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Abstract 
 
There are some markets where the growth of firms are held to be subject to 
diminishing returns, or negative feedbacks; and there are other markets where 
firm growth is believed to be subject to increasing returns, or positive 
feedbacks.  A long run tendency towards monopoly might be expected in this 
latter market type, as opposed to a tendency towards relative equality of size 
shares in the former. It would be useful to draw inferences about the nature of 
the feedback process from observed market shares and concentration. We 
motivate and develop a test for feedbacks in firm growth under the null 
hypothesis that there are none. We use the equivalence between an urn model of 
the no-feedback process and the asymptotic distribution of sums of ordered 
intervals in the random division of the unit interval. In the empirical application 
for the United States, we find that most markets are subject to significant 
positive feedbacks. 
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1. Introduction 
 
There are a number of celebrated instances where, from among firms in a 
market, one is seen to have grown swiftly to near-monopoly on the basis of 
having won some degree of market share advantage. The dominance of the 
Microsoft operating system, among other examples, has been portrayed in these 
terms. At the other end, negative feedbacks are also conceivable, where a large 
initial market share makes it more difficult to keep the lead in the market. 
 
The implication of the growth process for market structure has been an 
important concern in industrial economics, though the precise notion of 
feedback has remained largely implicit in this literature. Gibrat's law (Gibrat, 
1911), which models the growth of firms in terms of dependence on current 
size, has been subjected to direct empirical testing in a very large and 
continuing literature (for a detailed review, see Audretsch et. al., 2002).1 
Though there are a variety of formal models of feedback built upon urn scheme 
formalisms (Johnson and Kotz, 1977) and their applications have grown 
prominent in many contexts (Arthur, 1994; Shapiro and Varian, 1999), there has 
been almost no work explicitly interpreting market structures with the help of 
probabilistic models of feedback in firm growth. Our primary objective is to 
formulate a simple, model based statistical test for positive and negative 
feedbacks in firm growth. 
 
Our second motivation follows directly from this. A variety of structural 
measures are used in industrial economics to describe the extent to which any 
market is dominated by large firms, and the corresponding potential for 
anticompetitive outcomes. None of these measures map, in any precise way, 
onto the nature or degree of competition in models of markets. In turn, models 
of growth or competition do not suggest robust benchmarks for evaluating 
observed concentration. In empirical work, concentration has been assessed ad 
hoc, against the benchmark of no concentration. The “bounds” approach of 
Sutton (1991,1998) marks a departure. Based on a robust model of competition, 
Sutton derives the expected, conditional, limiting value for a simple structural 
measure of market concentration, providing a benchmark that could be used to 
assess observed market structures.2 Our second objective in this paper is to 
motivate a method of assessing departures, using an appropriate metric, from a 
similar model-based benchmark. This requires the limiting probability 
distribution of the concentration measure, explicitly derived from the model of 
competition. 
 
We proceed by making explicit the connection between an urn scheme 
representation of the no-feedback growth process and the asymptotic 
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distribution of the concentration ratio, Ck. The latter arises from the direct 
application of a result in the distribution theory of the “random division of the 
unit interval” (Mauldon, 1951). The result is a well defined probability metric to 
assess departures from the no-feedback process in either direction: positive, or 
negative feedbacks in growth. Under the null hypothesis that there is no 
feedback in the growth of firms, observed concentration ratios can be assessed 
against critical values from the probability distribution of Ck. We follow up with 
an empirical illustration for United States manufacturing. 
 
The precedent to our work is that of Parker (1991) who employed Mauldon's 
result in a model-free way to determine “significantly concentrated” industries. 
He compared observed concentration ratios with the distribution of the Ck ratio 
under a null that he characterised, as arising in a “totally unconcentrated 
market”, drawing on the analogy of random division of the unit interval. This 
has been critiqued for not being based on any behavioural model of firm growth 
or competition (Hviid and Villadsen, 1995). We provide the accurate 
model-based interpretation of the null hypothesis. 
 
2. Models of firm growth 
 
Sutton's bounds approach model has been stated as follows: a sequence of 
discrete, equal sized (in terms of revenue / profit) and independent investment 
opportunities arise over time. Here the market can be interpreted as comprising 
of a number of independent submarkets - in terms of product attributes, taste 
niches or geographic locations. A firm's size is measured by the number of 
opportunities it has taken up. If opportunities are labelled by t=1,2,...,T , then nit 
can denote the number of firms of size i at stage t , and Nt can denote the 
number of active firms at time t . 
 

∑
=

=
t

i
itt nN

1
      (1) 

 
The process begins at stage t=1 , when the first opportunity is taken up by some 
firm. Thereafter, each opportunity may be taken up either by some active firm 
or by a new one. The question of interest is: how does the number of firms Nt 
and their size distribution, the vector nit evolve? The evolution of market 
concentration will depend on the pattern of entry by firms into the submarkets: 
on whether there is any systematic bias in favour of large firms or small - is the 
next opportunity taken by an incumbent, more likely to be taken by a larger, or 
by a smaller firm.3 
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The bounds approach develops a model of competition based on a principle of 
symmetry, or equality of opportunity, which excludes the possibility that any 
firm might be privileged by age, size or experience. The stipulation that the next 
market opportunity is filled by any currently active firm amounts to the proviso 
of no feedbacks. 4 5  In the bounds approach, this probabilistic process defines 
the “expected” size distribution for any given total number of firms. Note that 
the bounds approach rules out the possibility of smaller firms being 
systematically advantaged in entry: so observed concentration cannot lie below 
the bound.  
 
Stochastic processes akin to the above have been modelled as urn processes in 
mathematics. The classical Polya urn model (Johnson and Kotz, 1977) considers 
an urn with two kinds of balls, black and white. The replacement policy is 
defined in terms of drawing a ball from the urn, observing its colour and putting 
it back in the urn along with a>0 balls of the same color. Generalisations of the 
replacement policy in the basic urn model have become the main methodology 
in modelling the effect of feedback in growth processes. 
 
Consider a non-linear generalisation of the classical urn model where the 
probability of drawing a ball of a specific colour from an urn is proportional to a 
non-linear function ( xp ) of the number of balls ( x ) of that colour in the urn. 
The case where the number of colours are fixed are analytically tractable – if 
colour represent firms, this corresponds to the situation where the number of 
firms is fixed.6 The case when p=1 is equivalent to the Polya-Eggenberger 
model (Johnson and Kotz, 1977) – and corresponds to Gibrat's Law - each firm 
has a probability of taking the next opportunity that is proportional to its size; 
growth rates are independent of size. If p=0 , the model specifies throwing balls 
independently and uniformly at random - this corresponds to the case where 
each active firm has the same probability of taking the next opportunity: the 
lower bound model. This is the no-feedback case - with the number of firms 
fixed at the start, and no entry. It is known (Athreya, 1969) that in this case, if 
we start with k colours, with one ball of each colour, the distribution of the 
asymptotic proportion of colours in the urn will be uniform. We draw together 
this result with a result on the distribution of sums of ordered intervals under the 
random division of the unit interval (Mauldon, 1951) to derive the asymptotic 
distribution of the concentration ratio under Gibrat's law. In the rest of this 
section, for completeness, we recount the definition of Generalized Polya's urn 
schemes and the result of Athreya (1969). 
 
The no-feedback rule enshrines a probabilistic growth process, and this model 
leads us to a limiting probability distribution of the market concentration index. 
This distribution can be used to assess point estimates of observed 
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concentration, to test the hypothesis that the growth model operating in any 
market is the ‘no-feedbacks’ rule. This will be a more sound assessment of the 
market structure than merely considering where observed market concentration 
lies in its statistical range. 
 
2.1 Generalized Polya’s urn scheme 
 
A Generalized Polya’s urn scheme is defined as follows: At date 0 , an urn has 
s0=(s01, s02, ... , s0k) balls (s0i ≥ 1) respectively of colors indexed 1, 2, ... , k . The 
tth draw consists of the following operations: 
 

1. Pick a ball at random from the urn, notice its color C and return it to the 
urn. 

2. If C=i , add Nt balls of color i to the urn, where Nt is a random variable 
with probability generating function fi . 

 
Let sn = (sn1, sn2, ..., snk) denote the composition of the urn after n successive 
draws, where sni is the number of balls of colour i in the urn. 
 
In this analysis of the evolution of the size distribution { nit }, the competitive 
benchmark is the equal opportunities case when each active firm has the same 
probability of taking the next opportunity.7 
 
The stochastic process (s_n; n=0, 1, 2, ...) has been defined a generalized 
Polya's urn process, denoted by GP{k; s0, f1, ... , fk } to indicate the parameters 
involved. Define pn = (pn1, pn2, ... , pnk) as the share partition, where 
 

∑ =

= k

i ni

ni
ni

s

s
p

1

 

 
Using a technique of embedding urn processes in continuous time multitype 
Markov branching processes, Athreya (1969) proves that: 
 

1. limn→∞ pn = p = (p1, ..., pk) exists with probability 1, if the probability 
generating function fi is defined in the following way: ∑∞

=
⋅=

1
)(

j
j

iji zqzf  

and for all i, fi(0) = 0, 0 < f'(1) = λi < ∞; ∞<⋅⋅∑∞

=1
log

j ij jjq , 

where j
j iji zqzf ∑∞

=
=

1
)(  and λi is a set of parameters such that  

λ1 = λ2 = ... = λr > λr+1 ≥ λr+2 ≥ ... λk.  
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For all i > r , pi = 0 with probability 1, i.e. asymptotically only the first r 
colours have non-zero proportions in the urn. 

 
2. If fi(z) = zλ , i =1, 2, ... , r and f'(1) < λ for i > r then (p1, p2, ... , pr) has a 

generalised ),,,( 00201

λλλ
β rsss

K  distribution over the simplex  

∆ = {x =(x1, ... , xr): xi ≥ 0, 1
1

=∑ =

r

i ix }. 
 

3. Consider a GP where fi(z) is independent of i and satisfies the conditions 

in (1). Then p = limn→∞= (p1, p2, ... , pk) has a ),,,( 00201

λλλ
β rsss

K  

distribution for all initial set up s0 ≠ 0 if and only if λzzf =)(  
 
2.2 The no-feedback growth process and random division of the 
 unit interval 
 
The generalized Polya process defined above may be characterised simply in 
the case where the limiting joint distribution is uniform on the unit simplex. 
Then, the limiting distribution is β(1, … , 1) and the necessary and sufficient 
conditions are: s01 = s02 = ... = s0k = s0 , and λ = 1/s0. One obvious solution is 
when the urn contains one ball of each colour, and λ = 1 . In this case, 
conditioned on N , the total number of firms (colours), if at each date t , each 
firm (colour) has the same probability of taking the next market opportunity 
(ball), then as t passes to infinity, each firm (colour) has equal probability of 
being of any market share in (0,1). As t goes to infinity, each firm's market 
share is drawn independently from the uniform distribution (0,1). In other 
words, if a market has a fixed number of firms, and a firm's probability of 
taking a new opportunity that arises in the market is independent of its size, then 
asymptotically the joint market share distribution is uniform. 
 
Formally, for a given Nt, as t tends to infinity: Consider n-1 points xj, (j = 1, ... , 
n-1) selected independently at random from interval (0,1), with the distribution 
of any xj, the rectangular distribution dF = dxj (0 < xj ≤ 1) . The n-1 points 
selected independently, at random from interval (0,1), divide the unit interval 
into n sub-intervals, such that each one is drawn independently, at random, from 
(0,1). Consider each of these sub-intervals to be the size share of a firm. As t 
tends to infinity, for each firm its size share has the rectangular distribution, i.e. 
there is equal probability for any firm that its share is any value in (0,1). 
Correspondingly, each possible size share distribution is equally possible. 
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Fisher (1929) characterised the above process and characterised the distribution 
of the largest share. Mauldon (1951) extended this to provide the sampling 
distribution for the total share Ck of the largest k segments as: 
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where sum is over values of p for which k/n < p ≤ n and 
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In Sutton’s bounds model, the expected asymptotic firm size distribution under 
equal opportunities is approximated by an exponential distribution, and under 
this approximation, the median concentration ratio is well defined.  
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This is indeed the expected value for Mauldon's (1951) distribution above. 
 
2.3 Assessing significance of feedbacks 
 
Our objective is to motivate a statistical test for positive or negative feedbacks, 
based on a null hypothesis of no feedbacks. We can use Mauldon's (1951) 
sampling distribution in (2) to compute the confidence bands for the share of the 
largest k firms, Ck in an industry. Conditioning on the number of firms (industry 
size) if the underlying competition and growth process follows a no-feedback 
process, the observed concentration ratios must lie within the confidence bands 
defined according to the above distribution. Figure 1 plots the confidence bands 
for C4 under a no-feedback process, showing how they depart significantly from 
the theoretical minimum, 400/n and the maximum, 100 %. 
 
Given the limiting distribution of the concentration ratio, observed values in the 
upper tail would suggest that larger firms enjoy size advantages over smaller 
firms; the larger firms are able to pre-empt market opportunities and gain higher 
market shares than smaller firms. This would be characteristic of economies of 
scale and scope, and also of intensity in endogenous sunk costs, for example, 
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R&D. Reputation effects, for instance linking entry deterrence activities across 
submarkets could also be a reason. 
 

Figure 1: C4 confidence bands under no-feedback firm growth 

 
 
An observed concentration ratio in the lower tail of the limiting distribution 
would suggest that larger firms are systematically disadvantaged in competing 
with small firms. The limiting case is when firms are of equal size. 
 
The usefulness of the probability metric derived from the model of equal 
opportunity competition is that one can identify the cases where observed 
concentration is significantly far away from the no-feedbacks benchmark. In 
Appendix C we examine the nature of the size distribution that is consistent 
with the Mauldon's distribution. We compare (2) above with two popularly 
estimated firm size distributions: Pareto and exponential. 
 
3. An application to the US manufacturing sector 
 
Where do observed concentration ratios lay in comparison with the theoretically 
derived confidence bands? If the market structure is driven by an equal 
opportunities growth process, observed concentration ratios must lie within the 
confidence bands of the limiting concentration ratio distribution. If an observed 
ratio lies in the lower critical region (below the 5% critical value in the 
no-feedback process), we may conclude that growth in that market favours 
firms with smaller market shares. Conversely, if the observed concentration 
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ratio lies in the upper critical region (above the 99% critical value), the market 
would appear to favour firms with larger market shares. 
 
In Section 2 we established that a no-feedback, equal opportunity, growth 
process would lead to the limiting distribution of concentration ratio described 
by Mauldon (1951). We use the 1997 US Census of Manufacturing to compare 
the 6-digit NAICS product market concentration ratios against the bounds 
derived using the cdf in (2). We detail the critical values in Appendix A. The 
census covers 473 product markets at the 6-digit level, of which one has only 4 
firms (C4=100). Concentration ratio (C4) data is supplied for both sales and 
value added. The computational complexity of Mauldon's formula (eq. 2) 
impedes the computation of confidence bands for C4 in industries with more 
than 500 firms. We directly compare observed concentration ratios against 
critical values for product markets with not more than 500 competing firms 
(Table 1). 
 

Table 1:  Number of US Manufacturing industries with negative, no-  
and positive feedback in growth (1) – industries with up to 500 firms 

 
Type of growth feedback Sales Value Added 
Negative feedback 0 0 
No-feedback (cannot reject H0) 5 6 
Positive feedback (at 95%) 4 4 
Positive feedback (at 99%) 312 311 
Total 321 321 
Notes: The null hypothesis is the no-feedback process. If the observed 
concentration C4 is less than the corresponding 5% bound of the 
no-feedback concentration, then the industry must have negative
feedback characteristics. Similarly, above the 95% or 99% bounds,
industries are positive feedback. No-feedback industries are those for 
which observed concentration is within the bounds. 
Source: US Census Bureau and authors' computation 

 
If the number of firms in a product market exceeds 500, we cannot directly 
compare the observed concentration ratio against the corresponding critical 
values. We therefore employ an indirect way of assessing the feedback process. 
Given that critical concentration ratios are decreasing in the number of firms, all 
critical values for industries with more than 500 firms must be lower than the 
critical values for n=500. If the observed concentration in an industry with more 
than 500 firms is in the upper critical region of an industry with 500 firms, then 
it must lie in the upper critical region for its own number of firms. This 
procedure allows us to conclude on most industries of the census (Table 2). 
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Table 2: Number of US Manufacturing industries with negative, no- and  
positive feedback in growth (2) – industries with more than 500 firms 

 
Type of growth feedback Sales Value Added 
Positive feedback (at 99%) 142 142 
Positive feedback (at 95%) 2 2 
Other (no assessment) 7 7 
Total 151 151 
Notes: The assessments are based on the critical values for industries 
with 500 ¯rms. If the observed C4 in an industry with n firms is above 
the 99% bounds for 500 firms, it is also above the critical values for n. 
Source: US Census Bureau and authors' computation 

 
The results in Tables 1 and 2 suggest that market structure is mostly driven by 
positive feedback in firm growth. We find evidence of positive feedback in 460 
product markets out of the total of 472. There is no evidence of negative 
feedbacks and only 5 industries (6 for VA)8 may have been driven by 
no-feedbacks in firm growth. The majority of US manufacturing industries are 
positive feedback industries, where concentration significantly diverges from 
theoretical minima. 
 
4. Conclusion 
 
Positive or negative feedbacks in the firm growth process have fundamental 
implications for the evolution of market structure. But while the estimation of 
firm growth models has always been concerned with assessing positive or 
negative dependence of firm growth rates on size, there has been little work 
relating market concentration and feedbacks in firm growth in a model that is 
amenable to statistical inference procedures. While a method to determine 
“significantly concentrated” markets was suggested (Parker, 1991), there has 
been little progress in deriving probability distributions of market concentration 
drawing from general models of firm growth and competition. 
 
Our objective has been to determine a probability metric for the assessment of 
feedbacks in the growth process of firms. We showed how a no-feedback 
growth process can be represented as an urn scheme. This behavioural model 
asymptotically leads to the concentration ratio distribution identical to the 
distribution of sums of ordered intervals from the random division of the unit 
interval. Thus under a null hypothesis that there is no feedback in the growth of 
firms, observed concentration ratios can be assessed against critical values from 
the limiting probability distribution. Observed concentration in the upper critical 
region would suggest that larger firms are able to pre-empt smaller firms in 
taking new market opportunities - possible evidence of economies of scale and 
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scope. Observed concentration ratio in the lower critical region would suggest 
that larger firms are systematically disadvantaged in competing with small 
firms. The probability metric derived from the no-feedback model can be used 
to identify cases where there are significant positive or negative feedbacks. In 
the empirical application for the United States, we found that almost all markets 
showed evidence of significant positive feedback. 
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Notes 
 
1  Growth rates of surviving firms appear to decline systematically with 

size, at least in manufacturing. 
 
2  The measure used by Sutton, the concentration ratio Ck is defined as the 

sum of the market shares of the largest k firms in a market of n firms, 
where k is a specified small number, usually between 3 and 8. The 
concentration ratio has well-known shortcomings (Sleuwaegen and 
Dehandschutter, 1986), but is popular in empirical work. Its ease of 
computation and general availability from government statistical sources 
make it suitable for comparing Ck ∈ [k/n,1] across industries, countries 
and over time. The program of empirical work that followed the bounds 
approach has gone on to estimate the lower envelope of the cross 
sectional relationship between Ck and market size (or n), for different 
classes of industries. 

 
3  It depends to a lesser extent on de-novo entry. The extreme case of 

minimal concentration will result if each of the submarkets were equal in 
size and these were taken up in succession by new firms, leading to 
perfect equality between firms. McCloughan (1995) used simulations to 
determine the role of different processes in shaping concentration. He 
found that the most important determinant of concentration was 
systematic firm-level growth; entry and exit were much less significant. 

 
4  In contrast, Gibrat's law postulates that the “probability that the next 

opportunity is taken up by any particular active firm is proportional to the 
current size of the firm” (Sutton, 1997, p. 43). 

 
5  Sutton argues that in the light of the difficulty in choosing among the 

many model specifics of unobservable firm decisions, robustness requires 
the dropping of the standard game theoretic principle of the legitimacy of 
all perfect Nash equilibria. Then the definition of rationality involves 
only a viability condition, interpreted as avoidance of loss-making 
strategies; and a stability condition, which is a no-arbitrage principle. The 
competition to enter any submarket can be modelled as a generic two 
stage game; firms first making various sunk cost investments, setting up 
plants, designing and developing product attributes, etc., leading to a 
configuration in the space of plant locations, or product characteristics. 
This is followed in the second stage by market competition which may 
take any form: Cournot, Bertrand, or otherwise, but in which choices 
made in the first stage are parameters into the firms' payoff functions. 
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Sutton shows that in modelling the evolution of market structure, the 
above described firm growth process nests into a robust characterisation 
of the set of outcomes that can be supported as an equilibrium of any 
candidate competition model. 

 
6  While this appears to depart from Sutton's model that allows entry, it 

must be noted Sutton's results are conditioned on chosen limiting values 
of Nt. 

 
7  This corresponds to the case when the resulting size distribution will be 

of minimum inequality, among all the cases where the probability that the 
next market opportunity is taken by an active firm is non-decreasing in 
the size of the firm. 

 
8  The industries are beet sugar (NAICS 311313), tire cord and tire fabric 

mills (314992), newsprint mills (322122), electrometallurgical ferroalloy 
products (331112) and primary aluminium production (331312) for sales 
and flat glass (327211) additionally for value added. Notice that the 
metallurgical industries (aluminium and ferroalloy) are electricity 
intensive industries and plants tend to locate in the vicinity of power 
sources, with an upper limit to growth, that depends on the limited energy 
resources available. Newsprint mills are part of an industry that is rather 
decentralised in the US, due to the localised nature of print media in 
component states. 
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Appendix A 
 

Table 3: Critical values of C4 for the no-feedback process 
 

n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
5 86.32 89.46 96.82 99.75 99.95 6 77.71 81.91 91.77 98.02 99.16 
7 71.10 75.56 86.74 95.28 97.40 8 65.73 70.26 82.04 92.12 95.05 
9 61.27 65.76 77.75 88.84 92.40 10 57.50 61.89 73.87 85.60 89.63 
11 54.25 58.53 70.37 82.48 86.85 12 51.43 55.58 67.21 79.51 84.14 
13 48.94 52.96 64.33 76.71 81.51 14 46.73 50.61 61.72 74.08 79.00 
15 44.74 48.51 59.33 71.61 76.61 16 42.95 46.60 57.14 69.29 74.33 
17 41.33 44.86 55.12 67.12 72.18 18 39.84 43.26 53.26 65.08 70.13 
19 38.48 41.80 51.53 63.17 68.20 20 37.23 40.45 49.93 61.37 66.37 
21 36.07 39.20 48.43 59.67 64.63 22 34.99 38.03 47.03 58.07 62.98 
23 33.99 36.95 45.72 56.56 61.42 24 33.05 35.93 44.49 55.13 59.93 
25 32.17 34.98 43.34 53.78 58.51 26 31.35 34.09 42.25 52.49 57.17 
27 30.58 33.25 41.22 51.27 55.89 28 29.85 32.45 40.24 50.11 54.66 
29 29.15 31.70 39.32 49.01 53.49 30 28.50 30.99 38.44 47.95 52.38 
31 27.88 30.31 37.61 46.95 51.31 32 27.29 29.67 36.82 45.99 50.29 
33 26.73 29.06 36.06 45.07 49.31 34 26.20 28.48 35.34 44.19 48.37 
35 25.69 27.92 34.65 43.35 47.46 36 25.20 27.39 33.99 42.54 46.60 
37 24.73 26.88 33.35 41.76 45.76 38 24.29 26.40 32.75 41.02 44.96 
39 23.86 25.93 32.16 40.30 44.19 40 23.45 25.48 31.61 39.61 43.44 
41 23.06 25.05 31.07 38.95 42.72 42 22.68 24.64 30.55 38.31 42.03 
43 22.31 24.24 30.05 37.69 41.36 44 21.96 23.85 29.57 37.09 40.71 
45 21.62 23.48 29.11 36.51 40.09 46 21.30 23.13 28.66 35.96 39.48 
47 20.98 22.78 28.23 35.42 38.90 48 20.68 22.45 27.81 34.90 38.33 
49 20.38 22.13 27.41 34.39 37.78 50 20.10 21.82 27.02 33.90 37.25 
51 19.82 21.51 26.64 33.43 36.73 52 19.56 21.22 26.27 32.97 36.23 
53 19.30 20.94 25.91 32.52 35.75 54 19.05 20.67 25.57 32.09 35.27 
55 18.80 20.40 25.23 31.67 34.81 56 18.57 20.14 24.91 31.26 34.37 
57 18.34 19.89 24.59 30.86 33.93 58 18.11 19.64 24.29 30.48 33.51 
59 17.90 19.41 23.99 30.10 33.10 60 17.69 19.18 23.70 29.73 32.70 
61 17.48 18.95 23.41 29.38 32.31 62 17.28 18.73 23.14 29.03 31.93 
63 17.09 18.52 22.87 28.69 31.56 64 16.90 18.31 22.61 28.36 31.19 
65 16.71 18.11 22.36 28.04 30.84 66 16.53 17.91 22.11 27.73 30.50 
67 16.36 17.72 21.87 27.42 30.16 68 16.18 17.53 21.63 27.12 29.83 
69 16.02 17.35 21.40 26.83 29.51 70 15.85 17.17 21.17 26.54 29.20 
71 15.69 17.00 20.95 26.27 28.89 72 15.54 16.83 20.74 25.99 28.60 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
73 15.38 16.66 20.53 25.73 28.30 74 15.24 16.50 20.32 25.47 28.02 
75 15.09 16.34 20.12 25.21 27.74 76 14.95 16.18 19.93 24.96 27.46 
77 14.81 16.03 19.73 24.72 27.20 78 14.67 15.88 19.54 24.48 26.93 
79 14.54 15.73 19.36 24.25 26.68 80 14.41 15.59 19.18 24.02 26.42 
81 14.28 15.45 19.00 23.79 26.18 82 14.15 15.31 18.83 23.58 25.94 
83 14.03 15.18 18.66 23.36 25.70 84 13.91 15.04 18.50 23.15 25.47 
85 13.79 14.92 18.33 22.94 25.24 86 13.67 14.79 18.17 22.74 25.01 
87 13.56 14.66 18.02 22.54 24.80 88 13.45 14.54 17.86 22.35 24.58 
89 13.34 14.42 17.71 22.15 24.37 90 13.23 14.30 17.56 21.97 24.16 
91 13.12 14.19 17.42 21.78 23.96 92 13.02 14.08 17.28 21.60 23.76 
93 12.92 13.96 17.14 21.42 23.56 94 12.82 13.85 17.00 21.25 23.37 
95 12.72 13.75 16.86 21.08 23.18 96 12.62 13.64 16.73 20.91 22.99 
97 12.53 13.54 16.60 20.74 22.81 98 12.44 13.44 16.47 20.58 22.63 
99 12.34 13.34 16.35 20.42 22.46 100 12.25 13.24 16.22 20.26 22.28 
101 12.16 13.14 16.10 20.11 22.11 102 12.08 13.04 15.98 19.95 21.94 
103 11.99 12.95 15.86 19.80 21.78 104 11.91 12.86 15.75 19.66 21.61 
105 11.82 12.77 15.63 19.51 21.45 106 11.74 12.68 15.52 19.37 21.30 
107 11.66 12.59 15.41 19.23 21.14 108 11.58 12.50 15.30 19.09 20.99 
109 11.50 12.42 15.19 18.95 20.84 110 11.43 12.33 15.09 18.82 20.69 
111 11.35 12.25 14.98 18.69 20.55 112 11.28 12.17 14.88 18.56 20.40 
113 11.20 12.09 14.78 18.43 20.26 114 11.13 12.01 14.68 18.30 20.12 
115 11.06 11.93 14.58 18.18 19.98 116 10.99 11.86 14.49 18.06 19.85 
117 10.92 11.78 14.39 17.94 19.72 118 10.85 11.71 14.30 17.82 19.58 
119 10.78 11.63 14.21 17.70 19.45 120 10.72 11.56 14.12 17.58 19.33 
121 10.65 11.49 14.03 17.47 19.20 122 10.59 11.42 13.94 17.36 19.08 
123 10.52 11.35 13.85 17.25 18.95 124 10.46 11.28 13.77 17.14 18.83 
125 10.40 11.21 13.68 17.03 18.71 126 10.34 11.15 13.60 16.92 18.60 
127 10.28 11.08 13.51 16.82 18.48 128 10.22 11.02 13.43 16.72 18.37 
129 10.16 10.95 13.35 16.61 18.25 130 10.10 10.89 13.27 16.51 18.14 
131 10.04 10.83 13.20 16.41 18.03 132 9.99 10.76 13.12 16.32 17.93 
133 9.93 10.70 13.04 16.22 17.82 134 9.88 10.64 12.97 16.12 17.71 
135 9.82 10.58 12.89 16.03 17.61 136 9.77 10.52 12.82 15.94 17.51 
137 9.71 10.47 12.75 15.84 17.40 138 9.66 10.41 12.68 15.75 17.30 
139 9.61 10.35 12.60 15.66 17.20 140 9.56 10.30 12.53 15.57 17.11 
141 9.51 10.24 12.47 15.49 17.01 142 9.46 10.19 12.40 15.40 16.91 
143 9.41 10.13 12.33 15.31 16.82 144 9.36 10.08 12.26 15.23 16.73 
145 9.31 10.03 12.20 15.15 16.63 146 9.26 9.98 12.13 15.06 16.54 
147 9.22 9.93 12.07 14.98 16.45 148 9.17 9.87 12.01 14.90 16.36 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
149 9.13 9.82 11.94 14.82 16.28 150 9.08 9.77 11.88 14.74 16.19 
151 9.03 9.73 11.82 14.67 16.10 152 8.99 9.68 11.76 14.59 16.02 
153 8.95 9.63 11.70 14.51 15.93 154 8.90 9.58 11.64 14.44 15.85 
155 8.86 9.53 11.58 14.36 15.77 156 8.82 9.49 11.52 14.29 15.69 
157 8.77 9.44 11.47 14.22 15.61 158 8.73 9.40 11.41 14.15 15.53 
159 8.69 9.35 11.35 14.07 15.45 160 8.65 9.31 11.30 14.00 15.37 
161 8.61 9.26 11.24 13.93 15.29 162 8.57 9.22 11.19 13.87 15.22 
163 8.53 9.18 11.14 13.80 15.14 164 8.49 9.13 11.08 13.73 15.07 
165 8.45 9.09 11.03 13.66 14.99 166 8.41 9.05 10.98 13.60 14.92 
167 8.38 9.01 10.93 13.53 14.85 168 8.34 8.97 10.88 13.47 14.78 
169 8.30 8.93 10.82 13.40 14.71 170 8.27 8.89 10.77 13.34 14.64 
171 8.23 8.85 10.73 13.28 14.57 172 8.19 8.81 10.68 13.22 14.50 
173 8.16 8.77 10.63 13.15 14.43 174 8.12 8.73 10.58 13.09 14.36 
175 8.09 8.69 10.53 13.03 14.30 176 8.05 8.66 10.49 12.97 14.23 
177 8.02 8.62 10.44 12.91 14.17 178 7.98 8.58 10.39 12.86 14.10 
179 7.95 8.55 10.35 12.80 14.04 180 7.92 8.51 10.30 12.74 13.97 
181 7.88 8.47 10.26 12.68 13.91 182 7.85 8.44 10.21 12.63 13.85 
183 7.82 8.40 10.17 12.57 13.79 184 7.79 8.37 10.13 12.52 13.73 
185 7.75 8.33 10.08 12.46 13.67 186 7.72 8.30 10.04 12.41 13.61 
187 7.69 8.26 10.00 12.36 13.55 188 7.66 8.23 9.96 12.30 13.49 
189 7.63 8.20 9.91 12.25 13.43 190 7.60 8.16 9.87 12.20 13.37 
191 7.57 8.13 9.83 12.15 13.32 192 7.54 8.10 9.79 12.09 13.26 
193 7.51 8.07 9.75 12.04 13.20 194 7.48 8.03 9.71 11.99 13.15 
195 7.45 8.00 9.67 11.94 13.09 196 7.42 7.97 9.63 11.89 13.04 
197 7.39 7.94 9.59 11.85 12.98 198 7.36 7.91 9.56 11.80 12.93 
199 7.34 7.88 9.52 11.75 12.88 200 7.31 7.85 9.48 11.70 12.83 
201 7.28 7.82 9.44 11.65 12.77 202 7.25 7.79 9.41 11.61 12.72 
203 7.23 7.76 9.37 11.56 12.67 204 7.20 7.73 9.33 11.51 12.62 
205 7.17 7.70 9.30 11.47 12.57 206 7.15 7.67 9.26 11.42 12.52 
207 7.12 7.64 9.23 11.38 12.47 208 7.09 7.62 9.19 11.33 12.42 
209 7.07 7.59 9.16 11.29 12.37 210 7.04 7.56 9.12 11.25 12.32 
211 7.02 7.53 9.09 11.20 12.28 212 6.99 7.50 9.05 11.16 12.23 
213 6.97 7.48 9.02 11.12 12.18 214 6.94 7.45 8.99 11.08 12.13 
215 6.92 7.42 8.95 11.03 12.09 216 6.89 7.40 8.92 10.99 12.04 
217 6.87 7.37 8.89 10.95 12.00 218 6.84 7.34 8.85 10.91 11.95 
219 6.82 7.32 8.82 10.87 11.91 220 6.80 7.29 8.79 10.83 11.86 
221 6.77 7.27 8.76 10.79 11.82 222 6.75 7.24 8.73 10.75 11.77 
223 6.73 7.22 8.70 10.71 11.73 224 6.70 7.19 8.67 10.67 11.69 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
225 6.68 7.17 8.63 10.63 11.64 226 6.66 7.14 8.60 10.59 11.60 
227 6.64 7.12 8.57 10.56 11.56 228 6.61 7.09 8.54 10.52 11.52 
229 6.59 7.07 8.51 10.48 11.48 230 6.57 7.05 8.49 10.44 11.44 
231 6.55 7.02 8.46 10.41 11.40 232 6.53 7.00 8.43 10.37 11.35 
233 6.50 6.98 8.40 10.33 11.31 234 6.48 6.95 8.37 10.30 11.27 
235 6.46 6.93 8.34 10.26 11.23 236 6.44 6.91 8.31 10.23 11.20 
237 6.42 6.88 8.28 10.19 11.16 238 6.40 6.86 8.26 10.16 11.12 
239 6.38 6.84 8.23 10.12 11.08 240 6.36 6.82 8.20 10.09 11.04 
241 6.34 6.80 8.17 10.05 11.00 242 6.32 6.77 8.15 10.02 10.97 
243 6.30 6.75 8.12 9.98 10.93 244 6.28 6.73 8.09 9.95 10.89 
245 6.26 6.71 8.07 9.92 10.85 246 6.24 6.69 8.04 9.88 10.82 
247 6.22 6.67 8.02 9.85 10.78 248 6.20 6.65 7.99 9.82 10.75 
249 6.18 6.63 7.96 9.79 10.71 250 6.16 6.60 7.94 9.75 10.68 
251 6.14 6.58 7.91 9.72 10.64 252 6.12 6.56 7.89 9.69 10.60 
253 6.11 6.54 7.86 9.66 10.57 254 6.09 6.52 7.84 9.63 10.54 
255 6.07 6.50 7.81 9.60 10.50 256 6.05 6.48 7.79 9.57 10.47 
257 6.03 6.46 7.77 9.54 10.43 258 6.02 6.44 7.74 9.51 10.40 
259 6.00 6.43 7.72 9.48 10.37 260 5.98 6.41 7.69 9.45 10.33 
261 5.96 6.39 7.67 9.42 10.30 262 5.94 6.37 7.65 9.39 10.27 
263 5.93 6.35 7.62 9.36 10.24 264 5.91 6.33 7.60 9.33 10.20 
265 5.89 6.31 7.58 9.30 10.17 266 5.88 6.29 7.55 9.27 10.14 
267 5.86 6.27 7.53 9.24 10.11 268 5.84 6.26 7.51 9.21 10.08 
269 5.82 6.24 7.49 9.18 10.05 270 5.81 6.22 7.46 9.16 10.02 
271 5.79 6.20 7.44 9.13 9.98 272 5.77 6.18 7.42 9.10 9.95 
273 5.76 6.17 7.40 9.07 9.92 274 5.74 6.15 7.38 9.05 9.89 
275 5.73 6.13 7.35 9.02 9.86 276 5.71 6.11 7.33 8.99 9.83 
277 5.69 6.10 7.31 8.97 9.80 278 5.68 6.08 7.29 8.94 9.77 
279 5.66 6.06 7.27 8.91 9.75 280 5.65 6.05 7.25 8.89 9.72 
281 5.63 6.03 7.23 8.86 9.69 282 5.62 6.01 7.21 8.83 9.66 
283 5.60 6.00 7.19 8.81 9.63 284 5.59 5.98 7.17 8.78 9.60 
285 5.57 5.96 7.15 8.76 9.57 286 5.56 5.95 7.13 8.73 9.55 
287 5.54 5.93 7.11 8.71 9.52 288 5.53 5.91 7.09 8.68 9.49 
289 5.51 5.90 7.07 8.66 9.46 290 5.50 5.88 7.05 8.63 9.44 
291 5.48 5.87 7.03 8.61 9.41 292 5.47 5.85 7.01 8.58 9.38 
293 5.45 5.83 6.99 8.56 9.36 294 5.44 5.82 6.97 8.53 9.33 
295 5.42 5.80 6.95 8.51 9.30 296 5.41 5.79 6.93 8.49 9.28 
297 5.40 5.77 6.91 8.46 9.25 298 5.38 5.76 6.89 8.44 9.22 
299 5.37 5.74 6.88 8.42 9.20 300 5.35 5.73 6.86 8.39 9.17 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
301 5.34 5.71 6.84 8.37 9.15 302 5.33 5.70 6.82 8.35 9.12 
303 5.31 5.68 6.80 8.32 9.10 304 5.30 5.67 6.78 8.30 9.07 
305 5.29 5.65 6.77 8.28 9.05 306 5.27 5.64 6.75 8.26 9.02 
307 5.26 5.63 6.73 8.23 9.00 308 5.25 5.61 6.71 8.21 8.97 
309 5.23 5.60 6.70 8.19 8.95 310 5.22 5.58 6.68 8.17 8.93 
311 5.21 5.57 6.66 8.15 8.90 312 5.19 5.55 6.64 8.13 8.88 
313 5.18 5.54 6.63 8.10 8.85 314 5.17 5.53 6.61 8.08 8.83 
315 5.15 5.51 6.59 8.06 8.81 316 5.14 5.50 6.58 8.04 8.78 
317 5.13 5.49 6.56 8.02 8.76 318 5.12 5.47 6.54 8.00 8.74 
319 5.10 5.46 6.53 7.98 8.71 320 5.09 5.44 6.51 7.96 8.69 
321 5.08 5.43 6.49 7.94 8.67 322 5.07 5.42 6.48 7.92 8.65 
323 5.05 5.40 6.46 7.89 8.62 324 5.04 5.39 6.44 7.87 8.60 
325 5.03 5.38 6.43 7.85 8.58 326 5.02 5.37 6.41 7.83 8.56 
327 5.01 5.35 6.40 7.81 8.54 328 4.99 5.34 6.38 7.79 8.51 
329 4.98 5.33 6.36 7.78 8.49 330 4.97 5.31 6.35 7.76 8.47 
331 4.96 5.30 6.33 7.74 8.45 332 4.95 5.29 6.32 7.72 8.43 
333 4.94 5.28 6.30 7.70 8.41 334 4.92 5.26 6.29 7.68 8.38 
335 4.91 5.25 6.27 7.66 8.36 336 4.90 5.24 6.26 7.64 8.34 
337 4.89 5.23 6.24 7.62 8.32 338 4.88 5.21 6.23 7.60 8.30 
339 4.87 5.20 6.21 7.58 8.28 340 4.86 5.19 6.20 7.57 8.26 
341 4.85 5.18 6.18 7.55 8.24 342 4.83 5.17 6.17 7.53 8.22 
343 4.82 5.15 6.15 7.51 8.20 344 4.81 5.14 6.14 7.49 8.18 
345 4.80 5.13 6.12 7.47 8.16 346 4.79 5.12 6.11 7.46 8.14 
347 4.78 5.11 6.10 7.44 8.12 348 4.77 5.10 6.08 7.42 8.10 
349 4.76 5.08 6.07 7.40 8.08 350 4.75 5.07 6.05 7.38 8.06 
351 4.74 5.06 6.04 7.37 8.04 352 4.73 5.05 6.02 7.35 8.02 
353 4.72 5.04 6.01 7.33 8.00 354 4.71 5.03 6.00 7.32 7.98 
355 4.70 5.02 5.98 7.30 7.97 356 4.69 5.01 5.97 7.28 7.95 
357 4.68 4.99 5.96 7.26 7.93 358 4.66 4.98 5.94 7.25 7.91 
359 4.65 4.97 5.93 7.23 7.89 360 4.64 4.96 5.92 7.21 7.87 
361 4.63 4.95 5.90 7.20 7.85 362 4.62 4.94 5.89 7.18 7.84 
363 4.61 4.93 5.88 7.16 7.82 364 4.60 4.92 5.86 7.15 7.80 
365 4.59 4.91 5.85 7.13 7.78 366 4.58 4.90 5.84 7.11 7.76 
367 4.58 4.89 5.82 7.10 7.75 368 4.57 4.88 5.81 7.08 7.73 
369 4.56 4.87 5.80 7.07 7.71 370 4.55 4.86 5.79 7.05 7.69 
371 4.54 4.84 5.77 7.03 7.68 372 4.53 4.83 5.76 7.02 7.66 
373 4.52 4.82 5.75 7.00 7.64 374 4.51 4.81 5.74 6.99 7.62 
375 4.50 4.80 5.72 6.97 7.61 376 4.49 4.79 5.71 6.96 7.59 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
377 4.48 4.78 5.70 6.94 7.57 378 4.47 4.77 5.69 6.93 7.56 
379 4.46 4.76 5.67 6.91 7.54 380 4.45 4.75 5.66 6.89 7.52 
381 4.44 4.74 5.65 6.88 7.51 382 4.43 4.73 5.64 6.86 7.49 
383 4.42 4.72 5.63 6.85 7.47 384 4.42 4.71 5.61 6.83 7.46 
385 4.41 4.70 5.60 6.82 7.44 386 4.40 4.69 5.59 6.81 7.42 
387 4.39 4.69 5.58 6.79 7.41 388 4.38 4.68 5.57 6.78 7.39 
389 4.37 4.67 5.55 6.76 7.37 390 4.36 4.66 5.54 6.75 7.36 
391 4.35 4.65 5.53 6.73 7.34 392 4.34 4.64 5.52 6.72 7.33 
393 4.34 4.63 5.51 6.70 7.31 394 4.33 4.62 5.50 6.69 7.30 
395 4.32 4.61 5.49 6.68 7.28 396 4.31 4.60 5.47 6.66 7.26 
397 4.30 4.59 5.46 6.65 7.25 398 4.29 4.58 5.45 6.63 7.23 
399 4.28 4.57 5.44 6.62 7.22 400 4.28 4.56 5.43 6.61 7.20 
401 4.27 4.55 5.42 6.59 7.19 402 4.26 4.55 5.41 6.58 7.17 
403 4.25 4.54 5.40 6.56 7.16 404 4.24 4.53 5.39 6.55 7.14 
405 4.23 4.52 5.37 6.54 7.13 406 4.23 4.51 5.36 6.52 7.11 
407 4.22 4.50 5.35 6.51 7.10 408 4.21 4.49 5.34 6.50 7.08 
409 4.20 4.48 5.33 6.48 7.07 410 4.19 4.48 5.32 6.47 7.05 
411 4.19 4.47 5.31 6.46 7.04 412 4.18 4.46 5.30 6.44 7.02 
413 4.17 4.45 5.29 6.43 7.01 414 4.16 4.44 5.28 6.42 7.00 
415 4.15 4.43 5.27 6.40 6.98 416 4.15 4.42 5.26 6.39 6.97 
417 4.14 4.42 5.25 6.38 6.95 418 4.13 4.41 5.24 6.37 6.94 
419 4.12 4.40 5.23 6.35 6.93 420 4.12 4.39 5.22 6.34 6.91 
421 4.11 4.38 5.21 6.33 6.90 422 4.10 4.37 5.20 6.31 6.88 
423 4.09 4.37 5.19 6.30 6.87 424 4.08 4.36 5.18 6.29 6.86 
425 4.08 4.35 5.17 6.28 6.84 426 4.07 4.34 5.16 6.27 6.83 
427 4.06 4.33 5.15 6.25 6.81 428 4.05 4.32 5.14 6.24 6.80 
429 4.05 4.32 5.13 6.23 6.79 430 4.04 4.31 5.12 6.22 6.77 
431 4.03 4.30 5.11 6.20 6.76 432 4.02 4.29 5.10 6.19 6.75 
433 4.02 4.28 5.09 6.18 6.73 434 4.01 4.28 5.08 6.17 6.72 
435 4.00 4.27 5.07 6.16 6.71 436 4.00 4.26 5.06 6.14 6.70 
437 3.99 4.25 5.05 6.13 6.68 438 3.98 4.25 5.04 6.12 6.67 
439 3.97 4.24 5.03 6.11 6.66 440 3.97 4.23 5.02 6.10 6.64 
441 3.96 4.22 5.01 6.09 6.63 442 3.95 4.22 5.00 6.07 6.62 
443 3.95 4.21 4.99 6.06 6.61 444 3.94 4.20 4.98 6.05 6.59 
445 3.93 4.19 4.98 6.04 6.58 446 3.92 4.18 4.97 6.03 6.57 
447 3.92 4.18 4.96 6.02 6.56 448 3.91 4.17 4.95 6.01 6.54 
449 3.90 4.16 4.94 5.99 6.53 450 3.90 4.16 4.93 5.98 6.52 
451 3.89 4.15 4.92 5.97 6.51 452 3.88 4.14 4.91 5.96 6.49 
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n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99% 
453 3.88 4.13 4.90 5.95 6.48 454 3.87 4.13 4.89 5.94 6.47 
455 3.86 4.12 4.89 5.93 6.46 456 3.86 4.11 4.88 5.92 6.45 
457 3.85 4.10 4.87 5.91 6.43 458 3.84 4.10 4.86 5.89 6.42 
459 3.84 4.09 4.85 5.88 6.41 460 3.83 4.08 4.84 5.87 6.40 
461 3.82 4.08 4.83 5.86 6.39 462 3.82 4.07 4.82 5.85 6.37 
463 3.81 4.06 4.82 5.84 6.36 464 3.80 4.05 4.81 5.83 6.35 
465 3.80 4.05 4.80 5.82 6.34 466 3.79 4.04 4.79 5.81 6.33 
467 3.78 4.03 4.78 5.80 6.32 468 3.78 4.03 4.77 5.79 6.30 
469 3.77 4.02 4.77 5.78 6.29 470 3.77 4.01 4.76 5.77 6.28 
471 3.76 4.01 4.75 5.76 6.27 472 3.75 4.00 4.74 5.75 6.26 
473 3.75 3.99 4.73 5.74 6.25 474 3.74 3.99 4.72 5.73 6.24 
475 3.73 3.98 4.72 5.72 6.23 476 3.73 3.97 4.71 5.71 6.21 
477 3.72 3.97 4.70 5.70 6.20 478 3.72 3.96 4.69 5.69 6.19 
479 3.71 3.95 4.68 5.68 6.18 480 3.70 3.95 4.68 5.67 6.17 
481 3.70 3.94 4.67 5.66 6.16 482 3.69 3.93 4.66 5.65 6.15 
483 3.69 3.93 4.65 5.64 6.14 484 3.68 3.92 4.64 5.63 6.13 
485 3.67 3.91 4.64 5.62 6.12 486 3.67 3.91 4.63 5.61 6.10 
487 3.66 3.90 4.62 5.60 6.09 488 3.66 3.89 4.61 5.59 6.08 
489 3.65 3.89 4.60 5.58 6.07 490 3.64 3.88 4.60 5.57 6.06 
491 3.64 3.88 4.59 5.56 6.05 492 3.63 3.87 4.58 5.55 6.04 
493 3.63 3.86 4.57 5.54 6.03 494 3.62 3.86 4.57 5.53 6.02 
495 3.61 3.85 4.56 5.52 6.01 496 3.61 3.84 4.55 5.51 6.00 
497 3.60 3.84 4.54 5.50 5.99 498 3.60 3.83 4.54 5.49 5.98 
499 3.59 3.83 4.53 5.48 5.97 500 3.59 3.82 4.52 5.47 5.96 
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Appendix B - Extensions of Polya's urn and the Poisson-Dirichlet 
distribution 
 
Polya's urn model has been extended to accommodate entry. Consider the 
version analysed by Hoppe (1984, 1987). An urn initially contains one white 
ball of mass θ>0 and various numbers of balls of other colours (non-white) each 
of mass 1. At each point of discrete time a ball is drawn at random (in 
proportion to its mass) from the urn. If the selected ball is white it is returned 
with a ball of a previously unused colour (and mass 1). Otherwise the selected 
ball is returned with one additional ball of the same colour and mass. 
 
The extent of entry is captured by the parameter θ. Each jth draw is taken either 
by a new entrant or an incumbent with probabilities θ/(θ+j-1) and (j-1)/(θ+j-1), 
respectively. The probability of new entry is strictly decreasing in j, incumbents 
on aggregate have an increasing probability of success. In the limit (as j→∞) the 
probability of entry converges to zero. Asymptotically the number of firms in a 
market is hence a random number and its distribution depends on the parameter 
θ. 
 
The most important result on generalised Polya's urn is Ewens' sampling 
formula (Ewens 1972). Consider an urn process described above in which $n$ 
draws are made. The probability of obtaining an arbitrary partition given by 
a={a1,a2,...,an} is given by: 
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where Πn is the sample size partition, a is the given size partition, each ai is a 
non-negative integer and denotes the number of times integer i appears in the 
occurrences of the k different colours (i.e. the number of colours that have i 
balls in the urn after n draws), and [θ]n = θ(θ+1)…(θ+n-1) is the ascending 
factorial. Note that k is an arbitrary positive number such that 0 < k ≤ n. A 
complete description of the size partition requires: 
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A generalized urn model (with entry) is, however, of limited use for our 
purposes. First, the random number of colours in the urn has a distribution that 
cannot be derived explicitly. We seek to establish a benchmark for the order 
statistics in an urn model and hence the number of firms (colours) must be fixed 
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(as a long-run equilibrium). Second, implicit asymptotic results can only be 
obtained under certain parameter restrictions. Even though Ewens (1972), 
Kingman (1975) and Hoppe (1987) extend the results of Athreya (1969), they 
do not derive the precise asymptotic distribution of the ordered shares of 
colours in Polya's urn. We have no knowledge of subsequent work that 
explicitly derive distributions from generalized Polya's urn processes that can 
readily be used in this analysis and it appears that integration and asymptotic 
results are impossible to obtain (Hoppe, 1987). 
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Appendix C - Approximating the bounds 
 
The law of proportional effects (Gibrat, 1931) implies that firm size distribution 
(FSD) are lognormal. Since then, several studies have looked at patterns of 
growth and their implication for FSD (e.g. Ijiri and Simon, 1977; Simon and 
Bonnini, 1958; Mansfield, 1962). These studies generally conclude that FSDs 
are lognormal and stable. Analytical modelling of stochastic firm growth have 
predicted Pareto and Yule firm size distributions. Sutton (1998) has predicted 
that his model of 'equal opportunities' yields an exponential distribution of the 
mean concentration. We want to explore if the concentration bounds provided 
by Mauldon (1951) are consistent with either Pareto or exponential FSD. 
 
We attempt to compare the results of the no-feedback process, presented in 
Section 2, with two well-known firm size distributions: Pareto and exponential. 
The fact that we are working with share distributions, and not size distributions, 
makes this a little complicated. Given a share distribution, it is not possible to 
derive its generating size distribution; however, the converse is possible and we 
proceed along that route. The comparisons in this chapter are based on share 
distributions, in particular on the Lorenz curve generated by the given share 
distribution. Given a cumulative density function F and its corresponding mean 
µ, the asymptotic Lorenz curve is given by: 
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1
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11 )(1)( µ      (4) 
 
where L(p) gives the cumulative share of the largest p percentile of the 
distribution.  
 
While in income distribution Lorenz curves map starts with the smallest 
percentiles, in the case of industrial concentration it is more sensible to invert 
the Lorenz curve in order to study the behaviour of the largest units. 
Furthermore, our study is focused on C4 so we provide an easy way of 
translating our tables and graphs into measures of C4. The mean and cdf of both 
Pareto and exponential distributions are well tabulated and it is easy to derive 
their respective asymptotic Lorenz curves (Table 4). 
 
To appraise the generating size distribution of the no-feedback process we fit a 
special case (a market with 100 firms; n=100) to the Lorenz curves generated by 
the two common firm size distributions. We generate the empirical Lorenz 
curve for such an industry based on Mauldon's distribution and fit the data to the 
Lorenz curves of the Pareto and exponential firm size distributions given in 
Table 4. The parameter fitting procedure is based on non-linear least squares. 
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Table 4: Distributions and asymptotic Lorenz curves 
 

Distribution C.D.F. Lorenz curve 
α







−=

x
axF 1)(  Pareto 

x > a; α > 1 
α

α 1

)(
−

= ppL  

xexF λ−−= 1)(  Exponential 
λ > 0; x > 0 

L(p) = p - p ln p 
)(1)( axexF −−−= λ  Shifted - 

Exponential λ > 0; x > a; a > 0 
L(p) = p - (1+λa)-1p ln p 

 
Pareto fitting 
 
The Pareto distribution is popular in empirical studies of firm size distribution 
(e.g. Ijiri and Simon, 1977). The asymptotic Lorenz curve generated by a Pareto 
size distribution is given Table 4, where p denotes the largest p firms and α is 
the parameter of the distribution. We compare this curve with the Lorenz curve 
generated by the different significance bounds of Mauldon's distribution for an 
industry with 100 firms. Table 5 presents the results of the Pareto parameter 
fitting for the Lorenz curves generated by five concentration bounds: 
 

Table 5: Pareto parameter fits for no-feedback concentration bounds 
 

 1% 5% 50% 95% 99% 
α estimate 1.80652 1.74373 1.61061 1.49893 1.45782 
R2 .9485 .9437 .9319 .9200 .9153 
Source: Authors' computation 

 
However, even though the R2 are high, the Pareto distribution yields 
significantly different Lorenz curves, shifted more towards the right end of the 
Lorenz curve. Figure 2 shows that the no-feedback process and the Pareto 
distribution generate significantly different Lorenz curves. 
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Figure 2: Pareto Lorenz curve fits for no-feedback concentration bounds 
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Exponential fitting 
 
Sutton (1998) has shown that the expected value of the firm share distribution 
under “equality of opportunities” is asymptotically exponential. The median Ck 
in an industry of n firms is given by: 
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which is approximated by: 
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n
kC mediank ln)/ln(1, −=−=    (5) 

 
where p=k/n is the percentile of the largest firms. Equation (5) provides a 
formula for the share of the largest k firms in an industry of size n and also 
defines the Lorenz curve of the exponential distribution (Table 4). 
 
The standard exponential distribution yields an asymptotic Lorenz curve that is 
independent of the distribution parameter λ (Table 4). Therefore it has limited 
relevance for us, since it does not allow parameter fitting with the data. 
However, as shown earlier, the median of the no-feedback case (as well as 
Sutton's lower bound) yields a distribution that is exponential. The shifted 
exponential, however, does allow fitting the no-feedback bounds to an 
asymptotic exponential Lorenz curve. 
 
Using the formula in Table 4 we attempt to fit the parameter β = λ a to the data. 
The parameter a denotes the smallest possible firm size and can be assumed 
without loss of generality to be 1. In practice firms must have a minimum size 
(in terms of sales, employment, capital, etc.) to be included in any official 
statistics. Firms of size zero are excluded. By using this assumption (a=1) the 
estimate for β is in fact an estimate of the parameter λ of the exponential 
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distribution, which drives the inequality within the distribution. Notice, 
however, that both λ and a are positive, hence their product must be positive. 
Due to this, the standard exponential distribution yields the most unequal 
exponential distribution, i.e. the asymptotic Lorenz curve for the shifted 
exponential lies below the Lorenz curve of the standard exponential, regardless 
of the (positive) values of the parameters λ and a. The parameter estimates are 
given in Table 6. 
 

Table 6: Exponential parameter fits for no-feedback concentration bounds 
 

 1% 5% 50% 
λ estimate (α =1) 0.1907762 0.131953 0.00968 
CI [.1757,.2058] [.1212,.1427] [.0082,.0112] 
R2 .9971 .9981 .9999 
Source: Authors' computation 

 
Besides R2, we illustrate the goodness of fit for the three different significance 
levels in Figure 3. We could not compute the parameter fits for the 95% and 
99% bounds because the fitting yield negative values for the parameter β =λ a, 
cannot be assigned to any shifted exponential distribution. 
 

Figure 3: Exponential Lorenz curve fits to the no-feedback concentration bounds 
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Generalized exponential concentration bounds? 
 
Consider an extension to the standard exponential distribution, where the 
cumulative density function (cdf) is given by: 
 

axexF )1()( λ−−=      (6) 
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This distribution uses parameter α to generalize the exponential distribution. 
Setting α=1 we get the standard exponential. For parameter values in the [0,1] 
interval the cdf lies above the standard exponential, whereas parameter values in 
excess of unity generate cdfs below the standard exponential. We derive the 
Lorenz curve of this family of distribution starting from the Lorenz curve 
generated by the exponential distribution (eq. 2 in Table 4). Arnold et al. (1987) 
show that the Lorenz curve of an exponential transformation of a cdf 
(Fα(x)=Fα(x)) is given by: 
 

αα
α )]([)(

1

pLpL =      (7) 
 
where L(u) is the Lorenz curve generated by F(x). Hence the Lorenz curves 
generated by the generalized exponential distribution family described in 
equation 6 is given by: 
 

αααα )])1(1ln())1(1()1[(1)(
111

ppppL −−−−+−−=   (8) 
 
Table 7 presents the results of the non-linear least squares fitting of the 
empirical Lorenz curve to the asymptotic Lorenz curve described in equation 
(8), using parameter α as a control variable. We further document the goodness 
of fit by plotting the empirical Lorenz curves derived from Mauldon's 
distribution against the fitted Lorenz curves, i.e. Lorenz curves with 
corresponding fitted parameters given in Table 7. Figure 4 below displays 
excellent curve fit, reinforcing the high R2 ratios observed in Table 7. 
 

Table 7: Generalized exponential parameter fits 
 for no-feedback concentration bounds 

 
 1% 5% 95% 99% 
α estimate 0.318422 0.444925 1.92542 2.61997 
CI [.308,.329] [.433,.456] [1.880,1.971] [2.512,2.728

] 
R2 .9995 .9996 .9995 .9985 
Source: Authors' computation 
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Figure 4: Generalised exponential Lorenz curve fits to the 
no-feedback concentration bounds 
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We have presented evidence that the concentration bounds generated in a 
no-feedback firm growth process described by Mauldon's share distributions 
could be approximated by an exponential distribution of firm sizes. The 
different levels of concentration are approximated by generalized exponential 
distributions with different parameter values α. 
 
Exponential firm size distributions 
 
What does the firm size distribution look like for the different bounds? To 
answer this question we use the estimated parameters in the previous section to 
derive the firm size distributions. Given the cumulative density function in 
equation (6), the probability density function for firm size distribution is given 
by the derivative of F(x) with respect to x: 
 

1)1()( −−− −= αα xx eexf     (9) 
 
Note that we have set λ =1\ without loss of generality, considering a standard 
exponential distribution. We use the parameter values in Table 7 to plot the 
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density functions. For the median concentration we simply plot the asymptotic 
exponential distribution, i.e. α=1 and λ =1. Figure 5 depicts the size 
distribution plots. 
 

Figure 5: Firm size distributions for the no-feedback concentration bounds 
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