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Abstract

There are some markets where the growth of firms are held to be subject to
diminishing returns, or negative feedbacks; and there are other markets where
firm growth is believed to be subject to increasing returns, or positive
feedbacks. A long run tendency towards monopoly might be expected in this
latter market type, as opposed to a tendency towards relative equality of size
shares in the former. It would be useful to draw inferences about the nature of
the feedback process from observed market shares and concentration. We
motivate and develop a test for feedbacks in firm growth under the null
hypothesis that there are none. We use the equivalence between an urn model of
the no-feedback process and the asymptotic distribution of sums of ordered
intervals in the random division of the unit interval. In the empirical application
for the United States, we find that most markets are subject to significant
positive feedbacks.
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1. Introduction

There are a number of celebrated instances where, from among firms in a
market, one is seen to have grown swiftly to near-monopoly on the basis of
having won some degree of market share advantage. The dominance of the
Microsoft operating system, among other examples, has been portrayed in these
terms. At the other end, negative feedbacks are also conceivable, where a large
initial market share makes it more difficult to keep the lead in the market.

The implication of the growth process for market structure has been an
important concern in industrial economics, though the precise notion of
feedback has remained largely implicit in this literature. Gibrat's law (Gibrat,
1911), which models the growth of firms in terms of dependence on current
size, has been subjected to direct empirical testing in a very large and
continuing literature (for a detailed review, see Audretsch et. al., 2002)."
Though there are a variety of formal models of feedback built upon urn scheme
formalisms (Johnson and Kotz, 1977) and their applications have grown
prominent in many contexts (Arthur, 1994; Shapiro and Varian, 1999), there has
been almost no work explicitly interpreting market structures with the help of
probabilistic models of feedback in firm growth. Our primary objective is to
formulate a simple, model based dtatistical test for positive and negative
feedbacks in firm growth.

Our second motivation follows directly from this. A variety of structural
measures are used in industrial economics to describe the extent to which any
market is dominated by large firms, and the corresponding potential for
anticompetitive outcomes. None of these measures map, in any precise way,
onto the nature or degree of competition in models of markets. In turn, models
of growth or competition do not suggest robust benchmarks for evaluating
observed concentration. In empirical work, concentration has been assessed ad
hoc, against the benchmark of no concentration. The “bounds’ approach of
Sutton (1991,1998) marks a departure. Based on a robust model of competition,
Sutton derives the expected, conditional, limiting value for a ssimple structural
measure of market concentration, providing a benchmark that could be used to
assess observed market structures.’ Our second objective in this paper is to
motivate a method of assessing departures, using an appropriate metric, from a
similar model-based benchmark. This requires the limiting probability
distribution of the concentration measure, explicitly derived from the model of
competition.

We proceed by making explicit the connection between an urn scheme
representation of the no-feedback growth process and the asymptotic
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distribution of the concentration ratio, C. The latter arises from the direct
application of a result in the distribution theory of the “random division of the
unit interval” (Mauldon, 1951). The result isawell defined probability metric to
assess departures from the no-feedback process in either direction: positive, or
negative feedbacks in growth. Under the null hypothesis that there is no
feedback in the growth of firms, observed concentration ratios can be assessed
against critical values from the probability distribution of C,. We follow up with
an empirical illustration for United States manufacturing.

The precedent to our work is that of Parker (1991) who employed Mauldon's
result in a model-free way to determine “significantly concentrated” industries.
He compared observed concentration ratios with the distribution of the Cy ratio
under a null that he characterised, as arising in a “totally unconcentrated
market”, drawing on the analogy of random division of the unit interval. This
has been critiqued for not being based on any behavioural model of firm growth
or competition (Hviid and Villadsen, 1995). We provide the accurate
model -based interpretation of the null hypothesis.

2. Models of firm growth

Sutton's bounds approach model has been stated as follows: a sequence of
discrete, equal sized (in terms of revenue / profit) and independent investment
opportunities arise over time. Here the market can be interpreted as comprising
of a number of independent submarkets - in terms of product attributes, taste
niches or geographic locations. A firm's size is measured by the number of
opportunities it has taken up. If opportunities are labelled by t=1,2,..., T , then n;;
can denote the number of firms of size i at stage t , and N, can denote the
number of activefirmsat timet .

Nt = Z Ny (1)
The process begins at stage t=1 , when the first opportunity is taken up by some
firm. Thereafter, each opportunity may be taken up either by some active firm
or by a new one. The question of interest is. how does the number of firms N;
and their size distribution, the vector n; evolve? The evolution of market
concentration will depend on the pattern of entry by firms into the submarkets:
on whether there is any systematic bias in favour of large firms or small - isthe
next opportunity taken by an incumbent, more likely to be taken by alarger, or
by asmaller firm.?



The bounds approach develops a model of competition based on a principle of
symmetry, or equality of opportunity, which excludes the possibility that any
firm might be privileged by age, size or experience. The stipulation that the next
market opportunity is filled by any currently active firm amounts to the proviso
of no feedbacks. * > In the bounds approach, this probabilistic process defines
the “expected” size distribution for any given total number of firms. Note that
the bounds approach rules out the possibility of smaller firms being
systematically advantaged in entry: so observed concentration cannot lie below
the bound.

Stochastic processes akin to the above have been modelled as urn processes in
mathematics. The classical Polya urn model (Johnson and Kotz, 1977) considers
an urn with two kinds of balls, black and white. The replacement policy is
defined in terms of drawing a ball from the urn, observing its colour and putting
it back in the urn along with a>0 balls of the same color. Generalisations of the
replacement policy in the basic urn model have become the main methodology
in modelling the effect of feedback in growth processes.

Consider a non-linear generaisation of the classical urn model where the
probability of drawing aball of a specific colour from an urnis proportional to a
non-linear function ( x° ) of the number of balls ( x ) of that colour in the urn.
The case where the number of colours are fixed are analytically tractable — if
colour represent firms, this corresponds to the situation where the number of
firms is fixed.® The case when p=1 is equivalent to the Polya-Eggenberger
model (Johnson and Kotz, 1977) — and corresponds to Gibrat's Law - each firm
has a probability of taking the next opportunity that is proportional to its size;
growth rates are independent of size. If p=0, the model specifies throwing balls
independently and uniformly at random - this corresponds to the case where
each active firm has the same probability of taking the next opportunity: the
lower bound model. This is the no-feedback case - with the number of firms
fixed at the start, and no entry. It is known (Athreya, 1969) that in this case, if
we start with k colours, with one ball of each colour, the distribution of the
asymptotic proportion of colours in the urn will be uniform. We draw together
thisresult with aresult on the distribution of sums of ordered intervals under the
random division of the unit interval (Mauldon, 1951) to derive the asymptotic
distribution of the concentration ratio under Gibrat's law. In the rest of this
section, for completeness, we recount the definition of Generalized Polyas urn
schemes and the result of Athreya (1969).

The no-feedback rule enshrines a probabilistic growth process, and this model

leads us to a limiting probability distribution of the market concentration index.
This distribution can be used to assess point estimates of observed
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concentration, to test the hypothesis that the growth model operating in any
market is the ‘no-feedbacks rule. This will be a more sound assessment of the
market structure than merely considering where observed market concentration
liesin its statistical range.

2.1 Generalized Polya’s urn scheme

A Generalized Polya' s urn scheme is defined as follows. At date O, an urn has
So=(So1, Soo, -+, Sox) balls (soi > 1) respectively of colorsindexed 1, 2, ..., k. The
tth draw consists of the following operations:

1. Pick aball at random from the urn, notice its color C and return it to the
urn.

2. If C=i, add N; balls of color i to the urn, where N; is a random variable
with probability generating function f; .

Let s, = (S, S - Sw) denote the composition of the urn after n successive
draws, where s,; isthe number of balls of colour i inthe urn.

In this analysis of the evolution of the size distribution { n; }, the competitive
benchmark is the equal opportunities case when each active firm has the same
probability of taking the next opportunity.’

The stochastic process (s n; n=0, 1, 2, ...) has been defined a generalized
Polya's urn process, denoted by GP{k; s, f1, ..., fx } to indicate the parameters
involved. Define pn = (Pn1, Pr2, - » Prk) 8S the share partition, where

S
pni = k

ni
Zi 4 S

Using a technique of embedding urn processes in continuous time multitype
Markov branching processes, Athreya (1969) proves that:

1 limpewpPn=pP= (P, ---» Px) EXists with probability 1, if the probability
generating function f; is defined in the following way: f,(2) :Zjllqij -7
and for al i, fi(0) = 0, 0 < (1) = 4 < oo >~ q;-j-logj<eo,
wherefi(z)zzj":lq”zj and 4 is a set of parameters such that

/11 = /12 = .= /1r> /1r+12/1r+2 > /1k



For al i > r, p = 0 with probability 1, i.e. asymptotically only the first r
colours have non-zero proportionsin the urn.

2. 1ff(9=7,i=1,2, .., randf(1) < Afori > r then (py, Pz ..., p;) hasa
generalised ﬂ(%,% ..... %) distribution over the smplex

A={X=(Xg, ..., %): % >0, > x =1}.

3. Consider a GP where fi(2) is independent of i and satisfies the conditions
in (1). Then p = limy..= (P Pz . . PJ has a p(2,22,.. )
distribution for all initial set up so# 0if and only if f(z)=z*

2.2 The no-feedback growth process and random divison of the
unit interval

The generalized Polya process defined above may be characterised ssimply in
the case where the limiting joint distribution is uniform on the unit simplex.
Then, the limiting distribution is A(1, ... , 1) and the necessary and sufficient
conditions are: Sp; = Spz = ... = Sk = S, and 4 = 1/sy. One obvious solution is
when the urn contains one ball of each colour, and 2 = 1 . In this case
conditioned on N, the total number of firms (colours), if at each date t , each
firm (colour) has the same probability of taking the next market opportunity
(ball), then as t passes to infinity, each firm (colour) has equal probability of
being of any market share in (0,1). As t goes to infinity, each firm's market
share is drawn independently from the uniform distribution (0,1). In other
words, if a market has a fixed number of firms, and a firm's probability of
taking a new opportunity that arises in the market is independent of its size, then
asymptotically the joint market share distribution is uniform.

Formally, for agiven N;, ast tends to infinity: Consider n-1 points x;, (j = 1, ...,
n-1) selected independently at random from interval (0,1), with the distribution
of any X, the rectangular distribution dF = dx (0 < x < 1) . The n-1 points
selected independently, at random from interval (0,1), divide the unit interval
into n sub-intervals, such that each one is drawn independently, at random, from
(0,1). Consider each of these sub-intervals to be the size share of afirm. Ast
tends to infinity, for each firm its size share has the rectangular distribution, i.e.
there is equal probability for any firm that its share is any value in (0,1).
Correspondingly, each possible size share distribution is equally possible.



Fisher (1929) characterised the above process and characterised the distribution
of the largest share. Mauldon (1951) extended this to provide the sampling
distribution for the total share C, of the largest k segments as:

0 C,<k/n
F(C,)=11 for C. <1 (2
>, (D" pA L (pC, -~ k)™ k/n<C, <1

where sum is over values of p for whichk/n< p<nand

J— 1 . g!
P KT (p-k) (n-p)(p-k)!K!

In Sutton’s bounds model, the expected asymptotic firm size distribution under
equal opportunities is approximated by an exponential distribution, and under
this approximation, the median concentration ratio is well defined.

k 51
Chmedian = H[l"' > ‘]

ik |

Thisisindeed the expected value for Mauldon's (1951) distribution above.
2.3 Assessing significance of feedbacks

Our objective is to motivate a statistical test for positive or negative feedbacks,
based on a null hypothesis of no feedbacks. We can use Mauldon's (1951)
sampling distribution in (2) to compute the confidence bands for the share of the
largest k firms, Cy in an industry. Conditioning on the number of firms (industry
size) if the underlying competition and growth process follows a no-feedback
process, the observed concentration ratios must lie within the confidence bands
defined according to the above distribution. Figure 1 plots the confidence bands
for C, under a no-feedback process, showing how they depart significantly from
the theoretical minimum, 400/n and the maximum, 100 %.

Given the limiting distribution of the concentration ratio, observed valuesin the
upper tail would suggest that larger firms enjoy size advantages over smaller
firms; the larger firms are able to pre-empt market opportunities and gain higher
market shares than smaller firms. This would be characteristic of economies of
scale and scope, and also of intensity in endogenous sunk costs, for example,



R&D. Reputation effects, for instance linking entry deterrence activities across
submarkets could also be a reason.

Figure 1. C, confidence bands under no-feedback firm growth
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An observed concentration ratio in the lower tail of the limiting distribution
would suggest that larger firms are systematically disadvantaged in competing
with small firms. The limiting case is when firms are of equal size.

The usefulness of the probability metric derived from the model of equal
opportunity competition is that one can identify the cases where observed
concentration is significantly far away from the no-feedbacks benchmark. In
Appendix C we examine the nature of the size distribution that is consistent
with the Mauldon's distribution. We compare (2) above with two popularly
estimated firm size distributions; Pareto and exponential.

3. An application to the US manufacturing sector

Where do observed concentration ratios lay in comparison with the theoretically
derived confidence bands? If the market structure is driven by an equal
opportunities growth process, observed concentration ratios must lie within the
confidence bands of the limiting concentration ratio distribution. If an observed
ratio lies in the lower critical region (below the 5% critical value in the
no-feedback process), we may conclude that growth in that market favours
firms with smaller market shares. Conversely, if the observed concentration



ratio lies in the upper critical region (above the 99% critical value), the market
would appear to favour firms with larger market shares.

In Section 2 we established that a no-feedback, equal opportunity, growth
process would lead to the limiting distribution of concentration ratio described
by Mauldon (1951). We use the 1997 US Census of Manufacturing to compare
the 6-digit NAICS product market concentration ratios against the bounds
derived using the cdf in (2). We detail the critical values in Appendix A. The
census covers 473 product markets at the 6-digit level, of which one has only 4
firms (C,=100). Concentration ratio (C,) data is supplied for both sales and
value added. The computational complexity of Mauldon's formula (eq. 2)
impedes the computation of confidence bands for C, in industries with more
than 500 firms. We directly compare observed concentration ratios against
critical values for product markets with not more than 500 competing firms
(Table l).

Table 1: Number of US Manufacturing industries with negative, no-
and positive feedback in growth (1) — industries with up to 500 firms

Type of growth feedback Sales| VaueAdded
Negative feedback 0 0
No-feedback (cannot reject Hp) 5 6
Positive feedback (at 95%) 4 4
Positive feedback (at 99%) 312 311
Total 321 321

Notes: The null hypothesis is the no-feedback process. If the observed
concentration C, is less than the corresponding 5% bound of the
no-feedback concentration, then the industry must have negative
feedback characteristics. Similarly, above the 95% or 99% bounds,
industries are positive feedback. No-feedback industries are those for
which observed concentration is within the bounds.

Source: US Census Bureau and authors' computation

If the number of firms in a product market exceeds 500, we cannot directly
compare the observed concentration ratio against the corresponding critical
values. We therefore employ an indirect way of assessing the feedback process.
Given that critical concentration ratios are decreasing in the number of firms, all
critical values for industries with more than 500 firms must be lower than the
critical values for n=500. If the observed concentration in an industry with more
than 500 firms is in the upper critica region of an industry with 500 firms, then
it must lie in the upper critical region for its own number of firms. This
procedure allows us to conclude on most industries of the census (Table 2).



Table 2: Number of US Manufacturing industries with negative, no- and
positive feedback in growth (2) — industries with more than 500 firms

Type of growth feedback Sales| VaueAdded
Positive feedback (at 99%) 142 142
Positive feedback (at 95%) 2 2
Other (no assessment) 7 7

Total 151 151

Notes: The assessments are based on the critical values for industries
with 500 rms. If the observed C4 in an industry with n firmsis above
the 99% bounds for 500 firms, it is also above the critical values for n.
Source: US Census Bureau and authors' computation

The results in Tables 1 and 2 suggest that market structure is mostly driven by
positive feedback in firm growth. We find evidence of positive feedback in 460
product markets out of the total of 472. There is no evidence of negative
feedbacks and only 5 industries (6 for VA)® may have been driven by
no-feedbacks in firm growth. The majority of US manufacturing industries are
positive feedback industries, where concentration significantly diverges from
theoretical minima.

4. Conclusion

Positive or negative feedbacks in the firm growth process have fundamental
implications for the evolution of market structure. But while the estimation of
firm growth models has always been concerned with assessing positive or
negative dependence of firm growth rates on size, there has been little work
relating market concentration and feedbacks in firm growth in a model that is
amenable to datistical inference procedures. While a method to determine
“gignificantly concentrated” markets was suggested (Parker, 1991), there has
been little progress in deriving probability distributions of market concentration
drawing from general models of firm growth and competition.

Our objective has been to determine a probability metric for the assessment of
feedbacks in the growth process of firms. We showed how a no-feedback
growth process can be represented as an urn scheme. This behavioural model
asymptotically leads to the concentration ratio distribution identical to the
distribution of sums of ordered intervals from the random division of the unit
interval. Thus under a null hypothesis that there is no feedback in the growth of
firms, observed concentration ratios can be assessed against critical values from
the limiting probability distribution. Observed concentration in the upper critical
region would suggest that larger firms are able to pre-empt smaller firms in
taking new market opportunities - possible evidence of economies of scale and



scope. Observed concentration ratio in the lower critical region would suggest
that larger firms are systematically disadvantaged in competing with small
firms. The probability metric derived from the no-feedback model can be used
to identify cases where there are significant positive or negative feedbacks. In
the empirical application for the United States, we found that amost all markets
showed evidence of significant positive feedback.
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Notes

Growth rates of surviving firms appear to decline systematically with
Size, at least in manufacturing.

The measure used by Sutton, the concentration ratio Cy is defined as the
sum of the market shares of the largest k firms in a market of n firms,
where k is a specified small number, usually between 3 and 8. The
concentration ratio has well-known shortcomings (Sleuwaegen and
Dehandschutter, 1986), but is popular in empirical work. Its ease of
computation and general availability from government statistical sources
make it suitable for comparing Cy € [k/n,1] across industries, countries
and over time. The program of empirical work that followed the bounds
approach has gone on to estimate the lower envelope of the cross
sectional relationship between C, and market size (or n), for different
classes of industries.

It depends to a lesser extent on de-novo entry. The extreme case of
minimal concentration will result if each of the submarkets were equal in
size and these were taken up in succession by new firms, leading to
perfect equality between firms. McCloughan (1995) used simulations to
determine the role of different processes in shaping concentration. He
found that the most important determinant of concentration was
systematic firm-level growth; entry and exit were much less significant.

In contrast, Gibrat's law postulates that the “probability that the next
opportunity is taken up by any particular active firm is proportional to the
current size of the firm” (Sutton, 1997, p. 43).

Sutton argues that in the light of the difficulty in choosing among the
many model specifics of unobservable firm decisions, robustness requires
the dropping of the standard game theoretic principle of the legitimacy of
al perfect Nash equilibria. Then the definition of rationality involves
only a viability condition, interpreted as avoidance of loss-making
strategies; and a stability condition, which is a no-arbitrage principle. The
competition to enter any submarket can be modelled as a generic two
stage game; firms first making various sunk cost investments, setting up
plants, designing and developing product attributes, etc., leading to a
configuration in the space of plant locations, or product characteristics.
This is followed in the second stage by market competition which may
take any form: Cournot, Bertrand, or otherwise, but in which choices
made in the first stage are parameters into the firms payoff functions.
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Sutton shows that in modelling the evolution of market structure, the
above described firm growth process nests into a robust characterisation
of the set of outcomes that can be supported as an equilibrium of any
candidate competition model.

While this appears to depart from Sutton's model that allows entry, it
must be noted Sutton's results are conditioned on chosen limiting values
of N.

This corresponds to the case when the resulting size distribution will be
of minimum inequality, among all the cases where the probability that the
next market opportunity is taken by an active firm is non-decreasing in
the size of the firm.

The industries are beet sugar (NAICS 311313), tire cord and tire fabric
mills (314992), newsprint mills (322122), electrometallurgical ferroalloy
products (331112) and primary aluminium production (331312) for sales
and flat glass (327211) additionally for value added. Notice that the
metallurgical industries (aluminium and ferroaloy) are electricity
intensive industries and plants tend to locate in the vicinity of power
sources, with an upper limit to growth, that depends on the limited energy
resources available. Newsprint mills are part of an industry that is rather
decentralised in the US, due to the localised nature of print media in
component states.
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Appendix A

Table 3: Critical values of C,4 for the no-feedback process

1% 5% 50% 95% 99%

n

1% 5% 50% 95% 99%

86.32/89.46/96.82/99.75/99.95 6 |77.7181.91/91.77/98.0299.16
71.10/75.56/86.74/95.28/97.40 8 |65.73/70.26/82.04/92.12/95.05

61.27/65.76 77.75/88.84|92.40
54.25/58.5370.37|82.48|86.85
48.94/52.9664.33 76.7181.51
44.74/48.51/59.33 71.61 76.61
41.33/44.86/55.1267.12| 72.18
38.48/41.80 51.53/63.17|68.20
36.07/39.2048.43|59.67|64.63
33.99/36.95/45.72|56.56|61.42
32.17/34.98/43.34/53.78|58.51
30.58/33.25/41.22|51.27|55.89
29.15/31.70/39.32/49.01|53.49
27.88/30.31/37.61/46.95/51.31
26.73/29.06 36.06|45.07|49.31
25.69/27.9234.65|43.35/47.46
24.73/26.88/33.35/41.76|45.76
23.86/25.93/32.16/40.30|44.19
23.06/25.05/31.07|38.95|42.72
22.31/24.24/30.05/37.69|41.36
21.62/23.48/29.11/36.51|40.09
20.98/22.7828.23|35.42| 38.90
20.38/22.13/27.41/34.39|37.78
19.82|21.51|26.64 33.43|36.73
19.30/20.94/25.91 32.52|35.75
18.80/20.40|25.23 31.67|34.81
18.34/19.89|24.59 30.86|33.93
17.90/19.41/23.99 30.10|33.10
17.48/18.95/23.41 29.38|32.31
17.09/18.52|22.87 28.69|31.56
16.71/18.11|22.36 28.04|30.84
16.36|17.72|21.87 27.42|30.16
16.02|17.35/21.40 26.83|29.51
15.69|17.00/20.95 26.27|28.89

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
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57.50/61.8973.87/85.60|89.63
51.43/55.5867.21/79.5184.14
46.73/50.61|61.72| 74.08 79.00
42.95/46.60/57.14|69.29 74.33
39.84/43.26 53.26/65.08/ 70.13
37.23/40.45/49.93/61.37|66.37
34.9938.03/47.03/58.07|62.98
33.05/35.93/44.49|55.13/59.93
31.35/34.09 42.25/52.49|57.17
29.85/32.45/40.24/50.11|54.66
28.50/30.9938.44|47.95/52.38
27.29/29.6736.82/45.99/50.29
26.20|28.4835.34|44.19|48.37
25.20/27.3933.99|42.54|46.60
24.29/26.40 32.75|41.02| 44.96
23.45/25.48 31.61/39.61 43.44
22.68|24.64 30.55/38.31/42.03
21.96/23.85/29.57|37.09/40.71
21.30/23.13/28.66|35.96|39.48
20.68/22.45/27.81/34.90|38.33
20.10/21.82/27.02|33.90|37.25
19.56/21.22|26.27 32.97|36.23
19.05/20.67|25.57 32.09|35.27
18.57/20.1424.91 31.26|34.37
18.11/19.64|24.29 30.48|33.51
17.69/19.18/23.70 29.73|32.70
17.28/18.73/23.14 29.03/31.93
16.90/18.31/22.61 28.36/31.19
16.53/17.91/22.11 27.73/30.50
16.18/17.53/21.63/27.12/29.83
15.85/17.17/21.17 26.54/29.20
15.54/16.83/20.7425.99|28.60



n 1% 5% 50% 95% 99% n 1% 5% 50% 95% 99%
73 /15.38/16.66 20.5325.73|28.30| 74 |15.24/16.50 20.32|25.47|28.02
75/15.09/16.3420.12 25.21|27.74| 76 |14.95 16.18 19.93|24.96 27.46
77 |14.81/16.03/19.73 24.72|27.20| 78 |14.6715.88 19.54|24.4826.93
79 [14.54/15.73/19.36 24.25|26.68| 80 |14.41 15.59 19.18|24.02|26.42
81 14.28/15.45/19.00 23.79/26.18 82 |14.15/15.31 18.83/23.58 25.94
83 14.03/15.18/18.66/23.36|25.70 84 |13.91 15.04/18.50|23.15 25.47
85 13.79/14.92/18.33/22.94|25.24 86 |13.67 14.79/18.17|22.74 25.01
87 113.56/14.66/18.02/22.54|24.80 88 |13.45 14.54|17.86|22.35 24.58
89 13.34/14.42/17.71|22.15|24.37 90 |13.23 14.30/17.56|/21.97 24.16
91 13.12/14.19/17.42|21.78/23.96 92 |13.02 14.08/17.28/21.60 23.76
93 112.92/13.96/17.14/21.42|23.56 94 |12.82 13.85/17.00|21.25 23.37
95 112.72/13.75/16.86/21.08|23.18 96 |12.62 13.64/16.73/20.91 22.99
97 112.53/13.54/16.60/20.74|22.81 98 |12.44 13.44/16.4720.58 22.63
99 112.34/13.34/16.35/20.42|22.46 100/ 12.25 13.24|16.22| 20.26 22.28
101/12.16 13.14 16.10/20.11/22.11|102 | 12.08 13.04|15.98/19.95/21.94
103/11.99 12.95/15.86/19.8021.78/104|11.91 12.86 15.75/19.66|21.61
105/11.8212.77/15.63/19.51 | 21.45/106|11.7412.68  15.52 19.37|21.30
107/11.66/12.59/15.41/19.23/ 21.14/108|11.58 12.50 15.30 19.09/20.99
109/11.50 12.42/15.19/18.95/20.84|/110|11.43 12.33/15.09 18.82|20.69
111/11.35/12.25 14.98/18.6920.55/112|11.28 12.17 14.88 18.56|20.40
113/11.20 12.09 14.78/18.43/20.26|/114|11.13 12.01 14.68/18.30/20.12
115/11.06 11.93/14.58/18.18/19.98|116|10.99 11.86 14.49 18.06/19.85
117/10.92/11.78 14.39/17.94/19.72/118/10.85 11.71 14.30/ 17.82|19.58
119/10.78/11.63/14.21/17.70/ 19.45/120|10.72/11.56  14.12/ 17.58|19.33
121/10.65/11.49 14.03/17.47/19.20/122|10.59 11.42 13.94/17.36/19.08
123/10.52/11.35/13.85/17.25/18.95/124|10.46 11.28 13.77/17.14|18.83
125/10.40 11.21/13.68/17.03/18.71/126|10.3411.15 13.60/ 16.92|18.60
127/10.28/11.08 13.51/16.8218.48/128|10.22/11.02 13.43/16.72|18.37
129/10.16 10.95 13.35/16.6118.25/130 10.10 10.89/13.27/16.51/18.14
131/10.04/10.83/13.20/16.4118.03/132| 9.99 110.76 13.12/16.32/17.93
133| 9.93 10.70/13.04/16.22/17.82|/134| 9.88 1 10.64 12.97/16.12|/1/.71
135/ 9.82 10.58/12.89/16.03/17.61/136| 9.77 1 10.52/12.82/15.94/17.51
137| 9.71 |10.47/12.75/15.84/17.40/138| 9.66 ' 10.41 12.68 15.75/17.30
139| 9.61 10.35/12.60/15.66/17.20/140| 9.56 10.30 12.53/15.57|17.11
141 9.51 10.24/12.47/15.49/17.01|142| 9.46 1 10.19 12.40 15.40/16.91
143| 9.41 10.13/12.33/15.3116.82|144| 9.36 10.08 12.26/15.23/16.73
145| 9.31 |10.03/12.20/15.15/16.63|146| 9.26 9.98 |12.13/15.06 16.54
147| 9.22 | 9.93 112.07/14.98/16.45|148| 9.17 | 9.87 112.01 14.90/16.36
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149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201
203
205
207
209
211
213
215
217
219
221
223

1%

9.13
9.03
8.95
8.86
8.77
8.69
8.61
8.53
8.45
8.38
8.30
8.23
8.16
8.09
8.02
7.95
7.88
7.82
7.75
7.69
7.63
7.57
7.51
7.45
7.39
7.34
7.28
7.23
7.17
7.12
7.07
7.02
6.97
6.92
6.87
6.82
6.77
6.73

5%

9.82
9.73
9.63
9.53
9.44
9.35
9.26
9.18
9.09
9.01
8.93
8.85
8.77
8.69
8.62
8.55
8.47
8.40
8.33
8.26
8.20
8.13
8.07
8.00
7.94
7.88
7.82
7.76
7.70
7.64
7.59
7.53
7.48
71.42
7.37
7.32
1.27
1.22

50% 95% 99% n

11.94/14.82|16.28 150
11.82/14.67/16.10 152
11.70/14.51/15.93 154
11.58|14.36|15.77 156
11.47/14.22|/15.61 158
11.35/14.07|15.45 160
11.24/13.93/15.29 162
11.14/13.80/15.14 164
11.03/13.66|14.99 166
10.93/13.53/14.85 168
10.82/13.40/14.71 170
10.73/13.28/14.57 172
10.63/13.15/14.43 174
10.53/13.03/14.30 176
10.44/12.91/14.17 178
10.35/12.80|14.04 180
10.26/12.68/13.91 182
10.17/12.57/13.79 184
10.08/12.46|13.67 186
10.00/12.36|13.55 188
9.91 12.25/13.43/190
9.83 112.15/13.32/192
9.75 12.04/13.20/ 194
9.67 11.94/13.09|196
9.59 11.85/12.98|198
9.52 11.75|12.88|200
9.44 11.65|12.77/202
9.37 11.56|12.67|204
9.30 11.47|12.57|206
9.23 11.38|12.47/208
9.16 11.29/12.37|210
9.09 11.20|12.28/212
9.02 11.12|12.18/214
8.95 11.03|12.09| 216
8.89 110.95/12.00|218
8.82 110.87|11.91|220
8.76 110.79|11.82|222
8.70 110.71|11.73|224
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1%

9.08
8.99
8.90
8.82
8.73
8.65
8.57
8.49
8.41
8.34
8.27
8.19
8.12
8.05
7.98
7.92
7.85
7.79
1.72
7.66
7.60
7.54
7.48
7.42
7.36
7.31
7.25
7.20
7.15
7.09
7.04
6.99
6.94
6.89
6.84
6.80
6.75
6.70

5%

9.77
9.68
9.58
9.49
9.40
9.31
9.22
9.13
9.05
8.97
8.89
8.81
8.73
8.66
8.58
8.51
8.44
8.37
8.30
8.23
8.16
8.10
8.03
797
7.91
7.85
7.79
7.73
7.67
7.62
7.56
7.50
7.45
7.40
7.34
7.29
7.24
7.19

50% | 95% | 99%
11.88/14.74/16.19
11.76/14.59/16.02
11.64/14.44/15.85
11.52/14.29/15.69
11.41/14.15/15.53
11.30/14.00/15.37
11.19/13.87/15.22
11.08/13.73/15.07
10.98/13.60/14.92
10.88/13.47/14.78
10.77/13.34/14.64
10.68|13.22|14.50
10.58/13.09|14.36
10.49/12.97/14.23
10.39/12.86/14.10
10.30/12.74/13.97
10.21/12.63/13.85
10.13/12.52/13.73
10.04/12.41/13.61
9.96 12.30/13.49
9.87 112.20/13.37
9.79 112.09/13.26
9.71 |11.99/13.15
9.63 |11.89/13.04
9.56 |11.80/12.93
9.48 |11.70/12.83
941 11.61/12.72
9.33 |11.51|12.62
9.26 |11.42|12.52
9.19 |11.33|12.42
9.12 |11.25/12.32
9.05 11.16/12.23
8.99 11.08/12.13
8.92 110.99/12.04
8.85 /10.91/11.95
8.79 110.83/11.86
8.73 110.75|11.77
8.67 |10.67/11.69



225
227
229
231
233
235
237
239
241
243
245
247
249
251
253
255
257
259
261
263
265
267
269
271
273
275
277
279
281
283
285
287
289
291
293
295
297
299

1%

6.68
6.64
6.59
6.55
6.50
6.46
6.42
6.38
6.34
6.30
6.26
6.22
6.18
6.14
6.11
6.07
6.03
6.00
5.96
5.93
5.89
5.86
5.82
5.79
5.76
5.73
5.69
5.66
5.63
5.60
5.57
554
5.51
5.48
5.45
5.42
5.40
5.37

5%

7.17
7.12
7.07
7.02
6.98
6.93
6.88
6.84
6.80
6.75
6.71
6.67
6.63
6.58
6.54
6.50
6.46
6.43
6.39
6.35
6.31
6.27
6.24
6.20
6.17
6.13
6.10
6.06
6.03
6.00
5.96
5.93
5.90
5.87
5.83
5.80
5.77
5.74

50%
8.63
8.57
8.51
8.46
8.40
8.34
8.28
8.23
8.17
8.12
8.07
8.02
7.96
7.91
7.86
7.81
17.77
1.72
7.67
7.62
7.58
7.53
7.49
7.44
7.40
7.35
7.31
1.27
7.23
7.19
7.15
7.11
7.07
7.03
6.99
6.95
6.91
6.88

95%

99%

n

10.63/11.64|226
10.56/11.56|228
10.48/11.48/230
10.41/11.40|232
10.33/11.31/234
10.26 11.23/236
10.19 11.16/238
10.12/11.08|240
10.05/11.00| 242
10.93|244
10.85/246
10.78|248
10.71/250
10.64|252
10.57|254
10.50|256
10.43|258
10.37/260
10.30/262
10.24|264
10.17|266
10.11/268
10.05/270

9.98
9.92
9.85
9.79
9.72
9.66
9.60
9.54
9.48
9.42
9.36
9.30
9.24
9.18
9.13
9.07
9.02
8.97
8.91
8.86
8.81
8.76
8.71
8.66
8.61
8.56
8.51
8.46
8.42

9.98
9.92
9.86
9.80
9.75
9.69
9.63
9.57
9.52
9.46
941
9.36
9.30
9.25
9.20

272
274
276
278
280
282
284
286
288
290
292
294
296
298
300
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1%

6.66
6.61
6.57
6.53
6.48
6.44
6.40
6.36
6.32
6.28
6.24
6.20
6.16
6.12
6.09
6.05
6.02
5.98
5.94
5.91
5.88
5.84
5.81
5.77
5.74
5.71
5.68
5.65
5.62
5.59
5.56
5.53
5.50
5.47
5.44
5.41
5.38
5.35

5%

7.14
7.09
7.05
7.00
6.95
6.91
6.86
6.82
6.77
6.73
6.69
6.65
6.60
6.56
6.52
6.48
6.44
6.41
6.37
6.33
6.29
6.26
6.22
6.18
6.15
6.11
6.08
6.05
6.01
5.98
5.95
591
5.88
5.85
5.82
5.79
5.76
5.73

50%
8.60
8.54
8.49
8.43
8.37
8.31
8.26
8.20
8.15
8.09
8.04
7.99
7.94
7.89
7.84
7.79
1.74
7.69
7.65
7.60
7.55
7.51
7.46
7.42
7.38
7.33
7.29
7.25
7.21
7.17
7.13
7.09
7.05
7.01
6.97
6.93
6.89
6.86

95%

99%

10.59/11.60
10.52|11.52
10.44/11.44
10.37/11.35
10.30/11.27
10.23/11.20
10.16/11.12
10.09/11.04
10.02/10.97

9.95
9.88
9.82
9.75
9.69
9.63
9.57
9.51
9.45
9.39
9.33
9.27
9.21
9.16
9.10
9.05
8.99
8.94
8.89
8.83
8.78
8.73
8.68
8.63
8.58
8.53
8.49
8.44
8.39

10.89
10.82
10.75
10.68
10.60
10.54
10.47
10.40
10.33
10.27
10.20
10.14
10.08
10.02
9.95
9.89
9.83
9.77
9.72
9.66
9.60
9.55
9.49
9.44
9.38
9.33
9.28
9.22
9.17



301
303
305
307
309
311
313
315
317
319
321
323
325
327
329
331
333
335
337
339
341

345
347
349
351
353
355
357
359
361
363
365
367
369
371
373
375

1%

5.34
5.31
5.29
5.26
523
5.21
5.18
515
5.13
5.10
5.08
5.05
5.03
5.01
4.98
4.96
4.94
4.91
4.89
4.87
4.85
4.82
4.80
4.78
4.76
4.74
4.72
4.70
4.68
4.65
4.63
4.61
4.59
4.58
4.56
4.54
4.52
4.50

5%

5.71
5.68
5.65
5.63
5.60
5.57
5.54
5.51
5.49
5.46
5.43
5.40
5.38
5.35
5.33
5.30
5.28
5.25
5.23
5.20
5.18
5.15
5.13
511
5.08
5.06
5.04
5.02
4.99
4.97
4.95
4.93
491
4.89
4.87
4.84
4.82
4.80

50%
6.84
6.80
6.77
6.73
6.70
6.66
6.63
6.59
6.56
6.53
6.49
6.46
6.43
6.40
6.36
6.33
6.30
6.27
6.24
6.21
6.18
6.15
6.12
6.10
6.07
6.04
6.01
5.98
5.96
5.93
5.90
5.88
5.85
5.82
5.80
5.77
5.75
5.72

95%
8.37
8.32
8.28
8.23
8.19
8.15
8.10
8.06
8.02
7.98
7.94
7.89
7.85
7.81
7.78
7.74
7.70
7.66
7.62
7.58
7.55
7.51
147
7.44
7.40
71.37
7.33
7.30
7.26
7.23
7.20
7.16
7.13
7.10
7.07
7.03
7.00
6.97

99%
9.15
9.10
9.05
9.00
8.95
8.90
8.85
8.81
8.76
8.71
8.67
8.62
8.58
8.54
8.49
8.45
8.41
8.36
8.32
8.28
8.24
8.20
8.16
8.12
8.08
8.04
8.00
7.97
7.93
7.89
7.85
7.82
7.78
7.75
7.71
7.68
7.64
7.61

302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342

346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
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1%

5.33
5.30
5.27
5.25
5.22
5.19
5.17
5.14
5.12
5.09
5.07
5.04
5.02
4.99
4.97
4.95
4.92
4.90
4.88
4.86
4.83
4.81
4.79
4.77
4.75
4.73
4.71
4.69
4.66
4.64
4.62
4.60
4.58
4.57
4.55
4.53
451
4.49

5%

5.70
5.67
5.64
5.61
5.58
5.55
5.53
5.50
5.47
544
542
5.39
5.37
5.34
5.31
5.29
5.26
5.24
521
5.19
517
514
5.12
5.10
5.07
5.05
5.03
5.01
4.98
4.96
4,94
4,92
4.90
4.88
4.86
4.83
4.81
4.79

50%
6.82
6.78
6.75
6.71
6.68
6.64
6.61
6.58
6.54
6.51
6.48
6.44
6.41
6.38
6.35
6.32
6.29
6.26
6.23
6.20
6.17
6.14
6.11
6.08
6.05
6.02
6.00
5.97
594
5.92
5.89
5.86
5.84
5.81
5.79
5.76
5.74
5.71

95%
8.35
8.30
8.26
8.21
8.17
8.13
8.08
8.04
8.00
7.96
7.92
7.87
7.83
7.79
7.76
7.72
7.68
7.64
7.60
7.57
7.53
7.49
7.46
7.42
7.38
7.35
7.32
7.28
7.25
7.21
7.18
7.15
7.11
7.08
7.05
7.02
6.99
6.96

99%
9.12
9.07
9.02
8.97
8.93
8.88
8.83
8.78
8.74
8.69
8.65
8.60
8.56
8.51
8.47
8.43
8.38
8.34
8.30
8.26
8.22
8.18
8.14
8.10
8.06
8.02
7.98
7.95
7.91
7.87
7.84
7.80
7.76
7.73
7.69
7.66
7.62
7.59



377
379
381
383
385
387
389
391
393
395
397
399
401
403
405
407
409
411
413
415
417
419
421
423
425
427
429
431
433
435
437
439
441

447
449
451

1%

4.48
4.46
4.44
4.42
441
4.39
4.37
4.35
4.34
4.32
4.30
4.28
4.27
4.25
4.23
4.22
4.20
4.19
4.17
4.15
4.14
412
411
4.09
4.08
4.06
4.05
4.03
4.02
4.00
3.99
3.97
3.96
3.95
3.93
3.92
3.90
3.89

5%

4.78
4.76
4.74
4.72
4.70
4.69
4.67
4.65
4.63
4.61
4.59
4.57
4.55
4.54
4.52
4.50
4.48
4.47
4.45
4.43
4.42
4.40
4.38
4.37
4.35
4.33
4.32
4.30
4.28
4.27
4.25
4.24
4.22
4.21
4.19
4.18
4.16
4.15

50%
5.70
5.67
5.65
5.63
5.60
5.58
5.55
5.53
5.51
5.49
5.46
5.44
542
5.40
5.37
5.35
5.33
531
5.29
5.27
5.25
5.23
521
5.19
5.17
5.15
5.13
511
5.09
5.07
5.05
5.03
5.01
4.99
4.98
4.96
4.94
4.92

95%
6.94
6.91
6.88
6.85
6.82
6.79
6.76
6.73
6.70
6.68
6.65
6.62
6.59
6.56
6.54
6.51
6.48
6.46
6.43
6.40
6.38
6.35
6.33
6.30
6.28
6.25
6.23
6.20
6.18
6.16
6.13
6.11
6.09
6.06
6.04
6.02
5.99
5.97

99%
7.57
7.54
7.51
1.47
7.44
7.41
7.37
7.34
7.31
7.28
7.25
1.22
7.19
7.16
7.13
7.10
7.07
7.04
7.01
6.98
6.95
6.93
6.90
6.87
6.84
6.81
6.79
6.76
6.73
6.71
6.68
6.66
6.63
6.61
6.58
6.56
6.53
6.51

378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
44
416
418
420
422
424
426
428
430
432
434
436
438
440
442

446
448
450
452
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1%

4.47
4.45
4.43
4.42
4.40
4.38
4.36
4.34
4.33
431
4.29
4.28
4.26
4.24
4.23
4.21
4.19
4.18
4.16
4.15
4.13
4.12
4.10
4.08
4.07
4.05
4.04
4.02
4.01
4.00
3.98
3.97
3.95
3.94
3.92
3.91
3.90
3.88

5%
4.77
4.75
4.73
471
4.69
4.68
4.66
4.64
4.62
4.60
4.58
4.56
455
453
451
4.49
4.48
4.46
4.44
4.42
4.41
4.39
4.37
4.36
4.34
4.32
431
4.29
4.28
4.26
4.25
4.23
4.22
4.20
4.18
417
4.16
4.14

50%
5.69
5.66
5.64
5.61
5.59
5.57
5.54
5.52
5.50
5.47
5.45
5.43
541
5.39
5.36
534
5.32
5.30
5.28
5.26
524
5.22
5.20
518
5.16
5.14
5.12
5.10
5.08
5.06
5.04
5.02
5.00
4.98
4.97
4.95
4.93
491

95%
6.93
6.89
6.86
6.83
6.81
6.78
6.75
6.72
6.69
6.66
6.63
6.61
6.58
6.55
6.52
6.50
6.47
6.44
6.42
6.39
6.37
6.34
6.31
6.29
6.27
6.24
6.22
6.19
6.17
6.14
6.12
6.10
6.07
6.05
6.03
6.01
5.98
5.96

99%
7.56
7.52
7.49
7.46
7.42
7.39
7.36
7.33
7.30
7.26
7.23
7.20
717
7.14
7.11
7.08
7.05
7.02
7.00
6.97
6.94
6.91
6.88
6.86
6.83
6.80
6.77
6.75
6.72
6.70
6.67
6.64
6.62
6.59
6.57
6.54
6.52
6.49



453
455
457
459
461
463
465
467
469
471
473
475
477
479
481
483
485
487
489
491
493
495
497
499

1%

3.88
3.86
3.85
3.84
3.82
381
3.80
3.78
3.77
3.76
3.75
3.73
3.72
3.71
3.70
3.69
3.67
3.66
3.65
3.64
3.63
3.61
3.60
3.59

5%

4.13
4.12
4.10
4.09
4.08
4.06
4.05
4.03
4.02
4.01
3.99
3.98
3.97
3.95
3.94
3.93
3.91
3.90
3.89
3.88
3.86
3.85
3.84
3.83

50%
4.90
4.89
4.87
4.85
4.83
4.82
4.80
4.78
4.77
4.75
4.73
4.72
4.70
4.68
4.67
4.65
4.64
4.62
4.60
4.59
4.57
4.56
4,54
4.53

95%
5.95
5.93
5.91
5.88
5.86
5.84
5.82
5.80
5.78
5.76
5.74
5.72
5.70
5.68
5.66
5.64
5.62
5.60
5.58
5.56
5.54
5.52
5.50
5.48

99%
6.48
6.46
6.43
6.41
6.39
6.36
6.34
6.32
6.29
6.27
6.25
6.23
6.20
6.18
6.16
6.14
6.12
6.09
6.07
6.05
6.03
6.01
5.99
5.97

454
456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490
492
494
496
498
500
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1%

3.87
3.86
3.84
3.83
3.82
3.80
3.79
3.78
3.77
3.75
3.74
3.73
3.72
3.70
3.69
3.68
3.67
3.66
3.64
3.63
3.62
3.61
3.60
3.59

5%

4.13
411
4.10
4.08
4.07
4.05
4.04
4.03
4.01
4.00
3.99
3.97
3.96
3.95
3.93
3.92
3.91
3.89
3.88
3.87
3.86
3.84
3.83
3.82

50%
4.89
4.88
4.86
4.84
4.82
4.81
4.79
4.77
4.76
4.74
4.72
4.71
4.69
4.68
4.66
4.64
4.63
4.61
4.60
4.58
4.57
4.55
4.54
4.52

95%
5.94
5.92
5.89
5.87
5.85
5.83
5.81
5.79
5.77
5.75
5.73
5.71
5.69
5.67
5.65
5.63
5.61
5.59
5.57
5.55
5.53
551
5.49
547

99%
6.47
6.45
6.42
6.40
6.37
6.35
6.33
6.30
6.28
6.26
6.24
6.21
6.19
6.17
6.15
6.13
6.10
6.08
6.06
6.04
6.02
6.00
5.98
5.96



Appendix B - Extensions of Polya's urn and the Poisson-Dirichlet
distribution

Polya's urn model has been extended to accommodate entry. Consider the
version analysed by Hoppe (1984, 1987). An urn initially contains one white
ball of mass >0 and various numbers of balls of other colours (non-white) each
of mass 1. At each point of discrete time a bal is drawn at random (in
proportion to its mass) from the urn. If the selected ball is white it is returned
with a ball of a previously unused colour (and mass 1). Otherwise the selected
ball is returned with one additional ball of the same colour and mass.

The extent of entry is captured by the parameter 6. Each jth draw is taken either
by a new entrant or an incumbent with probabilities 6/(6+j-1) and (j-1)/(6+j-1),
respectively. The probability of new entry is strictly decreasing in j, incumbents
on aggregate have an increasing probability of success. In the limit (as j—») the
probability of entry converges to zero. Asymptotically the number of firmsin a
market is hence a random number and its distribution depends on the parameter
0.

The most important result on generalised Polyas urn is Ewens sampling
formula (Ewens 1972). Consider an urn process described above in which $n$
draws are made. The probability of obtaining an arbitrary partition given by
a={ay,ay,...,an} isgiven by:

n £ 6%
P, =al= e T Ty ©

where 71, is the sample size partition, a is the given size partition, each g is a
non-negative integer and denotes the number of times integer i appears in the
occurrences of the k different colours (i.e. the number of colours that have i
bals in the urn after n draws), and [6]" = 0(6+1)...(6+n-1) is the ascending
factorial. Note that k is an arbitrary positive number such that 0 < k < n. A
complete description of the size partition requires:

n n

Y a =k and Yia =n

i=1 i=1

A generalized urn model (with entry) is, however, of limited use for our
purposes. First, the random number of colours in the urn has a distribution that
cannot be derived explicitly. We seek to establish a benchmark for the order
statistics in an urn model and hence the number of firms (colours) must be fixed
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(as a long-run equilibrium). Second, implicit asymptotic results can only be
obtained under certain parameter restrictions. Even though Ewens (1972),
Kingman (1975) and Hoppe (1987) extend the results of Athreya (1969), they
do not derive the precise asymptotic distribution of the ordered shares of
colours in Polyas urn. We have no knowledge of subsequent work that
explicitly derive distributions from generalized Polya's urn processes that can
readily be used in this analysis and it appears that integration and asymptotic
results are impossible to obtain (Hoppe, 1987).
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Appendix C - Approximating the bounds

The law of proportional effects (Gibrat, 1931) implies that firm size distribution
(FSD) are lognormal. Since then, severa studies have looked at patterns of
growth and their implication for FSD (e.g. ljiri and Simon, 1977; Simon and
Bonnini, 1958; Mansfield, 1962). These studies generally conclude that FSDs
are lognormal and stable. Analytical modelling of stochastic firm growth have
predicted Pareto and Y ule firm size distributions. Sutton (1998) has predicted
that his model of ‘equal opportunities yields an exponential distribution of the
mean concentration. We want to explore if the concentration bounds provided
by Mauldon (1951) are consistent with either Pareto or exponential FSD.

We attempt to compare the results of the no-feedback process, presented in
Section 2, with two well-known firm size distributions: Pareto and exponential.
The fact that we are working with share distributions, and not size distributions,
makes this a little complicated. Given a share distribution, it is not possible to
derive its generating size distribution; however, the converse is possible and we
proceed along that route. The comparisons in this chapter are based on share
distributions, in particular on the Lorenz curve generated by the given share
distribution. Given a cumulative density function F and its corresponding mean
U, the asymptotic Lorenz curveis given by:

L(p) =1~ [ PR (t)c (4)

where L(p) gives the cumulative share of the largest p percentile of the
distribution.

While in income distribution Lorenz curves map starts with the smallest
percentiles, in the case of industrial concentration it is more sensible to invert
the Lorenz curve in order to study the behaviour of the largest units.
Furthermore, our study is focused on C, so we provide an easy way of
tranglating our tables and graphs into measures of C,. The mean and cdf of both
Pareto and exponential distributions are well tabulated and it is easy to derive
their respective asymptotic Lorenz curves (Table 4).

To appraise the generating size distribution of the no-feedback process we fit a
special case (amarket with 100 firms; n=100) to the Lorenz curves generated by
the two common firm size distributions. We generate the empirical Lorenz
curve for such an industry based on Mauldon's distribution and fit the data to the
Lorenz curves of the Pareto and exponential firm size distributions given in
Table 4. The parameter fitting procedure is based on non-linear least squares.
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Table 4: Distributions and asymptotic Lorenz curves

Distribution C.D.F. Lorenz curve
Pareto FO)=1- @ L(p) = p%_l
Xx>a a>1
Exponential i(:);; 1x_>e_:)X L(p)=p-plnp
i _1_a 2
Bponential | 120 x5 mazo| PTG pIND
Par eto fitting

The Pareto distribution is popular in empirical studies of firm size distribution
(e.g. ljiri and Simon, 1977). The asymptotic Lorenz curve generated by a Pareto
size distribution is given Table 4, where p denotes the largest p firms and « is
the parameter of the distribution. We compare this curve with the Lorenz curve
generated by the different significance bounds of Mauldon's distribution for an
industry with 100 firms. Table 5 presents the results of the Pareto parameter
fitting for the Lorenz curves generated by five concentration bounds:

Table 5: Pareto parameter fits for no-feedback concentration bounds

1% 5% 50% 95% 99%
a estimate 1.80652 | 1.74373 | 1.61061 | 1.49893 | 1.45782
9485 9437 9319 .9200 9153

Source: Authors computation

However, even though the R? are high, the Pareto distribution yields
significantly different Lorenz curves, shifted more towards the right end of the
Lorenz curve. Figure 2 shows that the no-feedback process and the Pareto
distribution generate significantly different Lorenz curves.
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Figure 2: Pareto Lorenz curve fits for no-feedback concentration bounds

5% 50% 95%

P NWHAOOON©OR
Tes
P NWSAOAOONOOOPR
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P NWAOOOONO®OOPR
NEOR

.1.2.3.4.5.6.7.8.91 .1.2.3.4.5.6.7.8.91 .1.2.3.4.5.6.7.8.91
No- f eedback Pareto fit

Exponential fitting

Sutton (1998) has shown that the expected value of the firm share distribution
under “equality of opportunities’ is asymptotically exponential. The median Cy
in anindustry of nfirmsisgiven by:

Crmecian :E[l"' Zn: }j

n ik |

which is approximated by:
k
Cr megian :H(l_ln(k/n)): p-pinp (5)

where p=k/n is the percentile of the largest firms. Equation (5) provides a
formula for the share of the largest k firms in an industry of size n and also
defines the Lorenz curve of the exponential distribution (Table 4).

The standard exponential distribution yields an asymptotic Lorenz curve that is
independent of the distribution parameter A (Table 4). Therefore it has limited
relevance for us, since it does not allow parameter fitting with the data.
However, as shown earlier, the median of the no-feedback case (as well as
Sutton's lower bound) yields a distribution that is exponential. The shifted
exponential, however, does alow fitting the no-feedback bounds to an
asymptotic exponential Lorenz curve.

Using the formulain Table 4 we attempt to fit the parameter = A a to the data.
The parameter a denotes the smallest possible firm size and can be assumed
without loss of generality to be 1. In practice firms must have a minimum size
(in terms of sales, employment, capital, etc.) to be included in any officia
statistics. Firms of size zero are excluded. By using this assumption (a=1) the
estimate for g is in fact an estimate of the parameter 4 of the exponential
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distribution, which drives the inequality within the distribution. Notice,
however, that both 4 and a are positive, hence their product must be positive.
Due to this, the standard exponential distribution yields the most unequal
exponentia distribution, i.e. the asymptotic Lorenz curve for the shifted
exponential lies below the Lorenz curve of the standard exponential, regardless
of the (positive) values of the parameters A and a. The parameter estimates are
givenin Table6.

Table 6: Exponential parameter fits for no-feedback concentration bounds

1% 5% 50%

A estimate (o =1) 0.1907762 0.131953 0.00968
Cl [.1757,.2058] [.1212,.1427] | [.0082,.0112]
R 9971 .0981 .9999

Source: Authors computation

Besides R?, we illustrate the goodness of fit for the three different significance
levels in Figure 3. We could not compute the parameter fits for the 95% and
99% bounds because the fitting yield negative vaues for the parameter =1 a,
cannot be assigned to any shifted exponential distribution.

Figure 3: Exponential Lorenz curve fits to the no-feedback concentration bounds

1% 5% 50%

P NWHAOONOO R
PN WD OO N 0O
P NWMAOOOON OO R

.1.2.3.4.5.6.7.8.91 .1.2.3.4.5.6.7.8.91 .1.2.3.4.5.6.7.8.91
No- f eedback Shifted exponential fit

Generalized exponential concentration bounds?

Consider an extension to the standard exponential distribution, where the
cumulative density function (cdf) is given by:

F(x) =@1-e")* (6)
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This distribution uses parameter « to generalize the exponential distribution.
Setting a=1 we get the standard exponential. For parameter values in the [0,1]
interval the cdf lies above the standard exponential, whereas parameter valuesin
excess of unity generate cdfs below the standard exponential. We derive the
Lorenz curve of this family of distribution starting from the Lorenz curve
generated by the exponential distribution (eg. 2 in Table 4). Arnold et al. (1987)
show that the Lorenz curve of an exponentia transformation of a cdf
(F(X)=F“(X)) isgiven by:

1

L, (p) =[L(p*)]" (7)

where L(u) is the Lorenz curve generated by F(x). Hence the Lorenz curves
generated by the generalized exponential distribution family described in
equation 6 isgiven by:

1 1 1

L(p) =1-[(1- p)* + (1~ (1~ p)*)In(l- (1~ p)*)]“ (8)

Table 7 presents the results of the non-linear least squares fitting of the
empirical Lorenz curve to the asymptotic Lorenz curve described in equation
(8), using parameter « as a control variable. We further document the goodness
of fit by plotting the empirical Lorenz curves derived from Mauldon's
distribution against the fitted Lorenz curves, i.e. Lorenz curves with
corresponding fitted parameters given in Table 7. Figure 4 below displays
excellent curve fit, reinforcing the high R ratios observed in Table 7.

Table 7: Generalized exponential parameter fits
for no-feedback concentration bounds

1% 5% 95% 99%

« estimate 0318422 | 0.444925 1.92542 2.61997

cl [.308,.329] | [.433,.456] | [1.880,1.971] |[2.512,2.728
]

R 9995 9996 9995 9985

Source: Authors' computation
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Figure 4: Generalised exponential Lorenz curve fitsto the
no-feedback concentration bounds

1% 5%
1 1
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We have presented evidence that the concentration bounds generated in a
no-feedback firm growth process described by Mauldon's share distributions
could be approximated by an exponential distribution of firm sizes. The
different levels of concentration are approximated by generalized exponential
distributions with different parameter values .

Exponential firm size distributions
What does the firm size distribution look like for the different bounds? To
answer this question we use the estimated parameters in the previous section to
derive the firm size distributions. Given the cumulative density function in
equation (6), the probability density function for firm size distribution is given
by the derivative of F(x) with respect to x:

f(X)=ae*(1-e*)** (9
Note that we have set 4 =1\ without loss of generality, considering a standard
exponentia distribution. We use the parameter values in Table 7 to plot the
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density functions. For the median concentration we simply plot the asymptotic

exponential distribution, i.e. =1 and A =1. Figure 5 depicts the size
distribution plots.

Figure 5: Firm size distributions for the no-feedback concentration bounds
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