.621) (0.682) (0.891)
Log(URD) 0.240 0.283
{0.068) _ (0.151)
Log(URDCOVS50) 0.440 0.280
(0.091) (0.105)
Log (EMP) 0.233 0.617 0.732 0.310
(0.129) 0.152) (0.156) (0.172)
FORTU 0.387 0.520 0.358 0.372
{0.161) (0.254) (0.210) (0.254)
RANK 1-0.128 -0.059
0.227 (0.267)
R*-adj 0.637 0.491 0.453 0.394
N 48 89 70 63
White 8.674 7.597
LM-Err 0.960 0.735
] (D75) (D75)
LM-Lag 0.731 0.664
{IDIS2) (IDI1S2)

Notes: Estimated standard errors are in parentheses; critical vatues for the White statistic with
respectively 5, 20 and 35 degrees of freedom are 11.07, 31.41 and 49.52 {p = 0.05); critical values
for LM-Lag and LM-Err statistics are 3.84 (p = 0.05) and 2.71 (p = 0.10); spatial weights matrices
are row-standardized: D50 is a distance-based contiguity for 50 miles: D75 is a distance-based
contiguity for 75 miles; IDIS2 is inverse distance squared; only the highest values for a spatial
diagnostic are reported. Log (URD) is considersd endogenous in the Chemicals and Instruments

research equations. Instruments in 2SLS estimations are Log(ENRL) and Log(EDEX).
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APPENDIX A

Innovation, Private R&D and University Research for 125 MSAs (1982)

MSA INN28 INN35S INN36 INN3B RD28 RD35 RDI6 RD3IB URD28 URD35 URD36 URD3IB
Akron 2 4 1 1001 1507 1500 1500 1824 2355 937 3584
Altany-Schenectady-Troy 1 1268 1158 557 18242 14460 618! 282286
Albuguerque 1 40 113 141 41 15865 9964 2294 25380
Alleniown-Bethlehem-Easton 2 3 2 930 730 678 2953 85926 1164 6237
Anaheim-Santa Ana-Garden 2 48 24 31 1688 B8B83 726 &6 22317 8061 8457 28037
Ann Arbor 1 2 2 2 825 516 105 300 82110 20856 11618 79533
Asheville 1 10

Allanta 2 5 B g 338 181 128 21 26688 41457 27318 59344
Austin 1 4 4 3 B76 757 178 149 17226 25604 22496 35458
Baltimore 1 7 1 3 1317 615 332 723 82816 5408 3665 85040
Bay City 1

Beilingham 1 27 51 91 164 0 241
Benton Harbor 1 279 49 39 16 3 3 16
Binghamton N.Y .-Pa. 1 1 107 45 2471 326 517 2030
Birmingham 1 643 35019 50 93 35042
Bloomington-Narmal 1 1 15 ] KIh 2 5 201
Boise City 1 1 17

Bloston 19 88 60 114 6414 6807 5497 7860 1B3008 127736 88683 284713
Bridgeport 6 31 15 12 2243 745 770 223 1 13 13 14
Bryan-College Station 2 17 20 15328 22521 3848 31021
Buffalo 3 8 3 10 2218 584 40 982 22008 3248 2551 22256
Burlington 3 25 16 13422 463 462 13308
Canton 1 3 810 737 188 106

Cedar Rapids 1 2 155 160 5

Champaign-Urbana-Rantoul 1 1 18703 34881 18835 486273
Charleston 1 840 8 8

Charlotte-Gastonia 4 1 1 122 85 14 25 135 446 123 §26
Chicago 17 70 25 50 11871 4589 4654 1655 118050 25807 20312 131808
Cincinnati Chio-Ky.-ind. i 8 2 2 794 192 405 6 24977 1305 1093 24607
Cleveland 4 20 14 15 3726 1483 1475 359 30182 12467 3753 39378
Colorado Springs 4 1 1 46 511 187 ] 11 8 20
Columbia 1 62 14 62 19655 3546 886 22790
Columbus 3] 1 3 10 1058 1405 GB4 470 34485 16575 7280 47629
Cumberland Md.-W. Va. 2 217

Dallas-Fort 4 42 24 5 588 740 257 420 41018 5592 5270 44541
Davenport-Rock island-Moline 3 2 g 4271 136 128 2 1 1 2
Dayton 2 2 7 833 1269 230 89 5671 12883 5801 16833
Daytona BEACH 1 a7 B1 o 3 H 31
Denver-Boulder 16 5 5 1967 1808 A37 62 42540 22081 18B25 57588
Detroit 1 17 4 10 4280 2843 2300 730 17714 3713 1642. 17855
Dubugue 1 5 1 1 6

£{ Paso 3 4 4 1158 620 214 168 897
Elkhart 1 71

Erie 2 1 2 208 89 70 18

Evansville ind.-Ky. 1 1 1 170 144 343

Flint 1 52 1028 52

Filorence 1

Fort Cofllins 2 4 83 15640 5733 3583 18894
Fort Lauderdale-Hallywood 5 3 1 100 1 181 3 20 g 9 99
Fort Myers-Cape Coral 2 1 4

Fort Smith Ark.-Okia, 2 12 44

Fresno 48 234 42 42 201
Gainesvilla 1 154 4 30857 12848 42860 40637
Galveston-Texas 2 6 93 93 11882 O 0 11882
Glens FALLS 1 153

Grand Rapids 1 3 207 12 149 14 7 2 20
Greensboro-Winston-Salem 1 4 976 34 g sG28 129 128 8083
Greenville-Spartanburg 1 3 2 3 466 18 10 12 3948 4736 1201 7821
Hamilion-Middletown 1 2 1 25 26 614 B0 69 349
Harrisburg 1 3 75 33 a5

Hartford 3 10 4 9 518 21 1249 113 44948 7012 4306 47318
Houston 11 2 3 13 865 1182 113 31 108045 9351 9835 113496
Huntsville 2 1 14 8 411 500 278 1565 1148 1729
Indianapolis 2 4 4 2 347 337 35 0
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Innovation, Private R&D and University Research for 125 MSAs {1982) (Continued)

MSA INN28 INN35 INNJB INN38 RD28 RD35 RD3I6 RD38 URD2B URD35S URD3S URD3S
Jackson 2

Jacksan 1 2

Janesville-Beloit 2 48 143 s 18 23 26 26 45
Jersey City i) 4 4 2 561 146 68 85 240 4100 422 4100
Johnson City-Kingspori-Bristot 2 725 704 2 32 702
Kalamazoo-Forlage 4 943 2 7 101 23 er 87
Kansas CITY 2 5] 2 2 1112 142 188 39 758 195 198 735
Kenosha 1 118 0 0 3
Knoxville 1 113 243 243 24261 5694 3323 21756
La Crosse 2 2 1 237 24 H 233
Lafayette-West Lafayeite 1 96 15 13 23 22604 20596  8%0D 7674
Lancaster 2 2 636 58 47 22 22 38
Lansing-East 1 30 13 7 22773 12772 3592 32822
Lima 2 1 20

Lincoln 2 121 27 B3s8 4726 2107 9786
Long Branch-Asbury Park 3 3 2 1 308 18t 159 40

Longview-Marshall 1 149 39

Lorain-Elyria 1 1 184 g 20 52 23 23 59
Los Angeles-Long Beach 8 71 38 42 5385 3374 5504 2250 134246 60621 49860 176223
Louisville 4 2 B4 18 50 4550 442 263 4603
Madison 2 2 516 147 133 126 78529 25652 16721  97B4S
Manchester 15 4 216 109 6

Mansfiald 2 g 1

Melbourne-Titusville-Cocoa 4 5] 1 85 32 651 128 21 779
Memphis Tenn.-Ark.-Miss, i 2 122 376 406 208 733
Miami Z 1 1 122 34 18 37 31408 1228 332 32456
Milwaukee 1 12 6 12 1124 668 706 334 16357 2358 1214 17709
Minneapolis-St, 4 39 13 24 8406 811 5333 107 87247 13534 7793 24204
Nashville-Davidson 1 4 44 54 65 180368 1522 1180 19743
Nassau-Suffolk 2 34 3z 51 es2 7177 1378 580 18970 11203 9125 28344
New Bedford 1 2 3 21 65 ) 225 335 344 428
New Brunswick-Perth Amboy- 9 4 5] 11 2023 187 229 104 11946 7149 6224 17232
MNew Haven-West Haven 4 5 10 1396 150 121 51 72372 11044 92 79432
New London-Norwich 1 B&7 719 80 33 43 106 85 133
New Orfeans 1 139 181 13086 1120 651 13691
New York N.Y -N.J. 33 79 44 &5 7132 3872 1913 1573 252798 26625 22818 267859
Essex county 42 35 19 46 8119 17553 18171 658 16956 536 455 16720
Newburgh-Middietown 2 1 50 8 286 81 125 89 125
Newport News-Hampton 1 1 308 388 1308 1308 1395
Norfolk-Virginia Beach 1 60 71 5 1207 1531 905 2554
Northeast 1 1 " 10 7 63 63 70
Oklahoma City 1 204 40 40 13657 5258 5228 15694
Oriando 3 2 B4 439 396 47 423 4194 521 4432
Owenshoro 2

Oxnard-Simi Valisy-Ventura 1 12 8 67 20 62

Parkershurg-Marielta 1 1 1 250

Paterson-Clifton-FPassaic B 13 1 5] 2853 87 92 8 213 1 13 213
Peoria 1 27 18 128 94 146
Philadelphia Pa.-N.J. 20 57 10 51 8340 6204 7323 5215 114821 18107 13044 127315
Phoenix 5 15 9 586 1683 825 812 4375 3332 1875 4469
Pitisburgh 2 14 g 13 3708 1732 BO 279 39564 27028 20958 60246
Pittshiald 1 14 167 164 187 285
Porifand 1 257 28 6 483 0 ¢ 64
Partiand Oreg.-Wash. 10 B 6 230 B 55 18711 2023 1344 19596
Podsmouth-Dover-Rochester 3 2 12 57 45 1528 3Bas 3106 5139
Pravidence-Warwick 3 6 5 1 407 45 o4 10799 9216 6345 17795
Provo-Orem 3 278 3 2869 543 317 1178
Racine 2 3 528 732 102 59

Raleigh-Durham 4 4 1847 43 301 119 859668 13256 9675 92686
Reading 1 176 24 207 3 120 120 121
Renc 1 11 4 4 B 2682 544 147 2748
Riverside-San Bernardino 3 3 & &7 24 7 10 7100 1650 23 B340
Rechester 7 9 16 4160 333 267 2060 43474 17095 7341 57081
Rockford 6 2 1 34 8 22

Sacramento <] 2 193 14 33 56 29398 3084 1810 30559
Saginaw 1 1 45 289
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Innovation, Private R&D and University Research for 125 MSAs (1982) (Continued)

MSA INN28 INN35 INN3G INNIS RDZE RD35 RD3G RD3B URD28 URD35 URD3g URD38
SLLUS 3 6 4 2560 338 I 61313 7597 6525 67615
Salam 1 44 a 20 20 20
Salinas-Seaside-Monterey b] 4 509 2409 2074 2421
Salt LAKE & 2 2 B0 279 778 58 28553  10BO5 45852 36642
San Anlonio 3 1666 19 19521 18 17 19497
San Diego 1 16 18 20 1085 3303 625 280 60500 18534 15698 74753
San Francisco-Oakland 1 41 19 14 4152 1335 23682 3N 123392 28501 16722 145458
San Jose 3 173 151 47 26815 3134 5846 200 65686 58560 31134 111400
Santa Barbara-Santa Maria 1 3 5 584 1197 1330 548 3868 5620 4885 7249
Santa Cruz 2 Kt} 2723 4236 4445 6331
Santa Rosa 4 2 &7 2 12 16

Sarasota 2 20

Seattie-Everett 15 13 4 57 201 426 287 73050 10254 8589 80057
Sheboygan 1 4

Shrevepori 1 1 84 81

South Bend 2 1 2 163 124 3 8505 4113 1529 5766
Spokane 3 9 2 226 4 4 230
Springfield 3 22 108 o 18 19 18
Springfield-Chicopee-Holyoke t 1 1 426 7 12 4 21688 7436 6058 23461
Stockton 1 10 645 3 3 646
Syracuse 5 1 3 918 223 97 68 253856 6205 3534 25658
Tacoma 2 269 a5 20 56 58 69
Tampa-St. 3 4 4 634 7 284 27 3738 989 628 4266
Toledo Ohio-Mich. 2 2 2 540 244 236 55 6053 847 417 6248
Teenton 1 1 8 1 1685 1101 625 78 8774 9243 10660 13067
Tucson 4 4 1 93 5 118 15 30022 23148 15511 51188
Tulsa 4 3 5 85 4 89 1200 271 1200
Utica-Rome 2 1 29 57 12

Vineland-Millville-Bridgeton 3 40 6 82

Visalia-Tulare-Porerville

Waco 1 2 34 3 348 15 15 62
WASHINGTON DC 1 g 8 5 1629 2883 2651 622 29386 5124 5444 32511
Waterloo-Cedar Falls 1 14 5 0 0 5
Wichita 3 1 232 11 i1 75 74 3g2 281 412
Willlamspart 1 23 5

Wilmingion Del.-N.J.-Md. 4 2 2 3 6338 211 305 126 3990 2643 1277 3547
Warcester 3 10 3 1 607 194 247 164 1764 2800 500 3302
York 3 3 50 415

Youngstown-Warren 1 50 4 118 18 85 0 1 18

Sources: compiled from U.S. SBA Innovation Data Base; compiled from R.R. Bowker
Company Directories; compiled from NSF Survey of Scientific and Engineering
Expenditures at Universities and Colleges
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