
DISTRIBUTED LEDGER
TECHNOLOGY SYSTEMS
A Conceptual Framework

Michel Rauchs Andrew Glidden Brian Gordon Gina Pieters
Martino Recanatini François Rostand Kathryn Vagneur Bryan Zhang

August 2018

The Cambridge Centre for Alternative Finance (CCAF) is an international and interdisciplinary research centre based at the University of Cambridge
Judge Business School. It is dedicated to the study of innovative instruments, channels, and systems emerging outside of traditional finance.
This includes, among others, crowdfunding, marketplace lending, alternative credit and investment analytics, alternative payment systems,
cryptocurrencies, distributed ledger technology (e.g. blockchain) as well as related regulations and regulatory innovations (e.g. sandboxes & RegTech).

TABLE OF CONTENTS

FOREWORD ...7

RESEARCH TEAM ...8

DISCLOSURES ... 10

ACKNOWLEDGEMENTS .. 10

EXECUTIVE SUMMARY ...11

SECTION 1: INTRODUCTION ... 15

RATIONALE ... 15

OBJECTIVES ... 16

METHODOLOGY ... 16

REPORT STRUCTURE .. 17

SECTION 2: DLT SYSTEMS - SETTING THE SCENE19

2.1 DLT SYSTEMS IN THE LITERATURE .. 19
2.1.1 Definitions ...19
2.1.2 Existing Frameworks ..20
2.1.3 Limitations Of Prior Work ... 21

2.2 WHAT ARE DLT SYSTEMS? ... 21

2.3 CLARIFYING TERMINOLOGY... 25
The ‘Ledger’ Concept ...25
The ‘private key’ concept ...28

2.4 ACTORS ... 28
2.4.1 Developers ..29
2.4.2 Administrators ..30
2.4.3 Gateways ...30
2.4.4 Participants ...30

SECTION 3: INTRODUCING THE FRAMEWORK 33

3.1 PROTOCOL LAYER ...34

3.2 NETWORK LAYER .. 35

3.3 DATA LAYER .. 36
Reference/Value Linking ..37

3.4 PUTTING IT ALL TOGETHER ... 37

SECTION 4: SYSTEM INTERACTIONS ...41

4.1 WITHIN THE SYSTEM BOUNDARIES .. 41
4.1.1 Layer Interdependencies ... 41
4.1.2 Layer Hierarchy ..41
4.1.3 Trade-offs: There Is No ‘One Size Fits All’ ..43
4.1.4 A Note On ‘Decentralisation’ ... 44

4.2 BEYOND THE SYSTEM BOUNDARIES .. 47
4.2.1 Systems Perspective ..47
4.2.2 Exogenous And Endogenous References ..48

SECTION 5: A DEEPER DIVE INTO THE FRAMEWORK 53

5.1 PROTOCOL LAYER ... 53
5.1.1 Genesis Component ...53
5.1.2 Alteration Component .. 55

5.2 NETWORK LAYER .. 58
5.2.1 Communications Component.. 58
5.2.2 Transaction Processing Component ..60
5.2.3 Validation Component .. 63

5.3 DATA LAYER .. 66
5.3.1 Operations Component .. 66
5.3.2 Journal Component ..68

SECTION 6: APPLYING THE FRAMEWORK - CASE STUDIES71

6.1 BITCOIN .. 71
Protocol ..71
Network ...72
Data .. 73

6.2 COMPARATIVE ANALYSIS ... 74
6.2.1 Case Studies ...74
6.2.2 Are These DLT Systems? .. 75
6.2.3 Protocol ..77
6.2.4 Network ...80
6.2.5 Data ..84

6.3 COMPARING KEY DIFFERENCES ACROSS DLT SYSTEM CASE STUDIES 86
6.3.1 Summarising Framework Results ..86
6.3.2 Differences In Participation .. 87
6.3.3 Exploring The Current DLT Systems Landscape ..87
6.3.4 Key Design Decisions And Implications ...89

SECTION 7: CONCLUSION ... 91

7.1 SUMMARY .. 91

7.2 CONTRIBUTION .. 92

7.3 SHORTCOMINGS AND AVENUES FOR FUTURE RESEARCH .. 93

APPENDICES ... 95

APPENDIX A: ANATOMY OF A DLT SYSTEM .. 95

APPENDIX B: CASE STUDY COMPARISON ... 97

APPENDIX C: GLOSSARY .. 98

ENDNOTES .. 103

7

FOREWORD

Terms such as cryptocurrency, blockchain,
and distributed ledger technology (DLT) have
gradually entered our daily lexicon, featured
prominently in news and media, and fuelled
discussion and debate among communities,
industry practitioners and policymakers.
Nevertheless, there is no rigorously defined
set of terminologies or commonly acceptable
taxonomy available. As a result, people are
often talking past each other, and these
terms are often misconstrued, misused, and
misinterpreted.

Without undertaking a systematic and
holistic approach, attention and analysis can
be narrowly devoted to fractions, parts, and
the surface of the phenomenon, rather than
the whole. Consequently, people ‘can’t see
the forest for the trees’ and they are more
susceptible to bias, misunderstanding, inflated
claims, or conflicted views.

Therefore, a more thorough and reflective
research to conceptualise and examine DLT
as a functioning system with key layers,
components, processes, and interactions with
other systems (if applicable) is needed. By
adopting a ‘systems perspective’, hopefully
we can begin the journey to not only see
‘trees’ and the ‘forest,’ but to develop a more
nuanced understanding of the complex and
living ‘DLT ecosystem’.

Building on the successes of our Centre’s
Global Cryptocurrency and Blockchain
Benchmarking Studies - and aware of our own
limitations and the challenges of the task - we
reached out to assemble a team of researchers
and contributors from diverse backgrounds. In
order to conceptualise DLT systems and reach
some form of ‘consensus’ on definitions and

taxonomies, it is essential for our own research
process to be open, collaborative, and self-
critical. As we see it, this resulting study is a
beginning and a catalyst to invite more input,
discussion, and debate, as the landscape of
DLT itself continues its swift evolution.

In this study, DLT systems were purposefully
‘deconstructed’ and then ‘reconstructed’
using a ‘systems perspective’ and an analytical
framework that envisions all DLT systems
as constructed of three layers: Protocol,
Network, and Data. It articulates how
these core layers interact with each other
through processes and flows, as well as their
conditional dependency and hierarchy within
the system. The analysis demonstrates how
varying the ‘configuration’ of these layers and
their components will result in ‘DLT systems’
(and by extension the records and assets
within them) that function and behave very
differently. It also illustrates how DLT systems
might interact with each other within the
wider ecosystem, how ‘centralisation’ and
‘decentralisation’ should be understood as
falling along a spectrum rather than binary, and
the necessity for making a distinction between
‘native’ and ‘non-native’ recordkeeping.

We are very grateful for the contribution of
all of our research team members and the
opportunity to do our small part to further our
collective understanding of DLT systems.

Bryan Zhang
Executive Director and Co-Founder,
Cambridge Centre for Alternative Finance

8

RESEARCH TEAM

PROJECT LEAD
Michel Rauchs: Michel is the Lead in Cryptocurrency and Blockchain at the Cambridge Centre
for Alternative Finance. He co-authored two benchmarking reports that present an empirical
analysis of the cryptocurrency and blockchain ecosystems.

 m.rauchs@jbs.cam.ac.uk @mrauchs

CO-AUTHORS (ALPHABETICALLY-ORDERED)

Andrew Glidden: Andrew is the Head of Legal Research within Blockchain@BerkeleyLaw.
His research interests include corporate governance and finance, financial regulation, and
protocol design.

 asglidden@berkeley.edu @asglidden

Brian Gordon: Brian is a Visiting Scholar at the David Eccles School of Business at the University
of Utah and a Research Fellow at the University of California, Merced. His research focuses on
strategy, entrepreneurship, and innovation.

 brianrgordon@gmail.com @GordonBrianR

Gina Pieters: Gina is a Lecturer at the Department of Economics at the University of Chicago
and a Research Fellow at the Cambridge Centre for Alternative Finance. Her research examines
the economic implications and behaviour of cryptocurrencies across different currencies and
monetary systems.

 gcpieters@uchicago.edu @ProfPieters

Martino Recanatini: Martino is a Visiting Student at the Cambridge Centre for Alternative
Finance and he is pursuing a Master’s degree in Finance and Banking at the Politecnica delle
Marche University. He is writing a master’s thesis that addresses the impact of DLT systems on
securities post-trading services.

 m.recanatini@jbs.cam.ac.uk @marecanatini

François Rostand: François is a Visiting Student at the Cambridge Centre for Alternative
Finance and is pursuing a Master of Philosophy in Chemical Engineering at the University of
Cambridge.

 fr339@cam.ac.uk

mailto:m.rauchs%40jbs.cam.ac.uk?subject=
https://twitter.com/mrauchs
mailto:asglidden%40berkeley.edu?subject=
https://twitter.com/asglidden
mailto:brianrgordon%40gmail.com?subject=
https://twitter.com/GordonBrianR
mailto:gcpieters%40uchicago.edu?subject=
https://twitter.com/ProfPieters
mailto:m.recanatini%40jbs.cam.ac.uk?subject=
https://twitter.com/marecanatini
mailto:fr339%40cam.ac.uk?subject=

9

Kathryn Vagneur: Kathryn is a Research Affiliate at the Cambridge Centre for Alternative
Finance. Her work has explored governance, management control, resilience and vulnerabilities
in regulatory systems and blockchain projects.

 kvagneur.phd91@london.edu

Bryan Zhang: Bryan is the Executive Director and a Co-Founder of the Cambridge Centre for
Alternative Finance. He has co-authored more than 15 reports on alternative finance.

 b.zhang@jbs.cam.ac.uk @BryanZhangZ

CONTRIBUTORS
Oliver Beige: Oliver is an industrial engineer and economist (PhD UC Berkeley) who applies
innovation economics to early technology R&D. He has worked for companies including SAP
and Mercedes-Benz, and now consults on the intersection between blockchain and enterprise
systems.

 beige@cal.berkeley.edu @ecoinomia

Jill Carlson: Jill works as an advisor to and investor in cryptocurrency protocol projects. She has
also consulted on the topic for institutions including the IMF.

 jillruthcarlson@gmail.com @_jillruth

Nic Carter: Nic is a partner at Castle Island Ventures, a Boston-based blockchain-focused
venture fund, and the cofounder of Coinmetrics.io, an open data repository for public
blockchains. He wrote a master’s thesis on cryptoasset governance structures at the University
of Edinburgh.

 nic@castleisland.vc @nic__carter

Michèle Finck: Michèle is a Senior Research Fellow at the Max Planck Institute for Innovation
and Competition and a Lecturer in EU law at Keble College, University of Oxford. She is the
author of ‘Blockchain Regulation and Governance in Europe’ (Cambridge University Press
2018) and is advising a number of institutions on the intersection between law and blockchain
technology.

 michele.finck@ip.mpg.de	 @finck_m

Larry Sukernik: Larry works at Digital Currency Group (DCG) investing in startups and digital
assets. Previously, Larry worked at Ernst & Young, where he spent 3 years developing the
cryptocurrency and blockchain practice.

 larry@dcg.co @lsukernik

Angela Walch: Angela is an Associate Professor at St. Mary’s University School of Law and
a Research Fellow at the UCL Centre for Blockchain Technologies. Her work on blockchain
technologies has focused on governance, language, and operational risks.

 awalch@stmarytx.edu @angela_walch

https://twitter.com/BryanZhangZ
mailto:beige%40cal.berkeley.edu?subject=
https://twitter.com/ecoinomia
mailto:jillruthcarlson%40gmail.com?subject=
https://twitter.com/_jillruth
mailto:nic%40castleisland.vc?subject=
https://twitter.com/nic__carter
mailto:michele.finck%40ip.mpg.de?subject=
https://twitter.com/finck_m
mailto:larry%40dcg.co?subject=
https://twitter.com/lsukernik
mailto:awalch%40stmarytx.edu?subject=
https://twitter.com/angela_walch

10

DISCLOSURES

Over the last two years, the CCAF Cryptoasset
and Blockchain Research Programme has
received funding from various institutions
(VISA, EY, Nomura Research Institute and
VXL Group) to conduct independent academic
research. The CCAF is also an Associate
(Academia) Member of the Hyperledger
project and the Linux Foundation.

All co-authors and contributors are solely
expressing their personal views which may
differ from the views of their respective
organisations.

ACKNOWLEDGEMENTS

We would like to thank Andre Boysen and
Sarah Douglas (SecureKey) as well as the
representatives from a company that prefers
not to be publicly disclosed for taking the time
to walk us through the set-up and operations
of their respective DLT systems and provide
helpful comments. We would also like to thank
Marta Piekarska from the Hyperledger project
for connecting us with DLT system operators.

Special thanks also go to Jon Frost for
providing valuable feedback on early drafts,
Robert Wardrop (CCAF) and Victoria Lemieux
(University of British Columbia) for their useful
input and comments in early discussions,
and Louis Smith (CCAF) for the design and
publication of the report.

This report is published under the Creative Commons Attribution-NonCommercial-NoDerivatives
license (CC BY-NC-ND 4.0).

11

EXECUTIVE SUMMARY

The DLT ecosystem is plagued with the use
of incomplete and inconsistent definitions
and a lack of standardised terminology,
creating a needlessly complicated landscape
for everyone from experienced policymakers
and developers to individuals venturing into
the field for the first time. This study sets out
to contribute to international discussions to
create a shared, common language around DLT
systems to clarify terminology and concepts.
We provide a formal definition of DLT systems
and a list of key characteristics that distinguish
them from alternative systems.

We then introduce a conceptual framework
that serves as a multi-dimensional tool for
examining and comparing existing DLT
systems, which we believe will be useful
for a wide range of readers and purposes:
from businesses and institutions developing
DLT-based applications, investors funding
DLT ventures, to academics, regulators and
policymakers who wish to have a better
and more nuanced understanding of DLT
systems. The framework breaks down a
DLT system into a set of interconnected
layers, components, and processes. It is the
combination and interactions of these small
and rather simple processes that together
form a complex and dynamic system.

We show that layers follow a hierarchy: the
protocol layer dominates both the network
layer and the data layer in that it can overrule
any decisions taken at those layers. Typical
roles and actors within a DLT system are
grouped together into four categories.
We discuss how roles and actors can be

distributed across layers, which becomes
crucial when examining the power structure
around the system. We highlight that in DLT
systems decentralisation is not a binary
property, but a continuous variable resulting
from interplay of the system components,
hierarchies, and power structures at each
layer.

Our framework presents a non-exhaustive
list of potential configurations for various
processes at each layer and component. It
then shows how different design choices (i.e.
different configurations) lead to particular
outcomes that shape the properties and
characteristics of the system. This exercise
requires the application of different lenses
developed in the framework for analysing
each process. It also shows that trade-offs
are inherent to DLT systems and move along
a spectrum according to specific security
assumptions, threat models, and trust
relationships. There is no inherent ‘right’ or
‘wrong’: use case requirements and objectives
should drive the discussion around acceptable
trade-offs to choose from.

We further note that DLT systems generally
do not operate in isolation, but in concert with
a variety of external systems: only transfers of
endogenous resources internal to the system
are automatically executed by the DLT system
itself without the involvement of external
agents. This is particularly relevant when
the records produced by the DLT system
reference exogenous objects, events, or facts
external to the DLT system in question (e.g.
items tracked in a supply chain; physical assets

12

held in custody). These exogenous objects
require gateways that connect the system to
the external world and are reliant on external
agents and an existing legal structure to
enforce decisions outside of the boundaries of
the DLT system.

The study also demonstrates that choices
made in the design, architecture, and
governance of each DLT system can result in
significant differences with regard to system
properties and characteristics. We discuss
the concept of provisional settlement and
illustrate the life cycle of transactions within
different architectures. In addition, we explore
how record producers are incentivised by
distinguishing between systems whose
security model relies on intrinsic economic
incentives (i.e. requiring a native asset for
compensation) and systems that are secured
through access controls and contractual
obligations between record producers.

We clear up misconceptions about the form
taken by the shared data record structure and
classify the data as transactions, logs, records,
journals, and ledgers according to the extent

the data has been processed by the DLT
system network. Importantly, we use the term
‘ledger’ to mean the set of records which are
held in common by a substantial proportion of
network participants.

Finally, we conduct a comparative analysis by
applying the conceptual framework to six case
studies (Bitcoin, Ethereum, Ripple, Alastria,
Verified.me, and an anonymised DLT system
referred to as “Project X”) and introduce a
DLT systems landscape map that positions a
dozen of DLT systems. We observe that open
systems with permissionless participation
in transaction processing primarily record
transfers of ownership of endogenous
resources, whereas the majority of closed
systems with more fine-grained permission
levels typically reference objects external
to the system and depend on gateways and
external enforcement. We demonstrate that
open systems range from fully centralised
to reasonably decentralised as a whole,
while closed systems currently tend to be
centralised for a variety of reasons, with plans
to gradually distribute control over time.

15

SECTION 1:
INTRODUCTION

RATIONALE

The concept of distributed ledger technology
(DLT) existed before Bitcoin and blockchain
technology. The Byzantine Generals Problem
theorised by Lamport et al. (1982) described
how ‘computer systems must handle [...]
conflicting information’ in an adversarial
environment.1 Subsequent research led
to the emergence of the first algorithm
for ‘highly available systems that tolerate
Byzantine faults’ with little increase in
latency (Castro & Liskov, 2002).2 The earliest
identified occurrences of the concept of a
‘blockchain’ can be traced back to Haber &
Stornetta (1991)3 and Bayer et al. (1992)4
who introduced the notion of a chain of

cryptographically-linked data blocks to
efficiently and securely timestamp digital data
in distributed systems using cryptographic
hashing functions and Merkle trees.

However, these developments attracted little
attention in contrast with recent enthusiasm
around cryptocurrencies and blockchain
technologies more generally. This new interest
has attracted significant investment, resulting
in the rapid evolution of DLT system types
and applications, many of which have little
in common with Bitcoin and its numerous
copycats.

DLT systems conceptually emerged in 1982, while the earliest
occurance of the ‘blockchain’ concept can be traced back to 1991

What Is DLT?

Distributed ledger technology (DLT) has established itself as an umbrella term to designate
multi-party systems that operate in an environment with no central operator or authority,
despite parties who may be unreliable or malicious (‘adversarial environment’). Blockchain
technology is often considered a specific subset of the broader DLT universe that uses a
particular data structure consisting of a chain of hash-linked blocks of data.

16

Concomitant with the expansion and evolution
in types and uses of DLT has been the
widespread use of language and terminology
which is frequently fuzzy, imprecise, and
inconsistent across different projects. This
report was motivated by a recognition that,
left unsolved, this disorderly use of language
and conceptual terminology could hinder
development within the DLT sector, and
may present society and industry with legal
uncertainty and financial risks which are as yet
unrecognised.

Currently, much of the general interest is
focused on cryptographically-secured digital
assets and other digital tokens that can be
issued and transferred on DLT systems.
Before the properties of these assets can
be analysed, however, it is critical to have
a robust understanding of the underlying
infrastructure, and how specific design
decisions impact the nature of the recorded
data.

OBJECTIVES

This report seeks to establish a conceptual
framework and terminology that can be
applied with ease across DLT systems that
predate cryptocurrencies such as Bitcoin,
and the many DLT systems which have been
inspired by or followed Bitcoin. It also seeks
to distinguish these newer technologies from
‘traditional’ databases and other systems.
The purpose of the framework is to provide
a multidimensional tool for examining and
comparing existing DLT systems and their

traits and features. It also can serve as
an analytical tool useful when examining
proposals for new DLT systems.

This framework for DLT analysis has
been designed to be generic so it should
be applicable to every type of DLT, and
modular, so that new layers, components,
processes, and configurations can be added
independently without affecting the core of
the framework.

METHODOLOGY

We have taken a ‘systems perspective’
because it allows us to describe how a
collection of parts work together to create
a functional whole rather than presenting
them as a set of disconnected parts. This
enables assessment of the behaviors of such
a system in the context of its environment.
While the concept of a system itself is a more
general notion that indicates separation of
some part of the universe from the rest, the
idea of a systems perspective is to use a non-

reductionist approach to the task of describing
the properties of the system itself.
Further, we have sought to consider these
systems in the context of their environments
or ecosystems, and not as isolated entities.
Thus, one can examine the interactions and
relationships between a DLT system and its
environment.

This analytical approach draws from Systems
Theory which has developed in parallel
streams of research, each with its own unique

17

orientation, that began to emerge in the
1940s with the first published work by Ludwig
von Bertalanffy (1949). He articulated the
notion of a general systems theory5, which is
multidisciplinary in nature and examines the
general science of ‘wholeness’ as systems.
Ervin Laszlo (1972) proposed an organisation
of knowledge in terms of systems, systemic
properties and inter-system relationships
which he termed ‘systems philosophy’.6 Walter
Buckley (1967)7 and James Grier Miller
(1978)8 further refined Bertalanffy’s general
systems theory as a theoretical framework
and methodology that can be applied in

physical, biological as well as social sciences.
Especially notable was Miller’s concept of
‘living systems’ which stipulates that systems
can have hierarchical levels and subsystem
layers, maintained by flows of information,
energy and matter.
We aim to conceptualise a DLT system in this
vein as a set of interconnected and hierarchical
components and their interacting processes.
Rather than a simple collection of parts, it is
the ‘configuration’ of hierarchical components
- and their interrelations and interactions
- that determines the functionality and
characteristics of a particular DLT system.

REPORT STRUCTURE

The remainder of the report is structured as follows:

Section 2 provides a review of the existing
literature, summarises theoretical concepts
and frameworks, and outlines their limitations.
It then establishes a formal definition of a DLT
system and highlights the necessary criteria it
must meet, and defines several key terms.

Section 3 presents a high-level overview of
the proposed tool by introducing the various
elements of the conceptual framework.

Section 4 investigates the dependencies
between layers within a particular DLT system
as well as the interactions and relationships
with external systems.

Section 5 offers a deep dive into each element
of the conceptual framework by outlining
potential configurations and their effects on
the system illustrated by examples of existing
DLT systems.

Section 6 applies the framework as a tool to
Bitcoin and compares it to other case studies
that have chosen alternative design decisions.

Section 7 summarises the present report
and offers recommendations as to how the
conceptual framework might be extended and
what it can be applied to.

Appendix A presents the full framework
in table form; Appendix B summarises the
comparative analysis between the six case
studies (Bitcoin, Ethereum, Ripple, Alastria,
Verified.Me, and ‘Project X’9); and Appendix
C features a glossary of the most commonly
used terms.

19

SECTION 2: DLT SYSTEMS
- SETTING THE SCENE

2.1 DLT SYSTEMS IN THE LITERATURE

2.1.1 Definitions
There exist many different definitions of
distributed ledger technology (DLT) systems
in the literature, and many publications on the
subject set out their own unique definition
in their preamble. Some definitions are
narrow, while others are very broad; some
are contradictory. Consequently, a coherent
definition for DLT has not yet developed.

For instance, the World Bank (2017) describes
DLT systems as ‘a specific implementation of
the broader category of ‘shared ledgers’, which
are simply defined as a shared record of data
across different parties’10.

Pinna & Ruttenberg (2016) from the European
Central Bank (ECB) describe DLT as a
technology that ‘allow[s] their users to store
and access information relating to a given
set of assets and their holders in a shared
database of either transactions or account
balances. This information is distributed
among users, who could then use it to
settle their transfers of, e.g. securities and
cash, without needing to rely on a trusted
central validation system’11. Davidson et al.
(2016) consider a DLT system a ‘distributed,

cryptographically secure, and crypto-
economically incentivised consensus engine’12.

In contrast, the Bank of England (2017)
provides a set of key architectural
characteristics that define DLT systems: ‘A
DLT is a distributed database, in the sense that
each node has a synchronized copy of the data,
but departs from the traditional distributed
database architectures in three important
ways: (i) decentralisation; (ii) reliability in
trust-less environments; (iii) cryptographic
encryption’. The Bank of England summarises
its definition as: ‘a database architecture
which enables the keeping and sharing of
records in a distributed and decentralised way,
while ensuring its integrity through the use
of consensus-based validation protocols and
cryptographic signatures’13.

Similarly, Tasca & Tessone (2018) list a set of
key features that seem unique to DLT systems:
‘A DLT system is a community consensus-
based distributed ledger where the storage
of data is not based on chains of blocks
whose principles are (a.) decentralisation of
consensus, (b.) transparency, (c.) security and
immutability’14.

20

Other definitions refer exclusively to
‘blockchain technology’ and do not
differentiate between DLT and ‘blockchain’.
For instance, Cong & He (2018) define a
blockchain as a ‘distributed database that
autonomously maintains a continuously
growing list of public records in unit of ‘blocks’,
secured from tampering and revision’15, while
Atzori (2015) describes it as an ‘irreversible
and tamper-proof public records repository
for documents, contracts, properties, and
assets [that] can be used to embed information
and instructions, with a wide range of
applications’16.

As shown by these examples, there is no
genuine and universal definition for what is
referred to as a DLT system. Adding to the
challenge is that on the one hand, definitions
are sometimes too specific, technical and
inaccessible to general audiences; while on
the other hand, some are too simplistic and
broad so that no meaningful difference to
more traditional database architectures can
be observed. Either way, a lack of common
terminology has resulted in misconceptions
and the widespread formation of unrealistic
expectations as to what this technology can
achieve.

2.1.2 Existing Frameworks
Ontologies - descriptions of things that
exist, and how they can be grouped together
according to similarities and differences -
allow people to converge towards a common
terminology in specific ecosystems. Therefore,
the project team has carried out an analysis
of ontologies previously proposed to
understand the suggested categorisations
of DLT ecosystems provided by academics,
professionals and others who have written
on this topic. We summarise some of

these frameworks below and discuss their
shortcomings in Section 2.1.3.

Okada et al. (2017) propose a classification
of blockchain technology based on two
dimensions: a) the existence of an authority
and b) the incentive to participate.17

Lemieux (2017) analyses blockchains through
the lens of archival science, the theory
underpinning record keeping and preservation
of authentic records. This work frames
blockchains in terms of types of record keeping
systems, namely ‘mirror type’, ‘digital record
type’, and ‘tokenised type’, and examines each
type in relation to a formal archival theoretic
evaluation framework.18

Platt (2017) presents a simple yet powerful
two-dimensional framework that categorises
DLT systems according to (a) their data
diffusion model (global vs. local) and (b) on-
chain functionality (stateful vs. stateless).19

De Kruijff & Weigand (2017) attempt a
solution to the lack of formalisation in the
enterprise blockchain literature. Kruijff uses
an enterprise ontology to distinguish between
the datalogical, infological, and essential layer
levels of blockchain transactions and smart-
contracts.20

Xu et al. (2017) have developed a ‘layer
approach’ to the current framework. This work
aims to assess the impact of the blockchain
design decisions on the software architecture.
The proposed taxonomy is intended to help
with architectural (software) considerations
about the performance and quality of
blockchain-based systems.21

Glaser (2017) uses a clear terminology,
contributing to a common basis for

21

communication and connects the terminology
to digital market models in order to determine
every component’s market implication22.
His idea was also based on considerations
arising in Glaser & Bezzenberger (2015)
that aims to provide an early tool for
classifying peer-to-peer transfer systems and
decentralised consensus systems.23

Lastly, Tasca & Tessone (2018) attempted to
add an overall perspective of DLT systems
on top of previous definitions. This advanced
ontology is quite comprehensive and
detailed for the classification of blockchain
technologies.24

2.1.3 Limitations Of Prior
Work
There has been a plurality of definitions
proposed for distributed ledger technologies,
each varying in detail, which make it difficult
to extrapolate from specific definitions into a
general and modular framework capable of
describing and classifying different types of
DLT systems.

Debate is further hampered by a lack of
attention to the definitional clarity of DLT
system components in prior works. For
example, decentralisation is often treated
as a binary feature of DLT systems, instead
of a continuous variable resulting from the
interplay of the various layers and nested
subsystems within them. This is partially due
to examples in the current literature which
do not break down the system into different
components and examine the relationships,
dependencies, and interactions between these
different elements.

In order to overcome these limitations, this
study aims to provide a working definition of
DLT systems and takes a holistic approach,
building up from the process level to develop
a generic and durable tool. The resulting
conceptual framework can be used for various
purposes, including the assessment of an
existing system, a comparative analysis of
multiple systems, and the development of
new systems.

2.2 WHAT ARE DLT SYSTEMS?

Section 2.1 has highlighted the multitude of
conflicting definitions as to what constitutes a
‘blockchain’ or a ‘distributed ledger’. Unclear
terminology and fuzzy boundaries have
resulted in ‘DLT’ evolving into into an umbrella
term used to designate a variety of loosely
related concepts (which include, among others,
blockchains).

One interpretation of the DLT concept is
its most narrow (and historically-grounded)
definition: an append-only chain of
cryptographically-linked ‘blocks’ of data,

maintained and updated by a decentralised
network, with network nodes encouraged
by economic incentives to engage non-
strategically25 to maintain and secure the
system so that the data - organised in a
specific structure often referred to as ‘global
ledger’ - is robust to adversarial interference,
double-spend, censure, counterfeit, collusion,
tampering, or other types of malicious actions.

Such a narrow definition, however, excludes
many existing and potential future applications
of distributed ledger technologies. It also

22

excludes cases where an enterprise applies
the term DLT in a context which is so broad
that the line between it and more traditional
distributed systems becomes blurred and
many of the core elements of the narrow
definition are missing or degraded.

In order to resolve this issue, we propose
to balance the two ends of the spectrum by
taking an alternative approach that focuses

on the essential minimum requirements of a
DLT system (i.e. the necessary and sufficient
conditions), as opposed to articulating the
full set of properties that a DLT system might
ideally possess. We consider DLT systems
as a type or subset of distributed systems,
which exhibit a set of specific characteristics
that distinguishes them from more traditional
distributed systems.

DLT systems are designed to be capable of
operating in an adversarial environment

In essence, a DLT system is a ‘consensus
machine’: a multi-party system in which
participants reach agreement over a set of
shared data and its validity, in the absence of
a central coordinator. What separates DLT

systems from traditional distributed databases
are features rooted in designs capable of
supporting data and maintaining data integrity
in an adversarial environment.

DLT systems are multi-party ‘consensus machines’

DLT systems can tolerate, within limits, the
presence of both malicious actors actively
attempting to attack the system and
unreliable-yet-honest actors.27 This tolerance
extends only to the recording and processing
of data; parties who wish to transact together
may be able to rely on the performance of
the system, but must still generally trust their

counterparties.28 For this reason, DLT systems
can be characterised as a disintermediating
technology that ‘delegates trust to the
endpoints’ (i.e. the end users) of the system.29

These characteristics are dependent on, and
specific to, the architecture and design of the
system, as well as its operating environment;

What Is An Adversarial Environment?

An adversarial environment is characterised by the presence of malicious actors within
a system or network, who undermine the system by using it in ways it was not intended
for. The prototypical adversary in a DLT system is an entity that attempts to exploit the
consensus rules to transfer assets without authorisation, censor others’ transactions, or
otherwise disrupt the network. Adversaries may operate inside or outside the system.26

23

these are not the result of some ‘natural law’ or
‘immutable requirement’. Similarly, tolerance
to adversaries does not imply that all DLT
systems necessarily operate in adversarial
environments, or that they provide an
invincible defense against adversarial attack.30

Figure 1 offers an illustration of the
fundamental differences between a traditional
database system operated by a single entity,
a traditional distributed database and a
distributed ledger system. While each system
takes inputs from various sources, control over
how data is stored, processed, and executed
varies from one type to another.

Figure 1: From Centralised Databases To Distributed Ledgers

Note: a traditional distributed database consists of multiple nodes that collectively store and process data, however, the
nodes are generally controlled by the same entity as opposed to DLT systems where there are multiple controllers.

A DLT system is a system of electronic records that enables independent
entities to establish a consensus around a shared ‘ledger’ - without relying on

a central coordinator to provide the authoritative version of the records

1 INPUT 2 STORAGE 3 PROCESSING 4 OUTPUT CONTROL

Centralised
Database

Traditional
Distributed

Database

Distributed
Ledger

Technology

 Single entity control Multiple entity control Single node Multiple nodes

Data1

Data3

Data2

Data1

Data3

Data2

D
at

a k

D
at

a k+
1

D
at

a k+
2

24

A DLT system needs to be capable of ensuring the following properties, either in the existing
system or with minimal changes to the system.

a. Shared recordkeeping: enable multiple
parties to collectively create, maintain,
and update a shared set of authoritative31
records (the ‘ledger’).

b. Multi-party consensus: enable all
parties to come to agreement on a shared
set of records

i. If permissionless, without relying on
a single party or side-agreements,
and in the absence of ex ante trusted
relationships between parties; and

ii. If permissioned, through multiple
record producers who have been
approved and bound by some form of
contract or other agreement.

c. Independent validation: enable each
participant to independently verify the
state of their transactions and integrity of
the system.

d. Tamper evidence: allow each participant
to detect non-consensual changes
applied to records trivially.

e. Tamper resistance: make it hard for a
single party to unilaterally change past
records (i.e. transaction history).

We therefore propose the following formal definition:

A DLT system is a system of electronic records that

i. enables a network of independent
participants to establish a consensus
around

ii. the authoritative ordering of
cryptographically-validated (‘signed’)
transactions.32 These records are
made

iii. persistent34 by replicating the data
across multiple nodes,35 and

iv. tamper-evident36 by linking them by
cryptographic hashes.36

v. The shared result of the
reconciliation/consensus process
- the ‘ledger’ - serves as the
authoritative version for these
records.37

The goal of a DLT system is thus to produce a set of authoritative records that are validated and
executed via a multi-party consensus process that involves the participation of multiple separate
entities - all in the absence of a central authority. Users create and broadcast unconfirmed
transactions (i.e. proposals to make a new ledger entry), which get bundled together into records
by record producers, and added to the ledger. The instructions contained in the now-confirmed
transactions are then automatically executed by all auditors.

25

2.3 CLARIFYING TERMINOLOGY

The ‘Ledger’ Concept
There is significant overlap and similarity
among many of the terms used to describe the
components of DLT systems. This often results
in ambiguous or conflicting use of terminology.
Consider, for example, the term ‘ledger’. Not
only does the DLT system literature assign
‘ledger’ a different meaning from the one used
in disciplines like accounting or finance, but the

DLT literature itself uses the term to describe
two very different ideas: (i) the set of data
held by an individual network node, and (ii) the
set of data held in common by the majority of
nodes.

Within this project we define the terms log,
journal, record and ledger38 according to the
extent transaction data has been accepted,
processed, and validated by the network as a
whole (Figure 2).

Key Concepts

• Transaction: any proposed change to the ledger; despite the
connotation, a transaction need not be economic (value-transferring)
in nature.

• Log: an unordered set of valid39 transactions held by a node, which
have not yet been incorporated into a formal record subject to
network consensus rules (i.e. ‘unconfirmed’ transactions).

• Record: transaction data which has been subject to network
consensus rules.
Note: A ‘candidate record’ is a record that has not yet been propagated to
the network.

• Journal: the set of records held by a node, although not necessarily
consistent with the consensus of other nodes. Journals are partial,
provisional, and heterogeneous: they may or may not contain all the
same records.

• Ledger: the authoritative set of records collectively held by a
significant proportion of network participants at any point in time,
such that records are unlikely to be erased or amended (i.e. ‘final’).40

TXk
Event description

26

Using Bitcoin as an example, a transaction can
be a transfer of an asset from one address
to another; a node’s log is its mempool (i.e.
the collection of unconfirmed transactions
the local node has received from connected
nodes, which have not yet been processed
into records);41 a record would be a confirmed
block; a node’s journal is its individual, locally-

stored copy of the blockchain,42 which may
be incomplete or contain data unknown to
the rest of the network; and the ledger would
be the authoritative set of blocks which are,
by consensus, considered ‘final’ – i.e. which
have a vanishingly low probability of being
overwritten by a more-worked subchain.43

Figure 2: From Transactions To Records

PROCESSING

UNCONFIRMED
TRANSACTIONS

End users create
transactions and

broadcast them to
the network though

various means. These
transactions are waiting

for confirmation.

End users (via
nodes, SPV, API)

Individual
node level

Individual
node level

Individual
node level

Global
system level

LOG
(MEMPOOL)

Each fully-
validating node

stores unconfirmed
transactions in its log
(‘mempool’). Logs may

differ from one node to
another.

RECORD

Each record producer
now arbitrarily selects

a set of unconfirmed
transactions from its log
and creates a candidate

record. After performing
the necessary steps

specified by the
protocol to make the

candidate record valid,
it broadcasts the record

to connected nodes.

JOURNAL

Each node will verify
the received candidate

record: if it complies
with protocol rules, the

node will add the record
to its own instance of

the ledger - the journal.
Journal states may

differ from one node to
another.

LEDGER

The ledger represents
the globally agreed-
upon authoritative
set of records that

constitutes the state of
the system. It results

from the convergence of
synchronised individual

journals.

1 2 3 4 5

Globally agreed-upon
authoritative set of records.

Set of records held by each
individual node, although not

necessarily consistent with the
consensus of other nodes.

Transaction data arbitrarily
selected by Record Producers
and broadcast to the network

to be subject to consensus rules.

Set	of	unconfirmed	transactions	
held by each individual node:

transactions are not yet incorporated
into a formal record subject to

network consensus rules.

Proposed changes to the ledger
(i.e. ledger entries).

JOURNAL

RECORDS

LOG

UNCONFIRMED TRANSACTIONS

LEDGER

PRO
CESSIN

G

27

Each node in the network has its own,
potentially imperfect ‘copy’ of the ledger (i.e. a
journal). This means not only that some of the
data held by the node is provisional and partial,
but that it may not always reflect the complete
set of structured, authoritative records as
determined by the consensus mechanism set
out by the protocol.

The goal of a DLT system is to keep these
individual instances (journals) of the
structured record in sync, leading to a
convergence towards a single accepted
set of authoritative records (the ledger).
This enables a group of separate parties
that do not necessarily trust each other

to reach agreement over a shared set of
data without having to rely on a central
authority. Conceptually, the ‘ledger’ should
be regarded as a latent, abstract construct
that is generated by the DLT system as whole
through the constant efforts of synchronising
the individual copies maintained by each full
participant (Figure 3).44

The core of all DLT systems is the organisation
and processing of shared data resulting in
the ledger. A functional DLT system creates
and maintains a ledger in spite of unreliable
participants or adversaries.

Figure 3: Depicting The ‘Ledger’ Concept

Node C

Node D

Node B

Node A Journal CJournal A

Journal D

Journal B

LEDGER
Shared set of

authoritative records

Receive, validate, process and relay data Keep individual journals in sync

28

The ‘Private Key’ Concept

Users create transactions - or, technically
speaking, state transitions in the form of
ledger entries - by putting raw data into a
standardised format, adding a cryptographic
signature to the transaction for authentication
purposes, and then broadcasting it to
other nodes in the network. The signature,
produced by a private key, represents the users’
permission for the DLT system to request a
ledger entry reflecting the transaction.45 A
valid signature provides the cryptographic
assurance to the DLT system that the
transaction initiator has the authorisation to
enact a corresponding ledger entry.

Private keys can be stolen if not
properly secured, allowing the
thieves to engage in transactions

indistinguishable from those of
the true owner

It is important to note that a valid signature
does not automatically provide proof that the
owner of the corresponding private key has
produced the signature. Instead, it provides a
guarantee that a holder of the private key has
initiated the transaction. The use of a private
key provides a strong presumption that a
transaction was authorised. However, private
keys can be stolen by attackers if they are not
properly secured. Storing private keys securely
can be a cumbersome task; key management
is notoriously difficult and requires a certain
level of technical proficiency, which is why it
is often outsourced to third-party custodial
services.46

2.4 ACTORS

A DLT system is composed of actors that
perform various roles. In this context, an actor
is any entity or individual that is either directly
or indirectly interacting with a DLT system.
Actors can be grouped together into four key
categories according to the role they play in
the system (Figure 4).

One entity can take the roles of multiple
actors simultaneously and operate on more
than one layer. Similarly, a specific role can be
performed by multiple actors at the same time.

Transactions In A DLT System

In a DLT system, a transaction is an authorised attempt - cryptographically signed by the
initiator using a private key - to change the state of the accumulated records (i.e. a ‘state
transition’). Transactions generally contain a set of instructions (e.g. issuance of a token,
transfer of a token, update balances, redemption of a token, description of an event).

29

Figure 4: Actor Types Found In DLT Systems

2.4.1 Developers
Developers write and review code that
underlies the technological building blocks
of a DLT system and its connected system(s).
Developers may be professionally employed or
participating as volunteer contributors.

• Protocol: maintaining the core
protocol codebase (or an alternative
implementation).

• Client: building the DLT client47 that
provides an interface to the DLT system.

• Application: designing applications that
run on top of the DLT system platform.

• External systems: creating
infrastructure to enable protocols to
function or interact with each other.

Open-Source Community

ADMINISTRATORS

Consortia

Company

Foundation

PARTICIPANTS

End-User

Lightweight Client

Record Producer

Auditor

DEVELOPERS

External Systems

Application

Client

Core Protocol

GATEWAYS

Issuer

Exchange

Custodian

Oracle

Gatekeeper

Checks And Balances

Ideally, a system of checks and balances should arise from the composition of actors and
roles that ensures that no single party or cartel can take over the system unilaterally.
This in turns ensures the tamper-resistant characteristic of DLT systems.

30

2.4.2 Administrators
Administrators control access to the core
codebase repository and can decide to add,
remove and amend code to change system
rules. Administrators are often considerably
involved in the governance process and may
have absolute control over it.

The nature and role of an administrator can
vary greatly from one system to another.
For instance, closed and permissioned DLT
systems may have a dedicated entity taking
the role of administrator, whereas open,
permissionless systems often have a loosely
connected set of ‘administrators’ in the form
of volunteer core developers rather than a
formal administrator. In the latter case, these
developers do not actually directly control
the codebase; rather, they propose changes
which are ‘ratified’ by users independently (by
choosing to incorporate the proposals in the
software they run).

2.4.3 Gateways
Gateways provide interfaces to the system by
acting as a bridge between the system and the
external world.

• Gatekeeper(s): granting participants
access to the system.

• Oracles: transmitting external data to the
system.

• Custodians: holding assets in custody.

• Exchanges: facilitating purchase/sale of
digital assets.

• Issuers: issuing or redeeming tokens
representing the assets recorded in the
system.

2.4.4 Participants
The network consists of interconnected
participants that communicate by passing
messages among each other.

• Auditors: checking submitted
transactions and records for validity,
reporting invalid records to the
network, and relaying valid transactions
and records. Ability to perform an
independent audit of the system state.
Often called full/fully-validating nodes.48

• Record Producers: producing and
submitting sets of candidate records for
potential inclusion into the ledger. Often
called miners or validators.49

• Lightweight Clients: querying auditors
for data regarding specific transactions;
do not fully validate the system.

• End-users: indirect users of the system
who require a gateway to access the
system (e.g. custodial wallet service).

Actors in a DLT system can take multiple roles
and operate on more than one system layer.
For instance, an entity can take multiple roles
just as one role can be performed by multiple
entities. Every DLT system has a different
composition of actors, roles and entities; the
distribution and repartition of roles across
layers, components, and processes shapes the
properties of the system.

33

SECTION 3:
INTRODUCING THE
FRAMEWORK
This section begins to examine the necessary and sufficient elements which comprise a DLT
system. The aim is to provide flexibility in the analysis and classification of DLT systems.

As shown in Figure 5, a DLT system can be divided into three interdependent core layers:

1. Protocol: set of software-defined rules
that determine how the system operates

2. Network: interconnected actors and
processes that implement the protocol

3. Data: information flowing through the
system that carries a specific meaning in
relationship to the design and functions
the system is intended to play for users

Layers  Components Processes

Figure 5: DLT System Anatomy

Communications
Component

Network
Layer

Transaction
Processing
Component

Network Access

Record Proposal

Transaction
Validation

Data Broadcast

Conflict	Resolution	Rule

Record Validation

Transaction Initiation

Incentivised Transaction
Processing

Transaction Finality
Validation
Component

Genesis
Component

Alteration
Component

Protocol
Layer

Inter-System
Dependencies

Protocol Governance

Codebase Creation

Protocol Change

Rule Initiation

Operations
Component

Journal
Component

Data
Layer

Input

Reference

Programmatically-
executed Transactions Locus of Execution

34

Each layer is composed of one or more
components involved in the creation or
operation of a DLT system. A component is
a logical set of related processes necessary
for the functioning of the system. A process
is a series of actions carried out by actors

to achieve a specific objective or series of
objectives involved in the successful operation
of a component.

The full framework can be found in table
format in Appendix A.

3.1 PROTOCOL LAYER

The protocol layer is the foundation of the
entire DLT system: it defines the set of
formal rules that governs the system and
codifies its architectural design. The protocol
can be considered a set of ‘constitutional’
arrangements agreed upon by all system
participants. The protocol contains two
components:

Figure 6: Protocol Layer

Genesis Component:
Defines the processes of the DLT system at
the time of network launch. It consists of the
initial codebase and architecture specifying
the rules of engagement within the system,
including the first (‘genesis’) record.

Alteration Component:
Sets out how the protocol evolves over time.
It includes a governance aspect (i.e. how
collective decisions are made) as well as an
implementation consideration (i.e. how the
result of those decisions are incorporated).
The alteration component need not be an
explicit part of the protocol; indeed, most DLT
systems move governance and related issues
‘off-chain’.50

PROTOCOL LAYER

Genesis Component

• How the system is linked to other
external systems?

• How is the protocol generated?
• Where are rules defined?

Alteration Component

• How are decision-making and
implementation processes created?

‘On-chain’ Versus ‘Off-chain’

The term ‘off-chain’ refers to anything that occurs outside of the formal boundaries of a
DLT system. This is opposite of ‘on-chain’ which refers to anything that occurs within the
boundaries of the DLT system.

35

3.2 NETWORK LAYER

The network layer is comprised of
interconnected actors that collectively
store, share, and process data. The network
layer is the practical implementation of the
protocol rules, describing how participants
access the system, how data is shared within
the network, how the ledger is updated,
and how participants verify the validity of
transactions and records. It contains three
core components:

Figure 7: Network Layer

Communications Component:
Specifies which actors can become
participants and access the network (open vs.
closed), how data is shared (public vs. private)
and who has the authorisation to initiate
transactions (unrestricted vs. restricted).

Transaction Processing Component:
A set of processes that specifies the
mechanism of updating the shared set of
authoritative records: (i) which participants
have the right to update the the shared set
of authoritative records (permissionless vs.
permissioned) and (ii) how participants reach
agreement over implementing these updates.

Validation Component:
Sets out the actions undertaken by each
auditor to verify whether transactions and
records conform to protocol rules, i.e. are valid
and non-conflicting. This is a crucial aspect of
a DLT system that provides nodes with the
ability to verify independently what occurs
within the system.

There is a popular belief that records stored on
a DLT system are ‘immutable’ and can never
be reversed. However, that is not necessarily
the case: DLT systems provide different
degrees of transaction finality depending
on the system design. This means that a
confirmed (and executed) transaction may
be subject to reversal. Section 5.2.3 provides
a more detailed overview of the transaction
finality process.

NETWORK LAYER

Communications Component

• How can the network be accessed?
• How is data shared?

Transaction Processing Component

• How are transactions processed?
• What conflict resolution

mechanism exist?

Validation Component

• How are transactions incorporated
in the set of authoritative records?

36

3.3 DATA LAYER

The data layer refers to the information
processed and stored by the DLT system in
the form of records. The data layer is at the
core of the functionality the system delivers.
A DLT system exists for the express purpose
of creating a shared data structure – the
ledger – that has a set of crucial features,
the most important of which are usually
persistence, transparency, standardisation51,
and censorship resistance. Within a set
of information states, functions, property
rights, and relations defined by a DLT system
protocol, this ledger provides an authoritative
version of records at a moment in time that is
both shared amongst the users of the system
and updated over time as users engage with
one another via the system.

The data layer consists of two components:

Figure 8 - Data Layer

Operations Component:
The processes which govern how (and which)
data is used in the creation of new records,
modification of existing records, and the
execution of code. This may also include ‘smart
contracts’.

Journal Component:
Concerns the content of the stored records (i.e.
what data within records is being referenced,
or ‘what is in the blocks?’).

DATA LAYER

Operations Component

• What operations are performed on
data to produce an emergent ledger?

Journal

• What is the recorded data referencing?

Censorship Resistance

Censorship resistance is a term commonly used in the context of DLT which generally
refers to the inability of a single party or cartel to unilaterally perform any of the following:

1. Change rules of the system

2. Block or censor transactions

3. Seize accounts and/or freeze balances

37

Reference/Value Linking
The nature of the records, and the value(s) to
which they point, are important aspects of the
journal component. Records may reference
an internal object (e.g. a native token such
as bitcoin/BTC or ether/ETH) or something
external to the system (e.g. a physical item
tracked across a supply chain).

DLT systems can only enforce records
that reference endogenous (internal)
objects

The distinction between endogenous (internal)
and exogenous (external) objects is crucial in
illustrating the boundaries of a DLT system:

it only has the ability to automatically and
independently enforce transactions that
point to internal resources endogenous to
the system. As soon as the records reference
exogenous objects, enforcement becomes
dependent on external agents.

In such cases, enforcement relies on existing
legal and socio-economic structures or
other arrangements outside of the DLT
system. Some architectures (e.g. Bitcoin) are
incapable of conforming to the decisions of
external agents (such as courts) without the
cooperation of the participants who have
control over the specific subset of assets at
issue - a concept referred to as ‘sovereignty’.
Native, endogenous and exogenous objects
are discussed in detail in Section 4.2.2.

3.4 PUTTING IT ALL TOGETHER

The proposed conceptual framework breaks a
DLT system down intro three essential layers:

• The protocol layer defines, manages, and
updates the global ruleset that governs
the system;

• The network layer implements the
ruleset and performs the steps required
to reach system-wide consensus; and

• The data layer specifies the nature
and meaning of the data over which
agreement is reached.

Figure 9 summarises the components and
processes pertaining to each layer of a
functioning DLT system.

Programmatically-executed Transactions (Smart Contracts)

Programmatically-executed transactions (PETs) are computer scripts that, when triggered
by a particular message, are executed by the system. When the code is capable of operating
as all parties intend, the deterministic nature of the execution reduces the level of trust
required for individual participants to interact with each other.

For example, these scripts can replace fiduciary relationships, such as custody and escrow,
with code. These are often called ‘smart contracts’, but are not autonomous or adaptive
(‘smart’), nor contracts in a legal sense. Rather, they can be evidence of a contract, or a
technological means of implementing a contract or agreement.

38

Figure 9 - DLT Systems Framework Overview

The network comes as a direct result from the
implementation of the protocol rules. The network
consists of an interconnected group of actors and
processes that adhere to a technology standard
(protocol) and actively participate in the exchange
of data and information.

COMMUNICATIONS COMPONENT

PROCESS

01
NETWORK
 ACCESS
Determines the access
points to the DLT system.
Access to the system
can be restricted or
unrestricted.

CONFLICT
RESOLUTION RULE
Determines how disputes
regarding competing or
conflicting	versions	of	
valid records are being
resolved and depends on
the consensus mechanism
in use.

TRANSACTION PROCESSING COMPONENT

PROCESS

05

PROCESS

04
- RECORD

PROPOSAL
Refers to a record

producer selecting a
set	of	unconfirmed	

transactions and
bundling them together

to form a candidate
record (e.g. in the form

of a candidate block)

PROCESS

02

PROCESS

06

DATA
BROADCAST

Refers to the
transmitting and

relaying data across
the network to

connected nodes

INCENTIVISED TX
PROCESSING

Refers to the explicit
and implicit incentives
present in the system

to encourage record
producers to engage in
transaction processing

by creating and
proposing records.

PROCESS

03
TX INITIATION
Contains a set of
instructions that will
be executed once the
transaction has been
added to the ledger.
Generating a transaction
can either be unrestricted
or restricted.

NETWORK LAYER
The	protocol	layer	defines,	manages	and	updates	
the global ruleset that governs the system.

INTER-SYSTEM
DEPENDENCIES
Defines	the	boundaries	
of the system that is
being investigated. It
determines whether
the system can persist
on its own (e.g. self-
sufficient)	or	whether	it	
is dependent on another
system to properly
function (e.g. dependent).

RULE INITIATION
Refers	to	defining	the	
ruleset that the DLT
system will operate
upon. This process can be
performed by different
actors	and	is	specific	to	a	
particular DLT system.

PROTOCOL
CHANGE
Refers to the means
of implementing the
proposed changes o the
protocol rules

CODEBASE
CREATION

The act of developing
an adequate codebase

as the foundation
of the DLT system.

The codebase can be
based on an existing

framework or written
from scratch.

PROTOCOL
GOVERNANCE
Refers to the set

of decision-making
processes required to

alter the protocol in
an orderly and

legitimate manner.

GENESIS COMPONENT

ALTERATION COMPONENT

PROCESS

01

PROCESS

03

PROCESS

05

PROCESS

02

PROCESS

04

PROTOCOL LAYER

39

RECORD
VALIDATION
Verifies	whether	a	
candidate record
proposed by a
record producer is
valid according to
protocol rules.

VALIDATION COMPONENT

PROCESS

08

PROCESS

09

PROCESS

07
TRANSACTION

VALIDATION
Consists in verifying

whether an individual
transaction complies

with the protocol rules
before relaying it to

other actors.

TRANSACTION
FINALITY

Refers to the
transition period

between provisional
settlement and

permanent settlement
for	confirmed	records.

INPUT
Refers to the source or
method of acquiring data
for the DLT system

LOCUS OF
EXECUTION
Determines where
computations such as
automated executables
(e.g. smart contracts) are
being executed (on- vs.
off-chain).

PROGRAMMATI-
CALLY-EXECUTABLE

TRANSACTIONS
Changes in the data

layer as a result of code-
directed events that

are conditional on the
occurrence of some state
of affairs that is captured

on the ledger.

REFERENCE
Refers to what the

data stored in the
system is pointing at

(internal, external, and/
or self-referential

JOURNAL COMPONENT

PROCESS

01

PROCESS

03

PROCESS

02

PROCESS

04

Together, the protocol layer and network layer un-
derwrite the construction of the data layer which
is assembled over time as transactions are written
into the ledger by the activities of participants
using the DLT system.

OPERATIONS COMPONENT

DATA LAYER

41

SECTION 4: SYSTEM
INTERACTIONS

4.1 WITHIN THE SYSTEM BOUNDARIES

4.1.1 Layer Interdependencies
DLT systems consist of three layers that are
interdependent in the sense that the ‘lower’
layers of the system make the ‘higher’ levels
possible. The ordering is not spatial, but
rather reflects conceptual and functional
dependencies (see Figure 2 in Section 2.3).

The protocol layer defines the rule set
governing the operations of the network of
interconnected participants. The protocol-
governed network layer, in turn, hosts the data
layer that records the time-ordered entries
and modifications to the ledger.

A protocol is just a piece of software which
by itself is inert. A protocol is ‘brought to
life’ when it is implemented by a network. A
network is a system of independent servers
and storage that participate in protocol-
defined operations. Unlike many traditional IT
architectures, where the servers and storage
are all owned, operated, and maintained
by single corporate or government entity,
a DLT network involves a collection of
heterogeneous participants who do not
necessarily know or trust one another ex ante
but who contribute resources to the network

in exchange for value gained from participating
in the DLT system.

The protocol and network layers, in turn,
enable the construction and maintenance
of the data layer: a shared database created
by multi-party consensus and having special
properties such as tamper resistance (see the
five key attributes of a DLT system, listed in
Section 2.2).

4.1.2 Layer Hierarchy
It is important to assess the relationship
between the layers, and understand how
these impact each other, when considering the
resilience, robustness and tamper resistance
of a DLT system (Figure 10).

42

Figure 10: Layer Impact Hierarchy

The network can impact the data layer as
it processes transactions: colluding record
producers can decide to censor arbitrary
data by ignoring and refusing to relay
corresponding transactions (i.e. not adding
them to records). This means that despite the
data layer being ostensibly permissionless
(allowing anyone to build applications on top
of the DLT system), it runs the risk of being
censored or manipulated by colluding record
producers.
The protocol layer can impact both the
network and the data layer. Since the protocol
specifies the rules under which the system
operates, a change in rules can override
decisions taken by record producers at
the network layer during the transaction
processing process. Moreover, modifying
protocol rules can change the semantics
of processed data and override previous
configurations at the data layer.52

Actions and decisions at the
network and data layers
can always be overridden by the
protocol layer

It follows that whoever has control over the
protocol layer has the ability to influence
directly both the network and the data layer.
Decisions taken at the network layer generally
only impact the data layer, but in certain cases
either layer can be used to coordinate protocol
changes across a network (e.g. Bitcoin’s
BIP signaling process; Decred’s on-chain
governance voting model).53 This means that a
system truly resilient to external interference
needs to have sufficient decentralization at
both the protocol layer and the network layer
in order to avoid single-party censorship
and control. For example, particular blocks
or transactions can be ‘blacklisted’ at the
protocol level. A decentralised network layer
on top of a centralised protocol layer is always

DATA

NETWORK

PROTOCOL

Transaction
processing can

censor/reverse data

 Changes to
protocol rules can

overrule transaction
processing decisions

Changes to protocol rules
can overrule data semantics

43

susceptible to arbitrary rule changes that
override consensus decisions taken by record
producers.54

4.1.3 Trade-offs: There Is No
‘One Size Fits All’
Different objectives require different design
choices. Design configurations at one layer
of a DLT system can impact other layers or
components and lead to different system
characteristics, imposing a trade-off of costs
and benefits. Every system makes these
trade-offs in accordance with their objectives
and their security, trust, and threat models. A
system may favour a specific property, but that
choice will inevitably come at the expense of
another. For instance, the presence of trust in
the system (e.g. identified, regulated entities in
a closed DLT system) allows for a more flexible
design approach than a DLT system built to
minimise the trust requirement between
participants (e.g. Bitcoin).

Early DLT systems put particular emphasis
on keeping all aspects of their system
‘decentralised’, so as to improve the networks’
censorship resistance. This came at significant
cost: inefficient redundancy, inherent scaling
limitations, low throughput, slow confirmation
speed, high energy costs, and poor user
experience, to name a few. Subsequent DLT
systems have sought to address some of these
issues, but these design choices come at the
expense of other system properties, or an
increase in the system’s centralisation.55

Each design decision involves a
complex set of trade-offs

With current technology, trade-offs most
frequently revolve around the same set of
properties (e.g. decentralization, validation
speed, security, actor incentivisation,
complexity, throughput, trust requirements,
network size). The decentralization/performance
trade-off has been the most discussed:
generally, the more centralised the DLT
system, the faster, cheaper, and more
efficiently it runs.

Use case requirements should
dictate design choices and
acceptable trade-offs

It is rare for a design choice to strictly
dominate another; generally, one cannot get
all the benefits without any of the downsides.
Hence, one should be aware of the trade-
offs involved when analysing specific design
decisions, and carefully evaluate whether the
resulting trade-offs are acceptable. Ultimately,
a DLT system is designed to serve a specific
purpose: that purpose should dictate design
choices and acceptable trade-offs. Figure 23
in Section 6.2.5 presents an overview of some
common design choices that have an impact on
other system properties.

44

4.1.4 A Note On
‘Decentralization’
‘Decentralization’, one of the key buzzwords
in the DLT ecosystem, is often mistaken as an
end in itself rather than being a means to an
end. It is also surprisingly ill-defined given its
importance in the many discussions about DLT
applications.56

A systems theory approach can view
decentralization as the absence of a privileged
party, or, conversely, the ability for a
participant to choose the parties it trusts or
engages with. Under this view, a system is
centralised if there exists a distinct entity (or
collection of entities), at any layer, with which
an actor must interact. The system is fully
decentralised if an arbitrary number of entities
can be feasibly ignored or bypassed. However,
this does not mean - nor guarantee - a dilution
of power.

One aspect of decentralization in the context
of DLT systems, as defined by Buterin
(2017), is that the data structures that are
created through user engagement within the
platform are distributed across many different
machines under the control of participants
who do not necessarily know or trust one
another.57 However, this description over-
emphasises the replication of data to the
exclusion of other critical elements.

Yet another view quantifies decentralization
as the number of entities that must be
compromised in order to prevent the system
(or any subsystem) from operating as intended.
In practice, however, measuring this number
- or comparing it across different systems - is
very difficult.58

Across all definitions for ‘decentralization’, the
recurring theme is whether the system has
processes and institutions which allow free

and open participation and encourage vibrant
debate, rather than relegating decision-making
or system management to a fixed set of
entities.

‘Decentralization’ in a DLT
system is not a binary property:
it is the accumulation of
behaviours at multiple layers

Consequently, given that a DLT system
consists of multiple processes and subsystems,
‘decentralization’ of a DLT system is not
a simple binary property. The degree of
centralisation reflects the accumulation of
interacting decisions and tradeoffs at various
layers. In practice, it is more useful to identify
the contributing factors to centralisation and
decentralization across a spectrum, as pure
decentralization is a seldom-achieved ideal at
both the hardware and software levels.

A DLT system can have different
degrees of decentralization at
each of its layers

For instance, the data layer may be
decentralised (i.e. permissionless application
development) while the network and
protocol layer are controlled by a single
party. Or the network and data layers could
be decentralised yet the protocol layer
centralised. Even further, there could be
differences within a particular layer: for
instance, record proposal and network
access processes in the network layer could
be performed by a single authority, while
transaction validation and record validation
could be decentralised to a certain extent.

45

In order to determine the potential source of
authority within the system (and ultimately
over the stored records), attention has to be
paid to the hierarchy. Thus, a DLT system
cannot be considered either ‘decentralised’
or ‘centralised’ without first assessing where
and how the power dynamics can potentially
play out within (and between) each layer
under various scenarios. These dynamics can
be fluid and evolve over time, which further
complicates the task of forming a definitive
assessment of the system. Most DLT systems
have varying degrees of decentralization at
different layers; some systems deliberately
choose to centralise certain aspects so as to
better meet specific objectives.

Open, public, and permissionless DLT systems
such as Bitcoin strive for decentralization
to achieve censorship resistance: no single
party can shut down the system, manipulate
the ledger, or censor transactions. This also
enhances resilience and enables the system as
a whole to survive shocks, including the loss of
network participants.61

It is important to highlight that design choices
which centralise a DLT system using current
technology impact not only censorship
resistance, but other factors such as security,
performance (or validation speed), and
overhead (complexity of the information): as
previously discussed, changing any component
of a DLT system imposes trade-offs.

Figure 11 illustrates some of the trade-offs
between a decentralised and centralised
system. Some DLT systems may be more
centralised in certain aspects to emphasise
a specific property deemed desirable within
the system. Given that there may be instances
where the centralisation of a process would be
desirable, it is not reasonable - nor feasible in
practice - to require that all layers of a system
be fully decentralised in order for it to be
classified as a DLT.

Clarifying Distributed And Decentralised Processes

A decentralised process should not to be confused with a distributed process. When
storage or computation is distributed, it is divided into parts and occurs across multiple
servers or nodes (‘parallelised’), offering efficiencies and higher resilience over using just
a single node. A distributed process may still rely on a central coordinator to act as an
authoritative source of records.

When a process is decentralized, multiple nodes are again in use - but in this case, the
process is typically replicated across the various nodes, which are generally controlled by
different entities.59 This means that each node is managing the same storage or executing
the same program as all of the others, redundantly.

This replication requirement is at the core of some DLT systems’ difficulty scaling to
accommodate new users and growth in transaction volume, as the capabilities of the
network are limited to that of its weakest node. If a network attempts to push past this limit,
weak nodes will be unable to remain synchronised and will drop out of the network, thus
leading to increasing centralisation.60

46

Figure 11: One Choice At The Expense Of Others

For instance, prioritising the validation speed
of records and transactions may come at the
expense of the complexity and the size of
the ledger, as the functions (recordkeeping,
smart-contracting) and record sizes might be
reduced to a minimum. It may also decrease
the overall security, or tamper-resistance of
the system, if the network is centralised in
order to increase validation speed. Similarly,
choosing a Proof-of-Stake (PoS)62 consensus
mechanism over Proof-of-Work (PoW)63 - in
order to improve speed and reduce energy
consumption - may impact actors’ incentives
and thus affect the security and tamper-
resistance of the system.

Alternatively, aiming at increasing the security
of the system may hinder the validation speed,
reduce the allowed transaction size due to the
space necessary for encrypting transactions,
and discourage actor participation, as the
costs of running fully-validating nodes might
become prohibitively expensive over time.
With such an objective, the complexity of
the technology might also be limited as a
collateral effect, because reducing complexity
would help improve speed and record size.
Finally, dynamic membership networks that
allow anyone to join or leave at will can grow
particularly large in network size but will result
in higher confirmation times due to latency
issues.

All choices regarding centralisation or decentralization of
elements create both costs and benefits for DLT systems

Fully Decentralised
System

High censorship resistance

High tamper resistance Low tamper resistance

Low trust requirement High trust requirement

Long confirmation time Low confirmation time

Low throughput capacity High throughput capacity

High overhead Low overhead

Highly inefficient
use of resources

Highly efficient
use of resources

Low censorship resistance

Fully Centralised
System

 More desirable Less desirable

47

4.2 BEYOND THE SYSTEM BOUNDARIES

4.2.1 Systems Perspective
DLT systems are seldom self-sufficient. Instead, they are often in constant interaction with
other systems. Figure 12 depicts the different types of systems configurations seen in DLT
deployments.

Figure 12: A Systems Perspective

Self-sufficient Systems

A self-sufficient DLT system has all of the
components necessary for its continued
operation incorporated into its basic
architecture, and the system itself is sufficient
to enable the core functionality. Such systems
do not depend on other systems for their
operation, apart from the wider Internet
infrastructure (e.g. reliance on TCP/IP or
similar protocols and the underlying network
infrastructure). Examples are open systems
such as the Bitcoin and Ethereum main nets
as well as permissioned systems such as the
NASDAQ Linq blockchain.

Depending on the nature of the records
(e.g. exogenous/external), a system may
require inputs from external sources. This
requirement alone is insufficient to preclude
classifying a DLT system as self-sufficient. For
example, a DLT system representing asset
transfers in a supply chain should be able to
persist and function even if external data is not
received, although it will depend on gateways
or interfaces to supply data pertaining to the
creation or physical transfer of assets. Section
4.2.2 elaborates on the relationship between
self-sufficient and external systems.

Self-sufficient System Dependent System Interfacing System External System

System
Gateway

Ethereum dApps

Other DLT System

Proprietary Database

48

Dependent Systems

A dependent DLT system must interface
with another DLT system in order to function
properly. On its own, such a system is not self-
sufficient. Examples of dependent systems are
Omni and Counterparty which operate on top
of Bitcoin as well as the dApps (‘decentralised
applications’) running on Ethereum. Omni,
for instance, is wholly dependent on Bitcoin,
as it is a protocol which tracks assets that
exist as arbitrary data within certain Bitcoin
transactions.64 Omni borrows its security and
finality properties from Bitcoin while adding
semantic content to transactions; it does not
exist outside of Bitcoin.

Interfacing Systems

An interfacing DLT system is a system that
‘opportunistically’ employs core functionality
provided by another DLT system but which
could easily be reconfigured to use another
‘base-layer’ DLT system if needed/desired.
This means that if one system ceased to
exist, the interfacing system would be able
to survive for at least some time on its own
and may be able to continue operating by
exploiting the functions of an alternative
‘base layer’ DLT. The long-term survival of an
interfacing system depends on the continued
existence of at least one ‘base-layer’ DLT
system, and a collapse of a base-layer system
may cause significant disruption to the
interfacing system. Examples include ‘layer-2’
solutions such as the Lightning Network
based on Bitcoin and the Raiden Network
based on Ethereum.65 These systems are
commonly designed to improve the scalability
and functionality of the base layer, without
compromising network decentralization or
security.

External Systems

An external system is any other system that
is yoked to, or coupled with, a ‘focal’ DLT
system. The external system is architecturally
unrelated to, or distinct from, the focal DLT
system. An external system can be connected
to the system in question via a gateway (either
via a direct or indirect interface). This could
be other DLT systems as well as proprietary
databases or services (e.g. wallets, exchanges,
or applications). An example of a direct system
gateway would be an atomic swap protocol,
whereas an indirect system gateway would
involve a trusted intermediary to transfer
tokens from a proprietary database to the
system, or between two incompatible DLT
systems.

4.2.2 Exogenous And
Endogenous References
Records may reference endogenous data
and/or exogenous data. Endogenous data is
information that comes exclusively from within
the core system. Exogenous data refers to
data that tracks information about the same
entity or a relationship that is external to
the DLT system. Exogenous entries may be
representations of assets (monetary or non-
monetary), or other information. An example
of endogenous data would be a record of
bitcoin units within the Bitcoin system, while
an example of exogenous data could be a
record tracking luxury handbags on a global
supply chain.

49

Figure 13: Gateways Connect A DLT System To Exogenous Objects

More generally, if the data in a journal only
refers to facts about user actions on the
platform, or facts about the past history of
the DLT system itself, then the reference type
is endogenous. If, on the other hand, the data
refers to some state in the world external

to the DLT system or the users interaction
with the DLT system, than the reference
type is exogenous. Figure 13 provides a
representation of the pathways for data
interaction between the DLT system and
external platforms.

RECORD
CONTENT

EXTERNAL
SYSTEMS

DLT
SYSTEM

Non-monetary

DLT Systems Apps Enterprise Databases Other

Information Monetary

GATEWAYS: INTERFACES TO THE DLT SYSTEM

Exogenous
References

Endogenous
References

LEDGER
SHARED SET OF AUTHORITATIVE RECORDS

DATA LAYER

NETWORK LAYER

PROTOCOL LAYER

50

The distinction between exogenous and
endogenous data may seem superficial, but
it is not. Bitcoins, for example, only exist
as data records within the Bitcoin DLT
system. The only way to change its state is
to change the data record within the Bitcoin
system. Handbags, stock prices, or weather
readings are all examples of things that exist
independent of the DLT system, and whose
state can change without altering records
within the DLT system that tracks them.

Linking a DLT with an external system requires
gateways to act as an interface: oracles bridge
the gap between the DLT system and external
systems by serving as a source of information.
In the case of a supply chain, this could be
RFID tags attached to the luxury goods and
scanned by machines at each intermittent
station. Other external systems (e.g. other
DLT systems, apps, proprietary enterprise
databases, etc.) may communicate their own
recorded information with the original DLT
system, providing data that become part of it.

Interfacing with an external
source of data requires a
gateway; this undermines
the ability of a DLT system to
automatically and independently
enforce decisions

Using the example of a supply chain, a DLT
system may properly record the movement
of RFID tags, but those devices may not
necessarily be attached to (or embedded
in) the objects they are taken to represent:
one could imagine a shipping crate filled with
nothing but RFID tags that could fool the
DLT system into accepting a false transaction
representing a large transfer of physical assets.
Similarly, some number of RFID tags may be
defective, and transfers would not necessarily
be recorded.

A DLT system only has effective enforcement
capabilities (i.e. the ability to automatically
execute decisions) with regards to endogenous
data (i.e. internal references that exclusively
exist within the boundaries of the system).
Records referencing exogenous resources,
facts, or events are provided by external
agents who must be entrusted through
non-system means to report honestly and/
or enforce decisions. In the prior supply chain
example, parties with a shared interest in
properly recording the transaction would need
to develop systems to prevent or ameliorate
any malfunctions, such as coupling the RFID
interface with a physical inspection.

A DLT system can only
independently and autonomously
enforce decisions that involve
endogenous record references

A Note On Native Assets

A DLT system’s native assets are the primary digital asset(s), if any, specified in the protocol.
They are by definition endogenous to the system. These assets are typically used by the
protocol to regulate record production, pay transaction fees on the network, conduct
‘monetary policy’, or align incentives. For example, Ethereum’s ETH token is its native asset,
although the Ethereum blockchain also hosts a wide range of other user-defined tokens
(using the ERC20 standard, for example). Native assets generally play a system-critical
role in the functioning of the system as they are an essential component of the complex
economic incentive design.

51

What can be written to the journal are
ultimately determined by the protocol. This
doesn’t mean, however, that the protocol
necessarily explicitly lays out all of the data
types that can be recorded by the DLT
system. For example, a DLT system capable of
supporting a Turing-complete smart contract
provides its users with the flexibility to define
novel data types for the smart contracts that
they create.
Finally, records may also reference data
that carry aspects of both endogenous and
exogenous nature, in which case they are
referred to as ‘hybrid’. An example would be
a security directly issued on a DLT system
(endogenous because it exclusively exists within
the system boundaries) that is dependent on
off-chain cash flows (exogenous because it
requires a connection to an external system).
In the case of hybrid references, it is more
difficult to determine the exact enforcement
capabilities of the DLT system because the
relationship between both aspects may vary

from one record to another. Hybrid references
are a fast-developing subfield as corporations
are increasingly attempting to convert existing
assets on to a DLT system. As such, it may
require further gradation in the future.
Figure 14 summarises the three types of
references that records in a DLT system can
point to. Native assets are fully endogenous
as they are entirely contained within the
boundaries of the system and do not require
a formal connection to the external world.
In contrast, fully exogenous records are
exclusively referencing external data, which
necessitates the existence of a gateway to (a)
receive information and (b) enforce decisions
outside the DLT system. Exogenous data is
meaningless within the system without an
attached link bridging to the material world.
In contrast, hybrid records reference data
which shares both endogenous and exogenous
characteristics. As a result, enforcement is to
some extent dependent on gateways.

Figure 14: Three Types Of References

Internal

ENFORCEMENT
External

Hybrid

BCAP tokens
represent an
interest in a Limited
Partnership (LP)
in a fund set up by
venture capital firm
Blockchain Capital

RMG tokens
are a digital
representation of
physical gold held in
custody. They confer
ownership rights to
holders and can be
traded.

Endogenous tokens that exist
exclusively within the system
boundaries, but have a link to external
systems (exogenous). They can be an
instrument of their own (e.g. derivative),
but are dependent on off-chain
processes. Enforcement is thus to some
extent dependent on gateways.

Fully exogenous

The IBM/Maersk
DLT system uses
accounting tokens to
track items in global
supply chains.

Ownership records
of tech stocks are
represented by
accounting tokens
in the NASDAQ Linq
DLT system.

Non-tradeable ‘accounting tokens’ that
are exclusively used for recordkeeping
purposes (i.e. tracking exogenous
objects, events, and facts). Enforcement
is entirely dependent on gateways and
off-chain processes.

Fully endogenous

Tokens that are fully contained within
the boundaries of the system. They
are generally used to regulate record
creation, pay transaction fees and align
incentives. Enforcement is entirely
independent from off-chain processes.

Bitcoin (BTC) and
Ether (ETH) are
native assets that
serve as an economic
coordination
mechanism for
aligning actor
interests through
economic incentive
design.

Golem (GNT) and
Augur (REP) are
user-generated
tokens that are used
to mediate their
respective dApp
subsystem built on
Ethereum.

53

SECTION 5: A DEEPER
DIVE INTO THE
FRAMEWORK
In this section we identify commonly adopted
configurations of processes within the
protocol, network, and data layers of the
framework we introduced in Section 3. We
apply these configurations to distinguish

between specific DLT systems in Section 6:
highlighting differences and similarities.
This section assumes that the reader has
familiarised themselves with the definitions,
concepts, and terminology we introduced in
preceding sections.

5.1 PROTOCOL LAYER

The protocol layer defines, manages and
updates the global ruleset that governs the
system.

5.1.1 Genesis Component
The genesis component of the protocol layer
refers to the processes required to undertake
and complete before launching the DLT
system.

Inter-System Dependencies

Inter-system dependencies defines the
boundaries of the system that is being
investigated. It determines whether the
system can persist on its own (i.e. self-sufficient)
or whether it is dependent on another system
to properly function (e.g. dependent). Section
4.2 discusses possible configurations in
greater detail.

Table 1: Inter-System Dependencies

System type Description

Self-sufficient	
system

Able to operate on its own - not dependent on another system.

Dependent system Unable to operate on its own - relies on another system to function.

Interfacing system
Able to operate temporarily on its own - long-term survival closely reliant on another
system

External system
Self-sufficient system that interacts with a DLT system (generally acting as data
source/recipient)

Codebase Creation

Codebase creation is the act of developing
an adequate codebase as the foundation of
the DLT system. The codebase can be based

on an existing framework or written from
scratch. Popular existing frameworks are
open-source codebases from permissionless
DLT systems (primarily Bitcoin and Ethereum)

54

and permissioned DLT systems such as
Hyperledger suite, Corda, Chain, and
Multichain. There are also closed-source

codebases for proprietary platforms available
provided by companies such as Digital Asset,
Clearmatics and SETL.

Table 2: Codebase Creation Configurations

Lens Configurations Description

Codebase

Existing framework
Many DLT systems share similar codebases that are based on
existing frameworks

New/from scratch
Code is substantially different from existing frameworks,
either in terms of purpose, coding language and/or
architecture

Openness

Open-source Can be forked: network can be replicated

Closed-source
The codebase is developed by a private company or
consortium for enterprise or consumer use

Rule Initiation

Rule initiation refers to defining the ruleset
upon which the DLT system will operate. This

process can be performed by different actors
and is specific to a particular DLT system.

Table 3: Rule Initiation Configurations

Lens Configurations Description

Administrator

Anonymous
A founder whose real identity remains hidden by operating
under a pseudonym.

Volunteer
A set of people that collaborate on a project on a voluntary
basis; often loosely connected with no formal governance
structure.

Consortium
A group of private and/or public institutions that formally join
forces to collaboratively develop and manage a project.

Foundation
A non-profit foundation coordinates and oversees activities;
formally registered under a legal structure that may impose
fiduciary obligations.

Company
The project is initiated (and generally managed) by a
single corporation or joint venture entity with designated
management.

Codebase
Maintainer

Open-source community
Everyone has the right to propose changes to the codebase; a
formal decision-making process may or may not be in place.

Company
Control over the codebase is exclusively exercised by a
company.

Consortium
An organised group of stakeholders is in charge of collectively
maintaining the codebase.

Means

Formal protocol
specification

The protocol is formally specified - generally in the form
of a specific documentation - and followed by all client
implementations.

Reference client
The reference client dictates the rules of the protocol -
generally in the absence of a formal protocol specification.66

55

5.1.2 Alteration Component
The alteration component refers to the
processes in place which enable modification
of the protocol rules. Protocol alterations can
include the removal of technical errors (bugs),
improvement of security and functionality of
the system, and extension or restriction of
existing protocol rules.

Protocol Governance

Protocol governance refers to the set of
decision-making processes which enable
alteration of the protocol in an orderly67 and
legitimate68 manner. This is a subset of broader

project governance, which encompasses the
full set of processes and norms which guide
and define coordination and action, but which
may not be embedded formally within the DLT
system.69

An essential element of any proposed
protocol alteration is the means by which it is
adopted and ratified - or, in other words, how
legitimacy is conferred upon the proposal by
the network’s participants. Because legitimacy
in this context is a social concept, we find it
appropriate to identify some of the possible
‘socio-political’ relationships found in DLT
systems.

Table 4: Protocol Governance Configurations

Configurations Description

Anarchic
Protocol change proposals are provided and approved on a cooperative and
voluntary basis, due to absence of a central authority.70 Contentious proposals
run the risk of fracturing the network, resulting in a permanent split.

Dictatorship
Decisions over changes on protocol rules are taken by a single entity (e.g.
person, company, mining pool).

Hierarchical
Individuals have the ability to propose changes, but recognised leadership (e.g.
Foundation or a committee in control of a key code repository) all but ensures
protocol changes will rely on the consent of the leaders.

Federation
A group of agents vote on protocol alterations, linked by a horizontal
relationship scheme. Members of a Federation need not have equal voice/
power, nor even necessarily known to each other.71

Plutocratic

Protocol change proposals are voted on, with each vote weighted by the
importance of each proposer or voter. In the plutocratic case, substantial
weight is given to a minority of voters (e.g. due to high ownership share of the
weighting asset) .72

Democratic
Protocol change proposals are voted on, with each vote weighted by the
importance of each proposer or voter. In the democratic case, a minority of
voters do not have substantial weight in vote outcomes.

Protocol governance takes many forms
and is often only implicitly defined. DLT
systems considered to have anarchic (or
loose) governance do not have a foundation,
corporation, or ‘benevolent dictator’ to
guide decision-making. These often rely
on governance norms, processes, and
procedures inherited from the free / open
source software community. Examples include

informal processes such as discussions among
developers on mailing lists and at conferences.
In a dictatorial setting, these same processes
may exist, but with an acknowledged leader
empowered to make unilateral decisions.
In some cases, protocol governance does not
fit neatly into only one category. For example,
the EOS blockchain operates as a federation of
Block Producers, which are selected by user/

56

custodian votes (weighted by token holdings).
This arrangement implicitly divides the
network into sets of ‘first-class’ and ‘second-
class’ nodes, giving it elements of hierarchy,
federation, and democracy/plutocracy.73
Accordingly, each category should be seen as
a mechanism, rather than the mechanism, of
protocol governance for a given DLT system;
each system will exhibit one among countless
permutations of these mechanisms, and the
relative importance of each mechanism may
change over time.

It is also important to realise that the ‘anarchic’
mode of governance will always exist as a
governance mechanism for any open-source
project, as distinct from closed-source and

proprietary projects. This is because a DLT
system based on an open-source codebase
operates with the cooperation of its users and
record producers. In the face of an attempt
to force a protocol change on users, they will
always have the option of forking the code
to reverse or ignore it. This will result in the
creation of a distinct DLT system, albeit one
with a shared history up until the moment of
divergence (a ‘hard fork’ leading to a network
split).74 A consequence of this is that DLT
systems can, in some circumstances, be
regarded as decentralised with respect to
governance, even when there is a single ‘core’
code repository.75 In contrast, proprietary
systems may not allow for this kind of user-
driven ‘exit’.76

Protocol Change

The protocol change process considers
the entities who may propose protocol
changes, the means by which protocol
changes are funded, and how the changes are
implemented. Implementation can involve

different mechanisms such as providing
updates to specific node software, forced
upgrades to all nodes running a particular
instance of the software, and the blacklisting
of nodes running older versions of the
software.

On-chain Governance

On-chain governance refers to the incorporation of protocol governance features within
the data layer of the DLT system. The intent is to formalise governance, thereby enhancing
legitimacy and avoiding network splits due to contentious or uncoordinated protocol
changes. A diverse set of on-chain voting schemes have been developed for DLT systems,
ranging from barometers of community sentiment to enforceable referenda. However, on-
chain governance features are generally only a supplement to other forms of governance.77

57

Table 5: Protocol Change Configurations

Lens Configurations Description

Proposal

Open alteration Open systems allow anyone to propose changes.

Filtered alteration

Proposals are conditional on some requirement of the
system. For example, Dash and Tezos allow anyone to
propose changes, conditional on the approval of token
holders. Other systems may require a centralised initial
submission in which proposals undergo curation based on
merit or strategic objectives.

Authorised
alteration

Corporations or consortia may restrict who can propose
changes.

Funding

Altruist

Some protocols rely on volunteer efforts, while others (e.g.
Monero) may fund development work through voluntary
charitable contributions by token holders or other
interested parties.

Supported
development

Foundations, such as the Ethereum Foundation, may fund
development work through grants. Although this helps
ensure coherence and developer accountability, it may also
have a centralising effect on the protocol layer. Additionally,
the Foundation itself may be vulnerable to capture by
self-interested parties or state actors. Grants may be
awarded by following a specific process determined by the
Foundation.

Network-funded
development

Development work is supported through the issuance of
new tokens. The extent of this issuance may be determined
by the network offering a bounty for meeting development
objectives, or may be defined by developers themselves,
subject to network approval.

Corporate-
sponsored
development

Corporations or consortia fund development through the
sponsoring organisation(s).

Implementation

Run client software
of choice

Participants implement changes individually by choosing
to run a specific instance of a client software. No action
from an administrator is required, but this may result in
network splits from contentious or uncoordinated changes.
This mode tends to reduce developer or record producer
control of the governance process.

Pushed to clients

Changes are implemented by pushing updates directly
to clients - generally launched by an administrator or an
on-chain governance system. This mode tends to prioritise
the integrity of the network, but may tend to cede power to
developers or record producers.

Different DLT systems may allow for a mix of
these mechanisms. For example, Ethereum
accepts voluntary contributions from its

community as well as from developers
supported by grants.

58

5.2 NETWORK LAYER

The network of a DLT system exists as
a direct result of the implementation of
the protocol rules. The network consists
of an interconnected group of actors and
processes that adhere to a technology
standard (protocol) and actively participate
in the exchange of data and information over
integrated communication channels.

5.2.1 Communications
Component
Communications refer to the exchange and
sharing of data across participants in a DLT
system.

Network Access

Network access determines the right of entry
to the DLT system; this is the right to connect
to the network. Access to the system can be
unrestricted, meaning that anyone78 can freely
join, leave, and rejoin the system at any point

in time, or it may be restricted by a gatekeeper
responsible for granting access rights to
specific entities. Open networks generally
have dynamic and flexible membership,
whereas closed networks may have static/
fixed membership.

Generally, auditors get direct access to the
network by running fully-validating nodes:
they are considered ‘first-class’ citizens with
greater rights, as they are able to broadcast,
validate and relay transactions and records.
Participants can also get indirect access to
the network by either running ‘lightweight
clients’ (also called ‘SPV nodes’) that query full
nodes for transaction data or by connecting
to a particular service via an Application
Programming Interface (‘API’) part of a server
designed and programmed to receive requests
and send responses to other servers or
devices.

Table 6: Network Access Configurations

Lens Configurations Description

Openness

Open
Unrestricted network access: simply requires downloading
and running a software client.

Semi-open
Access is partially restricted: prospective participants need
to apply; generally decided via on-chain voting/approval of
existing network participants.

Closed
Access is restricted to vetted participants. Requires a
gatekeeper to onboard new members.

Channels

Full node

Fully performing the functions and tasks available in
the system: receives, validates, stores and broadcasts
transactions and records in the system; performs
independent validation.

Lightweight node

Client that allows performing basic tasks such as creating
transactions - does not fully validate the system state.
Requires connecting to a full node for receiving information of
the system.

API access
External end-users connecting to a full node via an
Application programming interface (API).

59

Generally, the more open a system is, the more
exposed it is to malicious actors. In particular,
these systems are vulnerable to ‘Sybil’ attacks,
where the attacker creates numerous fake
identities to increase influence over the
network.

A Sybil attack is a class of attack
in which a malicious actor
gains influence or disguises
malfeasance by creating
numerous false identities

Because identity is an exogenous (i.e. ‘real
world’) property, a DLT system cannot, by
itself, prevent such attacks; it must rely on
the intervention of an outside agent (such as
a credentialing authority) or Sybil-resistance
mechanisms (such as PoW or PoS) to mitigate
these attacks.

Data Broadcast

Data broadcast is the process of transmitting
and relaying data across the network to
connected nodes. Data can be raw and
unformatted or in a standardised format (e.g.
in the form of a transaction or record). Data
can be broadcast to every node in the DLT
system (universal diffusion) or only shared
with a specific subset of nodes (multi-channel

diffusion).79 In the latter case, data diffusion
is generally limited to the transaction parties
involved in a trade or who depend on specific
historic transactions; effectively creating a
private sub-network which is often referred
to as a ‘channel’. This concept is commonly
referred to as sharding.

Early DLT systems (e.g. Bitcoin,
Litecoin) use the universal data
diffusion model, which still
remains the dominant broadcast
method

In order to meet confidentiality and privacy
requirements for enterprises, more recent
frameworks have implemented the multi-
channel diffusion model (e.g. Hyperledger
Fabric, Corda). Others, such as Cosmos, are
designed to act as ‘hubs’ so that independent
DLT systems can be linked together as part
of an application-based sharding scheme.
Although universal data diffusion is technically
used within each Cosmos subnetwork, the
inter-network system resembles multi-
channel diffusion. In either case, multi-channel
diffusion prevents nodes from storing and
processing data that is of little interest to them,
and can theoretically lead to better scaling.80

Table 7: Data Broadcast Configurations

Configurations Description

Universal data diffusion
Data is broadcast to all nodes: convergence towards a single shared set of
records (global consensus)

Multi-channel data diffusion
Data is only shared between a subset of nodes directly involved in a specific
operation (local consensus)

60

An implication of multi-channel data diffusion
is that not all network participants need to
be involved in reaching consensus over a
channel state: only channel participants are
required to reach agreement over data stored
in that channel (‘local’ consensus). This differs
significantly from systems with global data
diffusion as every single node is required to
come to consensus over the global state of the
system (‘global’ consensus); failure to achieve
consensus by some subset of nodes may result
in the departure of the nodes which do not
agree, or a divergent DLT system (network
split).

Transaction Initiation

A transaction contains a set of instructions
that will be executed once the transaction
has been added to the ledger. Generating a
transaction can either be unrestricted (i.e. open
to anyone) or restricted to select participants.
Transactions are generated by users signing
a message in a standardised format using the

corresponding private key. There are different
interfaces available to end-users for creating
and broadcasting transactions to the network
(e.g. desktop and mobile wallets).

5.2.2 Transaction Processing
Component
Transaction processing describes the set
of actions required to add an unconfirmed
transaction to the shared set of authoritative
records. A transaction is considered
(provisionally) settled once added to a record
(‘confirmed’), which results in the execution of
the set of instructions embedded within the
transaction. However, a single confirmation81
is generally insufficient to be relied upon for
subsequent transactions; the record must
be ‘finalised’ before the transaction outputs
may be relied upon by the system. Finality is
discussed in Section 5.2.3.

Figure 15: Conceptualising Transaction Processing In A DLT System

TX1

Token transfer

TX2

TX p+k

TX p+1

TX k+1

UNCONFIRMED
TRANSACTIONS

CANDIDATE
RECORD

RECORD1

RECORDn+1

RECORDm

LEDGER

&
FINALISED
RECORDS

CONFIRMED
TRANSACTIONS

TX4

Event description

TX3

Token burn

TX2

Token issuance

TX5

Token transfer

Record: bundle of transactions
assembled by a record
producer.

Candidate Record: record
proposal for inclusion in the
ledger. Transactions within the
candidate record have not been
incorporated into the global
ledger yet.

Transaction: data in
standardised format containing
a set of instructions that will be
executed when the transaction
has been confirmed.

Finalised Record: record that is
part of the universally agreed-
upon ledger and permanently
settled. Included transactions
have now been executed.

RECORD1

TX 2

TX p+k

TX p+1

TX k+1

61

Records are subject to the consensus algorithm
used by the DLT system to reach agreement
over the state of the system. This includes a
process for determining whether a proposed
record is valid, as well as rejecting invalid
records (e.g. records which are defective or
noncompliant) and choosing among different,
yet equally-valid records.

Record Proposal

Record proposal refers to a record producer
selecting a set of unconfirmed transactions

and bundling them together to form a
candidate record. Record proposal can be
permissionless in that any network participant
has the right to produce a new candidate
record, or permissioned in the sense that only
a specific subset of participants are allowed
to generate a candidate record. Note that this
only refers to network participants, i.e. actors
that have already been approved to join the
system.

Table 8: Record Proposal Configurations

Configuration Description

Permissionless Any network participant has the ability to create a candidate record

Permissioned Record creation is restricted to a subset of participants

As the records are subject to network
consensus, they must adhere to the protocol
rules. At a basic level, they must be formatted
correctly and contain no invalid or conflicting
transactions. Additionally, each record must
include a reference/pointer to a previous
record, and, if appropriate, a PoW or other
Sybil resistance technique.

Consensus algorithms can be classified
according to their difficulty level (in energy
consumption or financial terms). Algorithms
with unlimited difficulty are uncapped in
the resources they may require to reach
consensus. For instance, in the case of Bitcoin’s
PoW computation, the difficulty of finding a
valid solution increases as additional hashing
power is added to the system.82 In contrast,
other algorithms (e.g. Practical Byzantine Fault
Tolerance/BFT) do not consume a significant
amount of resources and have limited
difficulty.

In open systems, a mechanism for resisting
Sybil attacks needs to be incorporated into
the consensus algorithm. Permissioned and
closed systems generally do not require this
component, as Sybil attacks are prevented by
carefully vetting entities before granting them
permission to join the network and produce
records.

Early open DLT systems exclusively used
PoW as a Sybil prevention mechanism. PoW
makes it computationally difficult (i.e. costly
and time-consuming) to produce new records
but easy for others to verify them. In contrast,
emerging PoS-based systems use staking of
endogenous resources (e.g. native asset) in
order to choose the next record producer.83
PoW systems are resource-intensive but are
robust as long as the number of participants is
large and sufficiently distributed.In contrast,
PoS systems are less resource-intensive
than PoW systems, but are also generally

62

vulnerable to ‘nothing-at-stake’ and ‘grinding’
attacks, among others.84

Closed DLT systems generally have static
membership and thus a complete overview
of all participants in the network should be
possible. They often use mechanisms such as
Round-Robin schemes or algorithms such as
Practical Byzantine Fault Tolerance (PBFT),
Paxos, or Raft in which nodes temporarily
elect one node to be a leader (i.e. record
producer).

Consensus algorithms and Sybil resistance
mechanisms are an active area of research.
Further information on the variety of
consensus mechanisms used in DLT system
can be found in Seibold & Samman (2016).85

Conflict Resolution Rule

The conflict resolution rule determines how
disputes regarding competing or conflicting
versions of valid records are being resolved
and depends on the consensus algorithm in
use. For instance, Bitcoin resolves a temporary
split caused by two competing valid blocks
at equal height by choosing the block on the
branch that carries most cumulative PoW
(longest-chain rule).86 Tezos adapts the longest-
chain rule for PoS, defining the ‘weight’ of
a block as the number of ‘endorsements’
it receives from randomly-selected record
producers. Alternative resolution rules involve
unanimous agreement of all record producers or
passing a certain quorum threshold.

As with all design decisions, each consensus algorithm reflects a set of trade-offs

Incentivised Transaction Processing

Incentivised transaction processing refers to
the explicit and implicit incentives present in
the system to encourage record producers to
engage in transaction processing by creating
and proposing records. These incentives can
be of different nature (e.g. monetary, legal,

social) and can be expressed directly by
protocol rules (e.g. block rewards in native
asset) or by external factors (e.g. contractual
agreements established between participants).
Many DLT systems use a combination
(Table 9).
This distinction matters when categorising
DLT systems. Open systems such as Bitcoin

The 51% Attack

An attack in which an entity or cartel with a majority of the ‘votes’ (e.g. computing power)
in a DLT system produces records faster than the rest of the network. Eventually, these
records are revealed to the network, causing the records of ‘honest’ nodes to be replaced
due to the conflict resolution rule. The 51% attack is the classic attack against DLT systems.
PoW-based systems are especially vulnerable to such attacks; a similar attack in PoS-based
systems is called the ‘long-range’ attack. It should be noted that in some cases, DLT systems
are vulnerable to attacks carried out by less than 51% of voting power (e.g. selfish mining,
which is theoretically feasible with only one-third of voting power).

63

tend to be secured via economic incentive
designs that make use of an endogenous
network resource (native asset) as an
economic coordination mechanism to align
incentives. Dependent systems may use the
native token of the system they are dependent

upon. In contrast, closed networks with known
and vetted participants generally rely on pre-
established authority relations through mutual
contractual obligations.

Table 9: Incentivised Transaction Processing Configurations

Intrinsic Extrinsic

Monetary87 Block rewards (subsidy + transaction
fees)

Paid services (fees)

Non-monetary Required for transaction creation88 Contractual obligations, reputation, etc.

5.2.3 Validation Component
Validation refers to the set of processes
required to ensure that actors independently
arrive at the same conclusion with regard
to the authoritative set of records. This
includes verifying the validity of unconfirmed
transactions, verifying record proposals,
and auditing the state of the system. This
component is a crucial differentiator from non-
DLT systems in that it provides participants
with the ability to independently audit the
system.

Transaction Validation

Transaction validation consists of verifying
whether an individual transaction complies
with the protocol rules before relaying it to
other actors. This involves verifying that the
transaction is properly formatted, has a valid
signature, and does not conflict with any other
transaction. In certain systems, transactions
may be subject to encumbrances (such as a
prohibition on transfers until a certain time
or condition is met). Such encumbrances
are often integral to the operation of
programmatically-executed transactions
(‘smart contracts’).

Record Validation

Record validation is verifying whether a
candidate record proposed by a record
producer is valid according to protocol rules.
If the proposed record is deemed valid by an
auditor, it is added to the journal and relayed
to other nodes. While the exact process
differs from one system to another, it generally
involves verifying the validity and uniqueness
of each transaction contained in the record,
as well as checking whether the conditions
specified by the record proposal process
are met (e.g. verifying that a valid PoW is
attached).89

The combination of transaction and record
validation performed by auditors provides the
ability to independently compute the entire
state of the system from genesis (full audit).

Transaction Finality

Contrary to popular belief, a confirmed
transaction or record is not necessarily
irreversible. Transaction finality determines
when a confirmed record can be considered
final (i.e. not reversible). Finality can be
probabilistic (e.g. PoW-based systems that

64

are computationally impractical to revert)
or explicit (e.g. systems that incorporate
‘checkpoints’ that must appear in every
transaction history). Finalised records are
also called permanently settled. Records that
have been produced, but which are feasible to

revert, are provisionally settled. Provisionally-
settled records become permanently settled
after the transition period between record
creation and finality.

Figure 16: Transaction Finality In DLT Systems

Figure 16 offers a schematic description of
the steps involved in the settlement process.
First, a user creates a transaction and
broadcasts it to the network. Each auditor
verifies whether the transaction complies with
the protocol rules. If it is considered valid, the
node adds the transaction to its log (also called
‘mempool’), a virtual environment that stores

unconfirmed transactions waiting to be added
to the shared set of authoritative records.

In the transaction processing phase, record
producers will arbitrarily select unconfirmed
transactions from their mempool and bundle
them together into a candidate record. They
will then perform the steps required by
the consensus mechanism to propose this

Pre-Validation Post-Validation (Verification)Transaction
Processing

UNCONFIRMED
TRANSACTIONS

UNCONFIRMED
TRANSACTIONS

CANDIDATE
RECORD

JOURNAL LEDGER

FINALITY:
PERMANENT
SETTLEMENT

Create TX

USERS

RECORD
PRODUCER

Propose
Record

Provisional
Settlement

Return
to Log

Create
Record

LOG

Provisional settlement:
Confirmed records can be reversed by alternative records
during the provisional settlement period. In this case,
transactions included in the orphaned record move back
to the log of other unconfirmed transactions waiting to get
included in a new candidate record.

1

2

3
4 5a

5bThe log of a
node contains
all transactions
that are waiting
to get confirmed.

A record
producer bundles
transactions
together into a
candidate record.

Nodes validate
the candidate
record and add
it to their journal
if valid.

- Probabilistic
- Explicit

Transactions
have been subject
to network
consensus and are
now confirmed.

NETWORK

‘Finalised’ Records are buried so deeply
as to be impractical or infeasible to
reverse. They have been permanently
settled.

‘Provisional’ Records have been
accepted by nodes, but may be replaced
by an alternative version if one is
presented to the network. These records
are only provisionally settled.

‘Finalised’ Records
‘Candidate’

RecordsTransaction
Finality

‘Chain Tip’ Record

‘Provisional’ Records

65

candidate record to the network. Nodes will
review the received candidate record and
its content; if it passes the validity checks,
the record is added to the node’s journal.
Individual journals eventually converge
towards a single common ‘ledger’ as the
transactions are confirmed and executed.

However, confirmed records could be
abandoned (orphaned) for the sake of an
alternative, competing record: this means
that during the provisional settlement phase,
confirmed transactions can get reversed -
in which case they are returned to the log
as unconfirmed transactions, waiting to be
included in the next record. The duration of
the provisional settlement phase depends on
the system design and set-up. Some systems
implement nearly immediate finality, whereas
others have ‘probabilistic’ finality in the sense
that, theoretically, records can always be
reversed. In practice, however, the likelihood
of such a ‘reorganisation’ decreases rapidly
with each additional record added to the
ledger, because the financial costs attached
to PoW mining can become prohibitive as
an attacker attempts to reach ‘deeper’ into
the ledger. As long as records are in the
provisional settlement phase, they should not
be considered ‘final’.90

Typically, users refrain from interacting with
data that is only provisionally settled, because
the possibility of reversion creates a risk that
assets can be double-spent. The provisional
settlement period represents a safety factor
for nodes, helping ensure that transactions are
fully incorporated in the ledger (as opposed
to the node’s local journal) before users rely
on their outputs - thus preventing double-
spending attacks.91

Some systems also implement ‘checkpoints’ to
limit the possibility of ‘long-range’ attacks. In a
long-range attack, a block producer creates a
competing subchain without revealing records
to the network, and then reveals all these
private records simultaneously to cause other
nodes to orphan long-accepted records. A
‘checkpoint’ is a block that an honest node will
never orphan. As a result, the checkpoint limits
the ‘reach’ of a long-range attack. However,
checkpoints also create a theoretical risk
of a permanent network split under certain
conditions, such as ‘eclipse’ attacks.92

Finally, it should be noted that changes to
protocol rules have the power to alter the
form of the ledger, which can directly impact
transaction finality.93

Table 10: Transaction Finality Configurations

Finality Probabilistic Explicit

Provisional
In theory always; practically, a time
window determined by network
conditions

Short time window determined by
protocol

Finalised
In theory never; practically, after a
certain block depth

After a specific block depth determined by
protocol

66

5.3 DATA LAYER

The protocol layer determines how a DLT
system will function and how it will operate.
The network layer implements the protocol
layer. Together, the protocol layer and the
network layer form the basis for the data layer
which is assembled over time as transactions
are written into the ledger by the activities of
participants using the DLT system.

5.3.1 Operations Component
The operations components of the Data Layer
include all of the processes through which
the journal – and, derivatively, the ledger – is
co-created and transformed by users as they
interact with the system.

Input

The input process refers to the source or
method of acquiring data for the DLT system.
As discussed in Section 4.2.2, data sources
may be internal or external, which may reflect

users actively interfacing with the system, or
a change in state driven by an internal system
process, or an externally-driven process
(e.g. a transaction initiated by an external or
interfacing system), or smart contract.

More generally, we define internal sources
of input as any record or transaction that
is created by, or the direct result of, a user
interfacing with a DLT system ‘on the platform’
(i.e. on-chain). External sources of input,
on the other hand, are the result of input
from off-chain systems that interface with
the DLT system but that are, in principle,
separable from the core platform (i.e. they
are a dependent or interfaced system in the
framework outlined in Figure 12 in Section
4.2.1). Hybrid sources such as ‘generalised
state channels’ allow users to run programs
outside the DLT system and relay the state to
the system at any time; development of these
techniques is, however, still in its infancy.

Table 11: Input Configurations

Types Configurations Description

Internal
sources

Transactions A set of cryptographically-authenticated instructions to modify the
state of the ledger.

Records Bundle of transactions that have been added to the shared set of
authoritative records (global ledger).

Automated
executables

Programs that exist inside the system (or on another DLT system
that interfaces with the focal system) which are allowed to trigger
phenomena once a predetermined condition is verified.

External
sources

Sensors Physical devices that are able to broadcast specific information to
selected systems (e.g. RFID chips).

Information
providers

Entities that collect and organise data which are allowed to interact
with selected systems (e.g. a price API).

Hybrid
sources

Generalised
state channels

A transaction type that allows users to run programs outside the
DLT system, with each state transition representing a private
‘counterfactual’. At any time, the final state can be relayed to the DLT
system.

67

Programmatically-executable
Transactions

Not all changes to the data layer are the direct
result of internal or external inputs. Some
changes to the data layer are the result of
code-directed events that are conditional
on the occurrence of some state of affairs
that is captured on the ledger. A prime
example here are changes that are initiated by
programmatically-executed transactions (i.e.
‘smart contracts’). When encoded conditions
are met, a smart contract automatically
executes and, as a result, a number of
downstream events occur – some of which
may include changes to the ledger itself.
DLT systems that support the design and
execution of a wide range of programmatically-
executed transactions are generally referred
to as stateful. Users can build and run complex
expressive smart contracts directly at the

system level: the supported computer
language is flexible and general-purpose
to theoretically allow the modeling of any
imaginable program.
Other DLT systems only support a limited
range of programmatically-executed
transactions at the base layer: they are based
on a simple script language that generally
features a limited series of OP_Codes enabling
the design of relatively simple, specific-
purpose programs. These systems are usually
referred to as stateless.94
Ethereum (Solidity), Tezos (Michelson) and
EOS (WebAssembly) are three stateful DLT
systems that are equipped with a Turing-
complete language to design complex smart
contracts. They are often referred to as ‘smart
contract platforms’. In contrast, DLT systems
such as Bitcoin and Monero merely provide
support for a simple scripting language that
allows limited type of operations.

Table 12: Programmatically-executed Transactions Configurations

Type Description

Stateless
Fixed-function machine at the base system layer: allows for the execution of limited
computations.

Stateful
General-purpose computations executed on-chain by network participants via an
integrated virtual machine.

Locus of Execution

The locus of execution determines where
computations such as programmatically-
executed transactions are being executed.
Generally, the locus of execution can either be
on-chain (i.e. internal) or off-chain (i.e. external).

On-chain computations are executed
internally in each auditors’ own environment
(‘execution engine’). This environment can
range from a simple fixed-purpose machine
to a more complex general-purpose virtual
machine (e.g. Ethereum Virtual Machine/
EVM) that provides a rich Turing-complete

environment. On-chain smart contracts are
executed by every auditor in the system and
are thus often referred to as ‘self-executing’ or
‘self-performing’.95

Off-chain computations are executed in
environments that are external to the system
(in an external or interfaced system). While
off-chain computations are initiated by
events and processes on the DLT system, the
execution is ‘outside-the-system’ in the sense
that relevant work is not being performed at
the core DLT system layer. In this case, DLT
systems can be understood as serving the
function of a settlement layer for the external

68

or interfacing systems that run the core
transaction logic.

In some systems, execution may occur in
hybrid side-chains. For example, Ethereum’s
Plasma network alleviates some computational
burdens on nodes through parallelisation.
Similarly, Cosmos acts as a ‘hub’ that regards
each independent system it is connected to
as a ‘side-chain’ from the perspective of the
larger inter-network it coordinates.

In ’stateless’ DLT systems - characterised
by limited expressiveness - more complex
business logic generally tends to get pushed to
external or interfacing systems where it will be
executed in a different runtime environment.
While this layered approach limits on-chain
capabilities, it can also provide benefits such
as reducing the ‘attack surface’ of the base
layer, potentially providing increased privacy
and confidentiality as well as the possibility of
better scaling prospects and enabling low-
latency applications that would otherwise be
constrained by network delays.96

Table 13: Locus Of Execution Configurations

Types Configurations Description

On-chain

Fixed-purpose machine Limited to a narrow set of operations.

General-purpose virtual
machine

Capable of performing an open-ended range of operations.

Off-chain

Coordinator The DLT system’s primary purpose is to initiate and control
off-chain computations.

Automated Arbiter The DLT system’s core function is to settle the outcomes of
an automated executable, which is otherwise executed by off-
chain parties or systems.

Side-chain

Subnetwork Side-chains usually operate according to the same ‘on-chain’
architecture of their respective DLT systems, but distribute
computational loads to subnetworks to improve overall
system scaling.

5.3.2 Journal Component

Reference

A ledger emerges over time as users interact
with a DLT system. The ledger, however, is an
abstraction. Input processes and automated
executables do not directly operate on the
ledger per se, but rather the journal. The
specific kinds of information and/or data

structures that are held by a node are always
specific to the DLT system. A DLT system
focused on digital payments, for example,
needs to hold information about the assets
held by individual users. A DLT system that
enables smart contracts, on the other hand,
has to be able to hold the customised code
implementing the smart contract on the
platform.

69

Types of Reference
There are four different kinds of reference
data: endogenous variables, exogenous
variables, hybrid variables, and self-referential
data.
Endogenous (internal reference) refers to
data that tracks information about variables
that are native to the system. In Bitcoin, one
endogenous reference variable, for example,
is used to track the number of bitcoins the
user has at any particular time. This internal
variable is updated as the user sends and
receives bitcoins to/from other accounts.
Exogenous (external reference) refers to data
that tracks information about variables that
exist outside of the system. A hybrid reference

refers to data that shares both endogenous
and exogenous characteristics. These three
types of references are also discussed in
Section 4.2.2.

There is a fourth reference type that is neither
endogenous nor exogenous: This neutral or
null data type is a self-referential reference.
For example, a smart contract is simply a
piece of code that can execute when certain
conditions are met. While a smart contact
may require information about external and
internal system variables, the code itself has
no intrinsic reference to anything outside of
itself (a ‘null reference’).

Table 14: Types Of References And Value Linking

Type Description

Endogenous

Refers to data or digital assets that exclusively exist within the boundaries of the system
and do not require a connection to external systems. Decisions can be automatically
enforced by the system as the data and/or assets are intrinsic to the system. For example,
native assets such as ETH and associated dApp tokens are endogenous references of the
Ethereum system.

Exogenous

Records referencing data that is exclusively extrinsic to the system and thus requires
gateways for connecting to the external world and enforcing transactions. Recordkeeping-
only systems are an example of this type in that they only record events or facts occurring
externally.

Hybrid
Digital assets that share both endogenous (i.e. exclusively exist within the boundaries of the
system) and exogenous characteristics (i.e. have some link to the external world). Hybrid
can also refer to systems that support both endogenous and exogenous references.

Self-
referential

Pieces of code (e.g. smart contracts) that do not reference endogenous or exogenous
variables, although they may require information about internal or external variables.

72

SECTION 6: APPLYING
THE FRAMEWORK -
CASE STUDIES
In this section, we use Bitcoin as a case study
to show how the framework can be applied to
analyse and characterise a DLT system. We
will then proceed to compare other notable
DLT systems and examine where they differ.

All DLT systems presented in this section are
self-sufficient systems; we omit discussion of
dependent, external, and interfacing systems
(e.g. ERC20 tokens, the Lightning Network).

6.1 BITCOIN

Bitcoin was introduced conceptually in
October 2008 and launched in January 2009.
The rationale behind Bitcoin was to create

a digital value transfer and storage system
with rapid settlement that would not rely on
trusted third-parties.

Protocol
Table 15: Bitcoin: Protocol Layer

Layer Component Process Configuration

Protocol

Genesis Inter-System
Dependencies

Self-sufficient system: not dependent on an external
system.

Codebase
Creation

Codebase is built from scratch and open-source.

Rule Initiation Reference client (‘Bitcoin Core’) specifies rules;
alternative implementations follow the same ruleset.

Alteration Protocol
Governance

Anarchic: coordinated via the Bitcoin Improvement
Proposal (BIP) process; Bitcoin Core GitHub repository.

Protocol Change Open alteration: running software client of choice
(generally ‘Bitcoin Core’).

Genesis

A self-sufficient system, Bitcoin was released
as open-source software in the form of a
reference client (the ‘Satoshi Client’, now
‘Bitcoin Core’) by an individual or group of

people under the pseudonym of Satoshi
Nakamoto. There is no formal protocol
specification: instead, the reference client
specifies the rules which have tended to be
followed by alternative client implementations
(e.g. bitcoind, libbitcoin, Bcoin).

73

Alteration

Bitcoin’s governance can be described as
anarchic: there is no formal standard or set of
procedures to make changes to the protocol.
Instead, participants run the client version that
implements (and thus enforces) the rule set
that they deem valid. Applying changes to the
protocol thus requires a global coordination
effort to convince nodes to upgrade to
a newer client version that supports the
proposed changes.
Nodes that do not upgrade will cause a split
in the network that effectively leads to the
emergence of a new DLT system where both
systems share the same transaction history
up until the point of the fork (e.g. Bitcoin Cash
in August 2017). Because each subnetwork’s
value to the participants is related to the
number of users on it, users are strongly

incentivised to upgrade simultaneously for all
but the most contentious changes.
Users and developers can submit pull requests
to the Github repository that hosts the
relevant client implementation. The reference
client Bitcoin Core has a standardised process
(Bitcoin Improvement Proposals, or BIPs) to
discuss proposed changes to the protocol.
However, the changes are only effective if the
vast majority of nodes decide to download
and run the upgraded software client.97 As a
result, miners ‘signal’ support of BIPs within
the blocks they produce as a way of gauging
community sentiment before adopting the
associated proposal. Changing Bitcoin’s ruleset
is very hard, as demonstrated by the SegWit
debate which resulted in the creation of an
alternative system - Bitcoin Cash - in August
2017.98

Network
Table 16: Bitcoin: Network Layer

Layer Component Process Configuration

Network

Communications Network Access Open: open to anyone that downloads and runs a client.

Data Broadcast Universal data diffusion: data is broadcast globally to the
entire network.

Transaction
Initiation

Unrestricted: anyone can submit a transaction through a
node using a variety of ways.

Transaction
Processing

Record Proposal Permissionless: Miners select unconfirmed transactions
and create a candidate block. A valid candidate block
requires attaching a valid SHA-256 hash to the block
header (by selecting a nonce that gives the hash a
sufficiently low value).

Conflict
Resolution Rule

Nodes will follow the blockchain instance that carries
most cumulative Proof-of-Work (‘longest/most-worked
chain rule’).

Incentivised
Transaction
Processing

Intrinsic and monetary: miners receive a block reward
(and transaction fees) in the form of a native token
(‘bitcoin’) for submitting a valid block.

Validation Transaction
Validation

Full nodes validate every unconfirmed transaction before
relaying it to other nodes.

Record Validation Full nodes verify the PoW, block format, and every
transaction in the block before adding the block to their
journal and relaying it to other nodes.

Transaction
Finality

Probabilistic: a transaction included in a valid block may
get reversed if a competing (longer) blockchain instance
takes over. General rule of thumb: 6 confirmations before
a transaction can be considered settled.

74

Communications

Bitcoin is an open system providing
unrestricted access to the network: anyone
can join, leave, and re-join the network
simply by downloading and running a
software client, limited only by their
technical ability, equipment capability, and
bandwidth. Within the network, all data is
broadcast globally: every full node stores
unconfirmed transactions in its mempool,
and all confirmed transactions in the form of
the Bitcoin blockchain. Anyone can submit a
transaction, provided that transaction rules
are respected.99 End users external to the
system can use wallet software to create a
transaction, which will then get sent over
alternative communication channels to a full
node that will broadcast it to the network.

Transaction Processing

Record producers (called miners) select
unconfirmed transactions in the mempool and
bundle them together into a candidate block.
Before submitting the candidate block to the
network, miners need to attach a valid PoW
to the candidate block.100 This mining process
generally requires a substantial amount of
energy to find a valid solution because the
difficulty adjusts to match the hashpower on
the network. In case two unrelated miners

find a valid solution at a similar time, the
network applies the ‘longest-chain rule’ to
decide which of the two candidate blocks to
accept.101 Miners are incentivised to process
transactions by receiving a reward intrinsic to
the system for every successfully mined block:
in addition to transaction fees, successful
miners are allocated new units of the native
token (bitcoin).

Validation

Bitcoin full nodes verify transactions twice.
First, a node checks the validity of incoming
unconfirmed transactions before relaying it to
other nodes. This prevents invalid transactions
from getting widely broadcast in the network
and taking up significant network resources. In
a second step, a node verifies the block (record)
that includes the now-confirmed transactions.
If the block passes the validity test, the node
updates its journal and broadcasts the block
to connected peers. Settlement in Bitcoin is
only probabilistic: in theory, miners could, at
any point, cause a chain reorganisation that
would reverse all transactions included in
now-orphaned blocks. In practice, however,
it is considered safe to regard a transaction
finalised after waiting for 6 confirmations (i.e.
blocks mined on top of the block that includes
the transaction in question).

Data
Table 17: Bitcoin: Data Layer

Layer Component Process Configuration

Data

Operations Input Primarily internal (e.g. previous outputs: UTXOs, scripts).
External: arbitrary data for timestamping purposes (e.g.
via OP_RETURN).

Programmatically-
executed
Transactions

Fixed-function: limited scripting language enables simple
on-chain smart contracts (e.g. multi-signature and time-
locked contracts) .

Locus of Execution On-chain for native asset transfer.

Journal Reference Endogenous: native asset unique to system (BTC).

75

Operations

Bitcoin primarily takes internal sources as
inputs for creating new records since the
main purpose of the system is to provide
secure value transfer of the native token. This
means that internal asset units (‘bitcoin’) get
used as inputs for transactions. Bitcoin can
also be used as a global public notary: data
(or pointers to externally stored data) can
be embedded into Bitcoin transactions for
tamper-resistant timestamping purposes.
In terms of automated executables (‘smart
contracts’), Bitcoin only allows the design
and on-chain execution of relatively simple
programs via its native scripting language
(‘Script’): multi-signature and hashed timelock

contracts are good examples of simple smart
contracts implemented on Bitcoin.

Journal

The system records transactions describing
the creation and transfer of the native token
bitcoin. Bitcoins exist exclusively within the
boundaries of the Bitcoin system as entries in
the Bitcoin ‘ledger’. The records produced by
the Bitcoin system thus point to internal values
(‘bitcoin’) that have no direct connection to
external systems.102 This means that transfers
recorded by the Bitcoin system do not rely on
external agents for enforcement; instead, they
are automatically and independently enforced
‘on-chain’ by network participants.103

6.2 COMPARATIVE ANALYSIS

The framework we have developed is a tool
to map the relationships between system
layers, components, processes, and actors
for different DLT systems. These systems are
dynamic and constantly evolving, requiring
frequent updates to the analysis. The following
comparative analysis should be understood as
our best attempt to describe the state of the
indicated systems at the time of this report’s
publication.

6.2.1 Case Studies
We have selected a total of six case studies
to show how the framework can be used for
comparative analysis (Figure 17). Each of the
selected systems has unique characteristics
and properties that are a result of the design
choices (chosen configurations) influenced by
assumptions and assessments of trade-offs.

76

Figure 17: Case Studies Overview

The following subsections will only highlight
the most important differences between the
case studies. A full comparative analysis using
the framework can be found in Appendix B.

6.2.2 Are These DLT Systems?
Recall that our formal definition of a DLT
system required 5 elements. Table 18
summarises whether these five elements are
satisfied by the systems we include in our case
study. We will discuss the technical aspect of

each system that causes it to deviate from the
results of Bitcoin within this section as part
of our framework. Most importantly, notice
that while all the systems we included have
launched (‘Launch Date’), not all the systems
we include are fully functional as DLT systems
yet. However, all included systems have
released plans that clearly indicate how they
will gain properties required for DLT systems.
We refer to these systems as potential DLT
systems.

ETHEREUM

• Purpose: distributed
computing platform and
operating system for
‘unstoppable’ applications

• Network launch: July 2015
(Ethereum Foundation)

• Value proposition: on-chain
smart contract functionality
allows the design of
programmatic, deterministic,
and tamper-resistant
agreements and interactions

BITCOIN
• Purpose: digital asset and

peer-to-peer payments

• Network launch: Jan. 2009
(Anonymous creator)

• Value proposition: digital
asset with artificial scarcity
that cannot be seized;
censorship-resistant
payment networks

RIPPLE
• Purpose: cross-border

payment network

• Network launch: 2012
(OpenCoin, now RippleLabs,
Inc.)

• Value proposition: fast
and low-cost cross-border
payments and currency
conversion

ALASTRIA

• Purpose: multi-sectoral
blockchain infrastructure
for Spanish enterprises and
public sector institutions

• Network launch: test net
launched in Dec. 2017, main
net launch expected for
Q4 2018 (‘Consorcio Red
Alastria’ Association)

• Value proposition: semi-
public network with shared
governance and transparent
on-boarding

• Purpose: trusted online
identities to facilitate online
registration

• Network launch: first
trials launched in late 2016;
expected to fully launch in
Q4 2018 (SecureKey)

• Value proposition: private,
secure and convenient online
registration services for
users with lower costs and
higher trust for business

VERIFIED.ME

• Purpose: shared
infrastructure for global
trade

• Network launch: Sep. 2017
(‘Company Y’)

• Value proposition: increased
automation and efficiency in
global trade via a reduction
in fraud, errors, and
reconciliation costs

*Note: the initiators of the
project prefer not to be
publicly disclosed. We will
refer to them as ‘Company
Y’ undertaking ‘Project X’
throughout this section.

‘PROJECT X’*

77

Table 18: Not All Case Studies Currently Meet The DLT System Criteria

Launch Date
Shared

Recordkeeping

Multi-
party

Consensus

Independent
Validation

Tamper
Evidence

Tamper
Resistance

Bitcoin January 2009     

Ethereum July 2015     

Ripple 2012  ?   ?

Alastria 2018 (Testnet)     ?

Verified.Me 2016 (Trial)     ?

‘Project X’
September
2017

    

Both Bitcoin and Ethereum satisfy the five
properties required of a DLT system.104
Ripple Labs’ influence over validator nodes
makes both multi-party consensus and
tamper resistance properties contentious.
Both Alastria and Verified.Me have unclear
tamper resistance properties as of yet. These
contentious properties result in the three
systems having disputed DLT status -- some
see them as DLT systems, some do not -- but

we include them as they can be analysed by
our framework. ‘Project X’, which is still in its
early stages and uses only a single validator,
does not yet have multi-party consensus,
independent validation, or tamper resistance,
but it does have a clear plan to increase the
number of record producers and independent
auditors and so could eventually become a full-
fledged DLT system.

The ability to use this framework to analyse and compare
systems that are not yet fully functional DLT systems is an

additional benefit of a systems-based approach.

Are ‘Potential’ DLT Systems A Thing?

It is important to note that not all systems that claim to be DLT systems can be considered
DLT systems according to the formal definition presented in Section 3. In particular, both
Verified.Me and ‘Project X’ - in their current state - do not meet all conditions specified by
the definition. However, these systems have the potential to become a DLT system as their
architecture lends itself to satisfy all necessary conditions.

78

6.2.3 Protocol

System Launch

Bitcoin is the only DLT system within the case
studies that was launched by an anonymous
entity as an open-source project. In contrast,
all other case studies were released by a
known entity, albeit under different structures:
for instance, Ethereum was released by the
Ethereum Foundation and the Alastria main
net will be launched by the ‘Consorcio Red
Alastria’ Association, whereas Ripple, Verified.

Me and ‘Project X’ have all been launched by
a single company (OpenCoin/Ripple Labs,
SecureKey, and ‘Company Y’, respectively).

Codebase

Bitcoin, Ethereum, and Ripple are based on
codebases designed from scratch, whereas
Alastria is built on a slightly derived version of
Ethereum called Quorum (initially developed
by J.P. Morgan). Verified.Me and ‘Project
X’ use the Hyperledger Fabric framework
(Figure 18).

Figure 18 - Codebase Comparison

Bitcoin, Ethereum, Ripple, and Alastria
are open-source: this means that network
participants may decide to fork the project
(i.e. ‘copy-paste’ the codebase) and create
an alternative system which is based on
similar premises. In contrast, Verified.Me and
‘Project X’ are closed-source, which prevents
participants from cloning the system.

Governance

System governance is one of the key
differentiators for the analysed DLT systems.
Fully open and permissionless systems such
as Bitcoin and Ethereum lack a formalised

set of procedures and standards around how
protocol rules are updated. However, there are
differences in how both projects approach this
issue: Bitcoin’s reference client Bitcoin Core
has a dedicated BIP (Bitcoin Improvement
Proposal) process through which changes
to the codebase are submitted, reviewed,
and finally accepted or rejected. While in
theory access to the BIP process is open to
anyone, practice has shown that a limited
number of volunteering core developers have
disproportionate influence over protocol
changes.105 Nevertheless, the SegWit episode
has shown that reaching global consensus over
proposed rule changes is very difficult.106

Codebase from scratchBased on existing codebase

Open-source

Closed-source

CODEBASE

O
P

E
N

N
E

SS

‘Project X’

Fabric

79

On the other hand, Ethereum development
is heavily influenced by the Ethereum
Foundation and its development roadmap.
While there is an EIP (Ethereum Improvement
Proposal) process in place and users can
choose from multiple clients, history has

shown that with one notable exception107,
upgrades proposed by the Ethereum
Foundation and its co-founder Vitalik Buterin
have been accepted by system participants
without contention.

Figure 19: Governance Comparison

In closed systems, the administrators generally
play a much more important role in the
governance process. For example, protocol
changes in ‘Project X’ are dictated by the
key customer (a large logistics company) and
implemented by ‘Company Y’. However, there
exist alternative, more collaborative models
as well: protocol changes are voted upon by
record producers (validators) in Alastria and by
a Steering Committee composed of network
participants in Verified.Me. In contrast, key

decisions in Ripple are taken by Ripple Labs
which acts as a ‘benevolent dictator’, although
validators have the possibility to vote on so-
called ‘Amendments’.108

Table 19 provides a more detailed analysis of
the key differences based on the processes
at the protocol layer as defined by the
framework.

Fully closed:
single gatekeeper

Closed:
distributed gatekeeping

Fully open:
no gatekeeper

NETWORK ACCESS

P
R

O
T

O
C

O
L

G
O

V
E

R
N

A
N

C
E Anarchic

Hierarchical

Federation

Dictatorship

8
0

Table 19: Comparative Analysis: Protocol Layer

FRAMEWORK
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

From scratch;
open-source

From scratch; open-source From scratch; open-source Quorum-based codebase
(which itself is a fork of
Ethereum); open-source

Hyperledger Fabric;
closed-source user
modules

Hyperledger Fabric; closed
source implementation

Rules set by reference
client

Formal protocol
specification (‘Yellow
Paper’)

Rules set by reference
protocol and client

Formal protocol
specification

Formal protocol
specification

Formal protocol
specification (default
recommendation by
Hyperledger)

Anarchic: nodes vote
by running software
client of choice; but the
Bitcoin Core reference
implementation has
significant influence over
development

Hierarchical: Ethereum
Foundation and specific
devs have substantial
influence over general
development

Dictatorship: Ripple Labs
has nearly ultimate control;
validators can vote via
‘Amendments’ feature

Democratic/Plutocratic:
validator nodes need
to reach agreement; no
central administrator

Federation: a Steering
Committee composed of
providers is voting

Dictatorship: key customer
has final authority

Bitcoin Improvement
Proposal (BIP) via Core
GitHub Repo; running
software client of choice
(generally Bitcoin Core)

Ethereum Improvement
Proposal (EIP); running
software client of choice
(geth or Parity)

Validators vote on
‘Amendments’ - if 80%
agree, changes get
implemented

Unclear - likely pushed to
clients who can choose
whether to update or not

Technical updates get
pushed to network
endpoints and clients;
substantial rule changes
need to be performed
through a formal change
management process

‘Company Y’ will update
the clients it runs for their
customers

P
R

O
T

O
C

O
L

G
E

N
E

SI
S

A
LT

E
R

A
T

IO
N

C
o

d
eb

as
e

C
re

at
io

n
R

u
le

In

it
ia

ti
o

n
In

te
r-

Sy
st

em

D
ep

en
d

en
ci

es

LA
Y

E
R

C
O

M
P

O
N

E
N

T

P
R

O
C

E
SS

P
ro

to
co

l
G

o
ve

rn
an

ce
P

ro
to

co
l C

h
an

ge

http://verified.me

81

6.2.4 Network
The network level manifests a variety of
important differences between the analysed
systems.

Network Access

While the Bitcoin, Ethereum, and Ripple
networks are universally accessible (with the
two former having several thousand auditors),
access to Alastria, Verified.Me, and ‘Project

X’ is restricted to select participants (Figure
20).109 Alastria is open to any Spanish business,
subject to a semi-open application process in
which validators vote on whether to accept
new members. Alastria is expecting to onboard
hundreds of companies. In contrast, access
to Verified.Me and ‘Project X’ is controlled by
a single gatekeeper. Verified.Me has around
15 service providers running fully-validating
nodes, while ‘Project X’ is limited to three
entities, with all nodes currently hosted by
‘Company Y’ and accessible via API calls.

Figure 20: Network Access Comparison

Communications

In Bitcoin, Ethereum, Ripple, and Alastria,
data is broadcast globally to all nodes in the
network, meaning that every node has to
currently store and process every single
transaction from genesis.110 On the other
hand, Verified.Me and ‘Project X’ are based on
the Hyperledger Fabric codebase which has
native support for multi-channel data diffusion:
data is only shared among participants of a
specific channel (i.e. sub-network).

Fully closed

NETWORK ACCESS
Fully open

Distributed gatekeeping No gatekeeperSingle gatekeeper

‘Project X’

82

Figure 21: Network Architecture Comparison

Transaction Processing

When it comes to determining how
transactions get included in the form of
records to the ledger, the systems in question
take different approaches.

• Participation:
In a first step, we observe that once on-
boarded to the network, any network
participant in Bitcoin, Ethereum,
Ripple, and Verified.Me has the right to
participate in transaction processing as a
record producer (permissionless).111 This
contrasts with Alastria and ‘Project X’,
where only a select subset of network
participants are authorised to become
validators (permissioned). Alastria
will launch with around 30 different
validators, whereas ‘Project X’ currently
only employs a single validator, with plans
to gradually distribute control to multiple
validators in the future.112

• Record Creation And Conflict
Resolution:
There are significant differences across
these systems in terms of record
processing: in Bitcoin and Ethereum,
miners compete against each other
to find a valid PoW to attach to their
candidate record. In the case of two
competing records, the ‘longest valid

chain’ rule kicks in and the ledger version
that contains the most accumulated PoW
is considered authoritative.113

In contrast, the other systems use a less
resource-intensive consensus mechanism
to reach agreement over the state of the
ledger: Ripple uses multiple consensus rounds
until a ‘supermajority’ of 80% is reached,
while Alastria plans to launch with a rather
traditional Raft-based consensus mechanism
in a first stage. ‘Project X’ does not use a
distributed consensus mechanism at all since
there is only a single validator at this stage. As
such, ‘Project X’ cannot be properly called a
DLT system until it implements a consensus
mechanism that involves more than one
validator.

• Incentives
Bitcoin and Ethereum are secured
through economic incentives: miners
have intrinsic monetary incentives
in the form of the block subsidy (i.e.
newly minted native token units) and
transaction fees (denominated in the
native token). Record producers in these
systems operate on the basis of economic
incentives summarised by the Bitcoin
white paper as follows: ‘He ought to find
it more profitable to play by the rules [...]
than to undermine the system and the
validity of his own wealth’.114 As a result,

Closed accessOpen access

Universal
(global)

Multi-channel
(local)

NETWORK ACCESS

D
A

TA
 D

IF
FU

SI
O

N

Tens of
thousands
of nodes

15 providers
running nodes;
planning to
expand to 30+
entities

3 entities;
nodes hosted
by Company Y

Planning
to onboard
hundreds of
companies
each running
nodes

83

exclusive focus of record producers on
economic self-interest ensures a smooth
functioning of the system.

In contrast, record producers in other systems
have primarily extrinsic incentives of non-
monetary nature, such as reputation (e.g.
being perceived as responsible), reliability (e.g.
providing a good service), and the threat of

litigation in case they do not play by the rules.
Verified.Me validators also have an extrinsic
monetary incentive in that they receive fees
(denominated in national currency) for the
provision of their service. Security in these
systems is primarily based on access control
and contractual obligations between record
producers.

Figure 22: Transaction Processing Comparison

Validation

Validation is a crucial aspect that provides
individual auditors with the ability to
independently verify transactions, records,
and the state of the system without having to
rely on a third party. Since Bitcoin, Ethereum,
Ripple and Alastria use the global data
diffusion model, every auditor has to validate
and store every single transaction and record
that have ever been generated. Auditors in
Verified.Me and ‘Project X’, on the other hand,
use the multi-channel data diffusion model
and thus only need to validate transactions
and records within their channels (local
verification). In the case of ‘Project X’, there
is no formal independent validation since all
nodes are currently hosted by Company Y.

Bitcoin and Ethereum only provide
probabilistic finality: as a result of the PoW
mechanism used for transaction processing, a

confirmed transaction runs the risk of getting
reversed at any point in time. In practice,
however, the likelihood of reversal decreases
with each additional record added to the
ledger, as reorganising the ledger requires
re-doing the entire PoW for all subsequent
blocks.115 A common rule of thumb is thus to
consider records ‘quasi-final’ after more than
six (Bitcoin) and 24 confirmations (Ethereum),
i.e. additional records on top of the record in
question. Ripple, Alastria, Verified.Me, and
‘Project X’ have deterministic finality, which
means that the records can be considered final
after a specific provisional settlement phase.
The duration of the provisional settlement
phase generally differs from one system to
another, although all of the case studies in
question claim to have instant settlement after
the record has been confirmed.116

Table 20 summarises the comparative analysis
of the six case studies at the network layer.

PermissionlessPermissioned

Primarily
intrinsic &
monetary

Primarily
extrinsic &
non-monetary

RECORD PROPOSAL

IN
C

E
N

T
IV

E
S

‘Project X’

Block reward

Record
Producers
receive a
service fee

Table 20: Comparative Analysis: Network Layer

FRAMEWORK
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping
distributed across validator
nodes

Closed: access control performed
by gatekeeper (SecureKey)

Closed: access control
performed by gatekeeper
(Company Y according to formal
process

Universal data diffusion
(public)

Universal data diffusion
(public)

Universal data diffusion (public) Universal data diffusion
(public)

Multi-channel data diffusion
(selective privacy)

Multi-channel data diffusion
(selective privacy); but all nodes
are hosted and run by Company

Unrestricted: anyone with a
corresponding private key can
create and sign a transaction: needs
to broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can
create and sign a transaction: needs
to broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can
create and sign a transaction: needs
to broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Network participants can
create transactions; likely
external users can transmit
signed transactions as well
via an auditor/listener

Restricted: select set of end users
trigger transactions via an API
to nodes

Restricted: key customer’s ERP
system creates transactions
that get submitted via API to
one of the auditors/listeners
operated by Company Y

Permissionless: miners select
unconfirmed transactions from their
mempool and bundle them together
into a candidate block. A valid
candidate block requires attaching
a valid SHA-256 hash to the block
header (by selecting a nonce that
gives the hash a sufficiently low
value)

Permissionless: miners select
unconfirmed transactions from
their mempool and bundle them
together into a candidate block.
A valid candidate block requires
attaching a valid Ethash PoW to the
block header (by selecting a nonce
that gives the hash a sufficiently low
value)

Permissioned: validators select
unconfirmed transactions and
create a new ledger instance. They
relay candidate records for a ‘round
of consensus’: multi-computation of
new ledger

Permissioned: validator
nodes (± 30 different
entities) select unconfirmed
transactions from their
mempool and bundle them
together into a candidate
block. Raft-based consensus
mechanism to reach
agreement

Permissioned: validator nodes
(all 15 providers) create records
that contain transactions relating
only to trades they are involved
in. Simple state change proposal:
generally no disagreement

Permissioned: Company
Y-controlled validator selects
unconfirmed transactions and
creates records (centralised
node)

Longest valid chain rule (i.e. most
cumulative PoW)

Longest valid chain rule (i.e. most
cumulative PoW)

Multiple consensus rounds among
Unique Node List (UNL) until
a 'supermajority' (80%) reach
consensus

Race: the first block
wins, competing blocks
are discarded (rare since
generally only one minter/
leader at a time)

Generally no dispute; all
participants agree that something
has happened. Exact consensus
algorithm used is unknown

No-op (consensus ignored): no
conflict possible

Intrinsic and monetary: block
reward (newly minted BTC and
transaction fees)

Intrinsic and monetary: block
reward (newly minted ETH and
transaction fees)

No monetary reward, implicit
extrinsic incentives (network
robustness & resilience)

No intrinsic monetary
incentive (no native token)

(1) Extrinsic monetary incentive:
providers get paid a service fee by
destination service, denominated
in national currency ; (2) Extrinsic
non-monetary incentive: (a)
value creation for customers
of providers that helps them
compete against GAFA; (b) helps
them reduce fraud

No intrinsic nor monetary
incentive - extrinsic non-
monetary incentive of running
platform smoothly

Auditors and listeners validate every
unconfirmed transaction before
relaying it to connected nodes

Auditors and listeners validate every
unconfirmed transaction before
relaying it to connected nodes

Tracking nodes validate
unconfirmed transactions before
relaying them

Auditors and listeners
validate every unconfirmed
transaction before relaying
it to connected nodes

Each auditor/listener validates
every transaction within its
channel

Company Y-controlled nodes
validate every transaction
occurring within a particular
channel

N
E

T
W

O
R

K

C
O

M
M

U
N

IC
A

T
IO

N
S

T
R

A
N

SA
C

T
IO

N
 P

R
O

C
E

SS
IN

G
V

A
LI

D
A

T
IO

N

D
at

a
B

ro
ad

ca
st

Tr
an

sa
ct

io
n

In

it
ia

ti
o

n
N

et
w

o
rk

A

cc
es

s

LA
Y

E
R

C
O

M
P

O
N

E
N

T

P
R

O
C

E
SS

R
ec

o
rd

 P
ro

p
o

sa
l

C
o
n
fl
ic
t	

R
es

o
lu

ti
o

n
 R

u
le

In
ce

n
ti

vi
se

d

Tr
an

sa
ct

io
n

 P
ro

ce
ss

in
g

Tr
an

sa
ct

io
n

V

al
id

at
io

n

http://verified.me

85

6.2.5 Data

Operations

Bitcoin’s inputs are generally of internal nature
(e.g. previous outputs and scripts), whereas
inputs in Ethereum, Ripple and Alastria
originate from a combination of both internal
and external sources. Verified.Me and ‘Project
X’ have primarily external inputs sourced from
external, connected systems.

Ethereum and Alastria are two systems
that support general-purpose on-chain
computations that can be used to design
and run complex agreements and programs
directly ‘on-chain’ (expressive). Applications and
programs will be automatically executed at
the system level - either by all fully-validating
nodes (global data diffusion) or by those
involved in that particular agreement (multi-
channel data diffusion).

In contrast, Bitcoin, Ripple, Verified.Me and
‘Project X’ have rather limited capabilities for
‘on-chain’ computations (prescribed). These
systems do not come with an integrated
runtime environment and virtual machine
(VM), which means that expressive programs
cannot be executed directly at the system
level. Instead, more complex computations are
often processed and executed in connected
but external systems. This layered approach
can provide certain advantages (e.g. better
scaling, increased privacy, higher security)
over more expressive systems.

Reference And Value Linking

Bitcoin, Ethereum, and Ripple all keep track
of endogenous system variables that only
exist within the boundaries of their systems:
a native digital asset (bitcoin/BTC, ether/

ETH, and ripple/XRP, respectively). Since
these assets are intrinsic to the system,
transfers of ownership recorded by the system
can effectively be automatically enforced
by the system itself without requiring the
intervention of external agents.

In contrast, Verified.Me and ‘Project X’
are exclusively used for keeping track of
exogenous system variables that reference
resources and events external to the systems.
For instance, records in Verified.Me contain
hash pointers that point to identity data stored
in external proprietary databases, whereas
‘Project X’ is keeping track of insurance
records that exist in external ERP systems.

In addition to managing their native digital
asset, Ethereum and Ripple can also be used
to create records that reference exogenous
resources at the system level.117 An example
would be Ripple IOUs that are issued by
Ripple gateways and function as a digital
representation of national currency, which is
held in custody by the gateways. Transactions
that involve IOUs are referencing national
currency held in external systems, which
requires external agents and off-chain process
to enforce transfers in the ‘real world’. As a
result, Ethereum and Ripple can be considered
hybrid in terms of record value linking.

Since Alastria has not formally launched
yet, it is not possible to determine what the
records will eventually reference. However,
it is safe to assume that similar to Ethereum,
network participants will take advantage of
the platform versatility and create records that
reference both endogenous and exogenous
objects.

Table 21 provides an overview of each case
studies’ configurations at the data layer.

8
6

Table 21: Comparative Analysis: Data Layer

FRAMEWORK
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Primarily internal (e.g.
previous outputs: UTXOs,
scripts). External: arbitrary
data for timestamping
purposes using OP_
RETURN

Internal (previous outputs:
accounts, smart contracts)
and external (oracles)

Internal (previous outputs
- accounts) and external
(data related to IOU
creation)

Internal (previous outputs:
accounts, smart contracts)
and external (oracles, IPFS
implementation, off-chain
private storage)

Primarily external
(OpenID Connect
(OIDC): connection
service protocol). Internal
= previous outputs:
payload hashes; consent
instruction; proof of
reception

Primarily external (key
customer ERP system via
API; insurance records
by insurance company).
Internal = previous
outputs/records

Stateless: limited scripting
language enabling multi-
signature and timelocked
contracts

Stateful: Turing-complete
smart contract language
allows for general-purpose
computations

Stateless: special-purpose
basic computations on-
chain

Stateful: Turing-complete
smart contract language
allows for general-purpose
computations

Stateless: very simple
business logic available
on-chain

Stateless: very simple
business logic available
on-chain

Fixed-purpose machine
for running simple scripts
on-chain

General-purpose virtual
machine: Ethereum Virtual
Machine (EVM) allows for
the execution of complex
computations on-chain

Fixed-purpose machine
for basic on-chain
computations

General-purpose virtual
machine: Ethereum Virtual
Machine (EVM) allows for
the execution of complex
computations on-chain

Business logic to manage
user consent is executed at
a higher layer (off-chain)

Business logic is executed
on an external platform
(off-chain rule engine)

Endogenous: native asset
unique to the system (BTC)

(1) Endogenous (native
asset: ETH; user-defined
tokens: dApps); (2) Hybrid
(collateralised tokens and/
or records referencing
external events)

(1) Endogenous (native
asset: XRP); (2) Hybrid
(gateway-issued IOUs and
trust lines)

Depends on use
case: endogenous
if a native asset or
user-defined token;
hybrid if a combination
of endogenous and
exogenous references.
Also possible to have fully
exogenous references.

Fully exogenous:: identity
data resides in an external
system (identity sources:
government, banks, etc.)

Fully exogenous: ERP
systems and insurance
records

D
A

TA

O
P

E
R

A
T

IO
N

S
JO

U
R

N
A

L

P
ro

gr
am

m
at

ic
al

ly
-

ex
ec

u
te

d
 T

ra
n

sa
ct

io
n

s
Lo

cu
s

o
f

E
xe

cu
ti

o
n

In
p

u
t

LA
Y

E
R

C
O

M
P

O
N

E
N

T

P
R

O
C

E
SS

R
ef

er
en

ce

http://verified.me

87

6.3 COMPARING KEY DIFFERENCES ACROSS
DLT SYSTEM CASE STUDIES

6.3.1 Summarising Framework Results

Figure 23: Overview Of Major Differences Between Case Studies

Each of the selected case studies attempts
to serve different use cases and objectives,
which results in a great variety of architecture
and design decisions. Systems like Bitcoin
are optimising for trust-minimisation
and censorship resistance, which require
reasonable degrees of decentralisation at
all layers and processes. This comes at the
expense of performance, throughput capacity,
speed, scaling, and user experience, to name
just a few. Moreover, the lack of centralised
governance and decision-making complicates
coordination among diverse network actors
and slows down collective action.

Systems like Verified.Me and ‘Project X’ are
designed to operate in a different context - a
regulated multi-enterprise setting. This allows

them to choose different trade-offs and adopt
a more flexible approach, at the expense of a
more centralised protocol and network layer.
‘Project X’ takes a very conservative approach
in the bootstrapping phase by starting off
with a system in which every function is
centralised to ‘put a toe into the water and get
people on board’. The plan is to then gradually
distribute control over these functions to more
participants over time. The reasoning behind
that decision is to gain a better understanding
of the system’s functions and properties
while operating in a safe environment:
this enables participants to gain invaluable
experience and insights that can then be used
to gradually move forward. In contrast to open
experiments such as Ethereum, the rationale is
to move slowly and not break things.

‘Project X’

GOVERNANCE

Anarchic 

Hierarchical 

Dictatorship  

Federation  

NETWORK ACCESS

Open   

Semi-open 

Closed  

TRANSACTION
PROCESSING

Decentralised  

Semi-centralised   

Centralised 

INCENTIVES
Intrinsic  

Extrinsic    

REFERENCE

Endogenous 

Hybrid   

Exogenous  

88

6.3.2 Differences In
Participation
Figure 24 shows how assessing ‘participation’
in a DLT system using the different
components can result in a more nuanced
final conclusion. The systems with the most
open participation are Bitcoin and Ethereum.
At its current stage, ‘Project X’ is purposefully
choosing restricted participation to bootstrap
the system and initiate a learning process in
a contained environment. Of the remaining
three systems, Verified.Me has the lowest

participation in the protocol and data Layer,
though things are less certain in the network
layer.

When performing a comparative analysis on
highly complex and dynamic systems, choosing
the accurate lens(es) is critical. Failing to
take into account the diverse nature of DLT
systems can lead to incomplete conclusions
and assessments. As a consequence, we
recommend the use of multiple lenses to get a
broader - and thus likely a more complete and
accurate - picture.

Figure 24: Different Levels Of ‘Participation’

6.3.3 Exploring The Current
DLT Systems Landscape
Figure 25 presents an overview of the current
DLT systems landscape by mapping selected
DLT systems according to three dimensions.
Transaction processing refers to the degree
of centralisation in terms of selecting
transactions and adding records to the global
ledger.

Reference establishes whether the records
produced by system participants reference
purely internal - endogenous (e.g. native digital
assets), or entirely external - exogenous.
The latter refers to DLT systems that are
exclusively used for recordkeeping purposes
(i.e. tracking information external to the
system, such as items in a supply chain). An
additional category represent hybrid assets
(e.g. physical assets in tokenised form), which

DATA
LAYER

NETWORK
LAYER

PROTOCOL
LAYER

Codebase
Development

Governance

Network
Access

Record
Creation

Transaction
Processing

Validation

App
Development

Restricted

Closed
network

governance

Closed

Permissioned

Centralised

No
independent

validation

Permissioned

Unrestricted

Open network
governance

Open

Permissionless

Decentralised

Full independent
validation

Permissionless

89

share a combination of both endogenous and
exogenous attributes.118
Network access determines the level of
accessibility to the DLT system: access can be

unrestricted and open to anyone or restricted
to a selected group of entities that have to go
through a particular selection process.

Figure 25: Current DLT Systems Landscape

Two main observations can be derived from
the landscape map:

Open networks all require a native asset
(generally referred to as cryptocurrency) that
is being used as an economic coordination
mechanism to align incentives of system
participants to work towards a common
goal: the native asset plays an essential role
in incentivising record producers to process
transactions. An increasing number of open
DLT systems are used for referencing non-
native assets as well (e.g. Ripple, Ethereum,
Cardano119).

On the opposite end, closed DLT systems are
currently - with a few notable exceptions (e.g.
World Reserve Trust120, Royal Mint Gold121)

- primarily being used for recordkeeping
purposes to track and record external
information. Enforcement can thus not be
performed by these systems on their own; it is
reliant on external agents.

DLT systems with open networks operate
across the entire spectrum from fully
centralised transaction processing to nearly
decentralised transaction processing, whereas
the majority of closed DLT systems currently
operate in a more centralised fashion with
regards to transaction processing. This does
not come at a surprise as enterprises tend
to take a more prudent and conservative
approach when it comes to deploying new
systems in production.

Centralised

Endogenous
(native assets)

Exogenous
(external objects)

Hybrid
(endogenous and
exogenous elements)

Semi-Centralised Decentralised

TRANSACTION PROCESSING

R
E

FE
R

E
N

C
E

‘Project X’

Open network Closed network

90

6.3.4 Key Design Decisions
And Implications
Figure 26 summarises the key design decisions
that result in distinct DLT systems. Each
configuration can have specific implications
on the system’s characteristics, properties

and nature. Furthermore, the combination
of particular configurations can give rise to
additional implications on the level of second-
order effects: these can be difficult to predict
as they often manifest themselves only post-
launch.

Figure 26: Key Design Decisions And Implications

GOVERNANCE

Potential implications on:

• Decision-making

• Ruleset

• Sustainability/antifragility

• Perceived legitimacy

• Transparency

• Outsider access

• Efficiency and coordination

Anarchic Hierarchical Dictatorship Federation Democratic

TRANSACTION
PROCESSING Potential implications on:

• Transaction finality

• Participation

• System maintenance costs

• Degree of tamper resistance
Resource-
intensive

‘Light’ on
resources

NETWORK
ACCESS Potential implications on:

• Diversity of network
participants

• Choice of consensus
mechanism

• Trust requirementsOpen Semi-open Closed

REFERENCE

Potential implications on:

• Enforcement
Endogenous

(native)
Exogenous

(non-native) Hybrid Self-referential

INCENTIVES Potential implications on:

• Nature of consensus (secured
by economic incentives
vs. secured by contractual
agreements)

• SecurityMonetary Non-monetary

BROADCAST
Potential implications on:

• Privacy and confidentiality

• Scalability

• Complexity
Universal Multi-channel

92

SECTION 7: CONCLUSION

7.1 SUMMARY

Nearly 10 years after Bitcoin entered
the world, the DLT ecosystem is still in
early stages: it is constantly evolving and
characterised by relentless experimentation
and R&D. New systems, applications,
and implementations are emerging on an
almost daily basis, and novel configurations,
technology assumptions, and vulnerabilities
are frequently presented. Despite growing
interest and much progress in recent years,
DLT systems are generally still considered
relatively immature. Doubts about cost-
benefit trade-offs and the utility of deploying
such systems to solve specific problems
continue to cast clouds over the ubiquitous
hype that surrounds the technology.

As a result, there are many misconceptions
about the nature of DLT systems, their
properties, applicability for specific use cases,
and remaining technological (and other)
challenges. Apart from native digital assets
issued on open, public and permissionless
DLT systems - used primarily as speculative
instruments - meaningful applications and
implementations of DLT systems in production
have rarely materialised to date: most projects
are still in early trial or pilot phases, and it is
unclear when they will be mature enough to
be live. In addition, ‘blockchain’ and ‘DLT’ have
become almost meaningless buzzwords that
are - in many cases - mainly used for marketing
and PR purposes.

For this reason, we have attempted to outline
the five key properties that a DLT system
needs to be capable of ensuring with no or
little modification to its architecture. A DLT
system is a distributed recordkeeping system
that operates in an adversarial environment
and is collectively maintained and updated by
multiple entities. Every participant needs to be
able to independently verify the validity and
integrity of transactions and ultimately the
system state. Finally, any attempt to tamper
with transaction history needs to be trivial to
detect and difficult to perform.

We find that on the basis of their current
settings and configurations, many self-
proclaimed ‘DLT systems’ do not meet these
criteria and can thus only be considered
‘potential DLT systems’ that have the basic
architectural features to allow eventual
evolution into ‘pure’ DLT systems. In order to
analyse a specific DLT system’s key properties
and power dynamics, we propose a conceptual
framework that breaks down the system
into three layers; each layer features a set of
components, which in turn are composed of
several processes that make the component
function. We show how these components and
processes interact, and how specific design
choices in one process can have a significant
impact on related processes and ultimately
system properties. We also introduce different
actor types, the roles they perform, and on
which layers they are active.

93

We then apply the framework to six case
studies of real systems that have been
deployed (Bitcoin, Ethereum, Ripple, Alastria,
Verified.Me and ‘Project X’), and use it as an
analytical tool to examine similarities and
differences between these systems. We
demonstrate how every design choice is a

conscious trade-off between a variety of
properties, and exhibit that the most common
trade-off is between ‘decentralisation’ and
performance. As a result, every DLT system is
a unique culmination of multiple configuration
choices and needs to be examined at an
individual level.

7.2 CONTRIBUTION

The study addresses the need for a clear and
shared ontology regarding DLT systems. It
aims at filling the gap in common terminology
by proposing a formal definition of a DLT
system that involves a set of criteria it should
meet. Furthermore, it provides a conceptual
framework that breaks down the system into a
set of system-critical layers, components and
processes.

The framework serves four purposes:

• Identifying DLT systems

• Analysing existing DLT systems

• Comparing different DLT systems

• Serving as a useful tool for new system
design by highlighting the trade-offs of
different design choices

The key contribution consists in providing a
conceptual tool for studying the components
of a DLT system and understand the
dependencies: before looking at the assets,
tokens, or recorded information, one needs
to understand the infrastructure that the
former are based upon. A system is not simply
‘decentralised’ or ‘centralised’, i.e. simple
binary: instead, there are different degrees of
control and authority prevalent at each layer,
component, and process. For this reason,
it is of utmost importance to understand
the dependencies between these layers to
accurately assess what is built on top of the
infrastructure.

This framework provides regulators with a
clear picture of where authority - if any - is
held in a DLT system, and hence who can be
held accountable for the resulting technology
and outcomes. For instance, it would appear
that in many cases, the protocol layer is often
controlled by a central authority who has the
capability of modifying the rules of the game.
In other cases, validating and processing
transactions may be restricted to a single
entity - or alternatively to a small group of
intimately related entities. It is important
to understand how power dynamics are
distributed across different layers in a DLT
system. The framework identifies the layers
and participants who may be subjected to
regulation, in addition to promoting general
understanding of the technology.

For businesses, system engineers, and
developers seeking to develop these systems
in-house, the framework will prove useful as a
guide to the different aspects essential to the
development of new DLT systems.

For investors looking to get exposure to DLT
enterprises, the framework could serve as
a yardstick to understand the credibility of
design proposals what different trade-offs this
technology implies, and how economic value
can be produced and extracted. Importantly, it
will help investors make informed investment
decisions, and not be misled into a ‘distributed’
technology that would, in fact, be centralised
or incapable of meeting its design objectives.

94

Academics and researchers may find the
framework useful as a clear foundation
upon which to develop theories related

to communications, economics, industrial
organization, and many other disciplines.

7.3 SHORTCOMINGS AND AVENUES FOR
FUTURE RESEARCH

The framework and its applications described
in this report is a modular and generic tool for
the analysis of DLT systems. This tool uses a
three-layer analysis approach that is mostly
based on qualitative interpretation. While this
analysis has attempted to remain as objective
as possible, the difficulty of objectively
quantifying abstract aspects of DLT systems
such as ‘decentralisation’ necessitates an
inherently subjective inquiry based on the
authors’ assessments, conceptions of the
technology stack, and role of the actors
inhabiting them.

Future research on the distributed technology
systems could focus on the more technical

aspects of the processes described in this
report. For instance, in performing case
studies of DLT systems, the framework could
be a first step towards more case-specific
technical developments. Similarly, additional
configurations for given processes could be
added or developed, including new processes
or components that might be necessary over
the development trajectory of the technology.
Additionally, regulatory and legislative
research could be conducted in relation to this
framework. This would help determine which
process configurations correspond to what
legal framework (e.g. authority, dependency).

96

APPENDICES

APPENDIX A: ANATOMY OF A DLT SYSTEM

Layer Component Process Description

Protocol
Layer

Genesis
Component

Inter-System
Dependencies

Investigate the dependencies of the system at the operation and/or the
data level (self-sufficient, dependent, interfacing, external).

Codebase Creation
Choose adequate codebase (existing, from scratch) as foundation of the
system and set access conditions (open-source, closed-source).

Rule Initiation Define and agree on the rules that govern the DLT system.

Alteration
Component

Protocol
Governance

Specify the decision-making process for altering the protocol in an
orderly and legitimate manner.

Protocol Change Specify how agreed-upon rule changes will be implemented.

Network
Layer

Communications
Component

Network Access Decide who to grant access to the system (open, closed).

Data Broadcast Specify how data is replicated (universal, multi-channel).

Transaction
Initiation

Determine who can create transactions and how these are broadcast to
the system (unrestricted, restricted).

Transaction
Processing

Component

Record Proposal

Select a set of unconfirmed transactions and bundle them together into
a candidate record. Propose adding the candidate record to the ledger
by performing the necessary steps specified by the protocol rules (e.g.
attach valid PoW).

Conflict Resolution
Rule

Set the rule that solves the conflict between equally-valid proposed
records for addition to the ledger (e.g. longest-chain rule).

Incentivised
Transaction
Processing

Specify the incentive nature behind transaction processing (intrinsic/
extrinsic, monetary/non-monetary).

Validation
Component

Transaction
Validation

Confirm the legitimacy and validity of unconfirmed transactions before
adding them to the log.

Record Validation
Verify whether a record complies with protocol rules before adding it to
the journal.

Transaction Finality
Determine the transition period between 'provisional’ settlement
and 'permanent’ settlement for confirmed records (deterministic,
probabilistic).

Data
Layer

Operations
Component

Input
Designate the data sources used to generate ledger entries (internal,
external).

Programmatically-
executed

Transactions

Specify the degree of expressiveness of on-chain computations at the
core system layer - often referred to as smart contract capabilities
(stateless, stateful).

Locus of Execution
Determine where computations are being executed
(on-chain, off-chain).

Journal
Component

Reference
Decide what the data stored in records is pointing to (endogenous,
exogenous, hybrid, self-referential).

97

APPENDIX B: CASE STUDY COMPARISON
FRAMEWORK ELEMENTS BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

PROCESS

Inter-System
Dependencies

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

Codebase
Creation

From scratch; open-source From scratch; open-source From scratch; open-source Quorum-based codebase (which itself is a fork of
Ethereum); open-source

Hyperledger Fabric; closed-source user modules Hyperledger Fabric; closed source
implementation

Rule Initiation Rules set by reference client Formal protocol specification
(‘Yellow Paper’)

Rules set by reference protocol
and client

Formal protocol specification Formal protocol specification Formal protocol specification
(default recommendation by Hyperledger)

Protocol
Governance

Anarchic: nodes vote by running
software client of choice; but
the Bitcoin Core reference
implementation has significant
influence over development

Hierarchical: Ethereum Foundation
and specific devs have substantial
influence over general development

Dictatorship: Ripple Labs has nearly
ultimate control; validators can vote
via ‘Amendments’ feature

Democratic/Plutocratic: validator nodes need to
reach agreement; no central administrator

Federation: a Steering Committee composed of
providers is voting

Dictatorship: key customer has final authority

Protocol
Change

Bitcoin Improvement Proposal (BIP)
via Core GitHub Repo; running
software client of choice (generally
Bitcoin Core)

Ethereum Improvement Proposal
(EIP); running software client of
choice (geth or Parity)

Validators vote on ‘Amendments’ - if
80% agree, changes get implemented

Unclear - likely pushed to clients who can choose
whether to update or not

Technical updates get pushed to network
endpoints and clients; substantial rule changes
need to be performed through a formal change
management process

‘Company Y’ will update the clients it runs for their
customers

Network
Access

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping distributed across
validator nodes

Closed: access control performed by gatekeeper
(SecureKey)

Closed: access control performed by gatekeeper
(Company Y according to formal process

Data Broadcast Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Multi-channel data diffusion (selective privacy) Multi-channel data diffusion (selective privacy);
but all nodes are hosted and run by Company

Transaction
Initiation

Unrestricted: anyone with a
corresponding private key can
create and sign a transaction: needs
to broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can create
and sign a transaction: needs to
broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can create
and sign a transaction: needs to
broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Network participants can create transactions;
likely external users can transmit signed
transactions as well via an auditor/listener

Restricted: select set of end users trigger
transactions via an API to nodes

Restricted: key customer’s ERP system creates
transactions that get submitted via API to one of
the auditors/listeners operated by Company Y

Record
Proposal

Permissionless: miners select
unconfirmed transactions from
their mempool and bundle them
together into a candidate block.
A valid candidate block requires
attaching a valid SHA-256 hash
to the block header (by selecting
a nonce that gives the hash a
sufficiently low value)

Permissionless: miners select
unconfirmed transactions from
their mempool and bundle them
together into a candidate block.
A valid candidate block requires
attaching a valid Ethash PoW to the
block header (by selecting a nonce
that gives the hash a sufficiently low
value)

Permissioned: validators select
unconfirmed transactions and create
a new ledger instance. They relay
candidate records for a ‘round of
consensus’: multi-computation of new
ledger

Permissioned: validator nodes (± 30 different
entities) select unconfirmed transactions from
their mempool and bundle them together into a
candidate block. Raft-based consensus mechanism
to reach agreement

Permissioned: validator nodes (all 15 providers)
create records that contain transactions relating
only to trades they are involved in. Simple state
change proposal: generally no disagreement

Permissioned: Company Y-controlled validator
selects unconfirmed transactions and creates
records (centralised node)

Conflict	
Resolution Rule

Longest valid chain rule (i.e. most
cumulative PoW)

Longest valid chain rule (i.e. most
cumulative PoW)

Multiple consensus rounds among
Unique Node List (UNL) until a
'supermajority' (80%) reach consensus

Race: the first block wins, competing blocks are
discarded (rare since generally only one minter/
leader at a time)

Generally no dispute; all participants agree
that something has happened. Exact consensus
algorithm used is unknown

No-op (consensus ignored): no conflict possible

Incentivised
Transaction
Processing

Intrinsic and monetary:: block
reward (newly minted BTC and
transaction fees)

Intrinsic and monetary:: block
reward (newly minted ETH and
transaction fees)

No monetary reward, implicit extrinsic
incentives (network robustness &
resilience)

No intrinsic monetary incentive (no native token) (1) Extrinsic monetary incentive: providers get paid
a service fee by destination service, denominated
in national currency ; (2) Extrinsic non-monetary
incentive: (a) value creation for customers of
providers that helps them compete against GAFA;
(b) helps them reduce fraud

No intrinsic nor monetary incentive - extrinsic
non-monetary incentive of running platform
smoothly

Transaction
Validation

Auditors and listeners validate
every unconfirmed transaction
before relaying it to connected
nodes

Auditors and listeners validate every
unconfirmed transaction before
relaying it to connected nodes

Tracking nodes validate unconfirmed
transactions before relaying them

Auditors and listeners validate every unconfirmed
transaction before relaying it to connected nodes

Each auditor/listener validates every transaction
within its channel

Company Y-controlled nodes validate every
transaction occurring within a particular channel

Input

Primarily internal (e.g. previous
outputs: UTXOs, scripts). External:
arbitrary data for timestamping
purposes using OP_RETURN

Internal (previous outputs:
accounts, smart contracts) and
external (oracles)

Internal (previous outputs - accounts)
and external (data related to IOU
creation)

Internal (previous outputs: accounts, smart
contracts) and external (oracles, IPFS
implementation, off-chain private storage)

Primarily external (OpenID Connect (OIDC):
connection service protocol). Internal = previous
outputs: payload hashes; consent instruction;
proof of reception

Primarily external (key customer ERP system via
API; insurance records by insurance company).
Internal = previous outputs/records

Programmati-
cally-executed

Transactions

Stateless: limited scripting language
enabling multi-signature and
timelocked contracts

Stateful: Turing-complete smart
contract language allows for
general-purpose computations

Stateless: special-purpose basic
computations on-chain

Stateful: Turing-complete smart contract language
allows for general-purpose computations

Stateless: very simple business logic available
on-chain

Stateless: very simple business logic available
on-chain

Locus of
Execution

Fixed-purpose machine for running
simple scripts on-chain

General-purpose virtual machine:
Ethereum Virtual Machine (EVM)
allows for the execution of complex
computations on-chain

Fixed-purpose machine for basic on-
chain computations

General-purpose virtual machine: Ethereum
Virtual Machine (EVM) allows for the execution of
complex computations on-chain

Business logic to manage user consent is executed
at a higher layer (off-chain)

Business logic is executed on an external platform
(off-chain rule engine)

Reference

Endogenous: native asset unique to
the system (BTC)

(1) Endogenous (native asset: ETH;
user-defined tokens: dApps); (2)
Hybrid (collateralised tokens and/or
records referencing external events)

(1) Endogenous (native asset: XRP);
(2) Hybrid (gateway-issued IOUs and
trust lines)

Depends on use case: endogenous if a native asset
or user-defined token; hybrid if a combination
of endogenous and exogenous references. Also
possible to have fully exogenous references.

Fully exogenous:: identity data resides in an
external system (identity sources: government,
banks, etc.)

Fully exogenous: ERP systems and insurance
records

P
R

O
T

O
C

O
L

D
A

TA

G
E

N
E

SI
S

A
LT

E
R

A
T

IO
N

LA
Y

E
R

C
O

M
P

O
N

E
N

T
C

O
M

M
U

N
IC

A
T

IO
N

S
T

R
A

N
SA

C
T

IO
N

 P
R

O
C

E
SS

IN
G

O
P

E
R

A
T

IO
N

S
V

A
LI

D
A

T
IO

N
JO

U
R

N
A

L

N
E

T
W

O
R

K

http://verified.me

98

APPENDIX B: CASE STUDY COMPARISON
FRAMEWORK ELEMENTS BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

PROCESS

Inter-System
Dependencies

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

Codebase
Creation

From scratch; open-source From scratch; open-source From scratch; open-source Quorum-based codebase (which itself is a fork of
Ethereum); open-source

Hyperledger Fabric; closed-source user modules Hyperledger Fabric; closed source
implementation

Rule Initiation Rules set by reference client Formal protocol specification
(‘Yellow Paper’)

Rules set by reference protocol
and client

Formal protocol specification Formal protocol specification Formal protocol specification
(default recommendation by Hyperledger)

Protocol
Governance

Anarchic: nodes vote by running
software client of choice; but
the Bitcoin Core reference
implementation has significant
influence over development

Hierarchical: Ethereum Foundation
and specific devs have substantial
influence over general development

Dictatorship: Ripple Labs has nearly
ultimate control; validators can vote
via ‘Amendments’ feature

Democratic/Plutocratic: validator nodes need to
reach agreement; no central administrator

Federation: a Steering Committee composed of
providers is voting

Dictatorship: key customer has final authority

Protocol
Change

Bitcoin Improvement Proposal (BIP)
via Core GitHub Repo; running
software client of choice (generally
Bitcoin Core)

Ethereum Improvement Proposal
(EIP); running software client of
choice (geth or Parity)

Validators vote on ‘Amendments’ - if
80% agree, changes get implemented

Unclear - likely pushed to clients who can choose
whether to update or not

Technical updates get pushed to network
endpoints and clients; substantial rule changes
need to be performed through a formal change
management process

‘Company Y’ will update the clients it runs for their
customers

Network
Access

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping distributed across
validator nodes

Closed: access control performed by gatekeeper
(SecureKey)

Closed: access control performed by gatekeeper
(Company Y according to formal process

Data Broadcast Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Multi-channel data diffusion (selective privacy) Multi-channel data diffusion (selective privacy);
but all nodes are hosted and run by Company

Transaction
Initiation

Unrestricted: anyone with a
corresponding private key can
create and sign a transaction: needs
to broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can create
and sign a transaction: needs to
broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a
corresponding private key can create
and sign a transaction: needs to
broadcast it to the network via an
auditor/listener, SPV client or third-
party service (API)

Network participants can create transactions;
likely external users can transmit signed
transactions as well via an auditor/listener

Restricted: select set of end users trigger
transactions via an API to nodes

Restricted: key customer’s ERP system creates
transactions that get submitted via API to one of
the auditors/listeners operated by Company Y

Record
Proposal

Permissionless: miners select
unconfirmed transactions from
their mempool and bundle them
together into a candidate block.
A valid candidate block requires
attaching a valid SHA-256 hash
to the block header (by selecting
a nonce that gives the hash a
sufficiently low value)

Permissionless: miners select
unconfirmed transactions from
their mempool and bundle them
together into a candidate block.
A valid candidate block requires
attaching a valid Ethash PoW to the
block header (by selecting a nonce
that gives the hash a sufficiently low
value)

Permissioned: validators select
unconfirmed transactions and create
a new ledger instance. They relay
candidate records for a ‘round of
consensus’: multi-computation of new
ledger

Permissioned: validator nodes (± 30 different
entities) select unconfirmed transactions from
their mempool and bundle them together into a
candidate block. Raft-based consensus mechanism
to reach agreement

Permissioned: validator nodes (all 15 providers)
create records that contain transactions relating
only to trades they are involved in. Simple state
change proposal: generally no disagreement

Permissioned: Company Y-controlled validator
selects unconfirmed transactions and creates
records (centralised node)

Conflict	
Resolution Rule

Longest valid chain rule (i.e. most
cumulative PoW)

Longest valid chain rule (i.e. most
cumulative PoW)

Multiple consensus rounds among
Unique Node List (UNL) until a
'supermajority' (80%) reach consensus

Race: the first block wins, competing blocks are
discarded (rare since generally only one minter/
leader at a time)

Generally no dispute; all participants agree
that something has happened. Exact consensus
algorithm used is unknown

No-op (consensus ignored): no conflict possible

Incentivised
Transaction
Processing

Intrinsic and monetary:: block
reward (newly minted BTC and
transaction fees)

Intrinsic and monetary:: block
reward (newly minted ETH and
transaction fees)

No monetary reward, implicit extrinsic
incentives (network robustness &
resilience)

No intrinsic monetary incentive (no native token) (1) Extrinsic monetary incentive: providers get paid
a service fee by destination service, denominated
in national currency ; (2) Extrinsic non-monetary
incentive: (a) value creation for customers of
providers that helps them compete against GAFA;
(b) helps them reduce fraud

No intrinsic nor monetary incentive - extrinsic
non-monetary incentive of running platform
smoothly

Transaction
Validation

Auditors and listeners validate
every unconfirmed transaction
before relaying it to connected
nodes

Auditors and listeners validate every
unconfirmed transaction before
relaying it to connected nodes

Tracking nodes validate unconfirmed
transactions before relaying them

Auditors and listeners validate every unconfirmed
transaction before relaying it to connected nodes

Each auditor/listener validates every transaction
within its channel

Company Y-controlled nodes validate every
transaction occurring within a particular channel

Input

Primarily internal (e.g. previous
outputs: UTXOs, scripts). External:
arbitrary data for timestamping
purposes using OP_RETURN

Internal (previous outputs:
accounts, smart contracts) and
external (oracles)

Internal (previous outputs - accounts)
and external (data related to IOU
creation)

Internal (previous outputs: accounts, smart
contracts) and external (oracles, IPFS
implementation, off-chain private storage)

Primarily external (OpenID Connect (OIDC):
connection service protocol). Internal = previous
outputs: payload hashes; consent instruction;
proof of reception

Primarily external (key customer ERP system via
API; insurance records by insurance company).
Internal = previous outputs/records

Programmati-
cally-executed

Transactions

Stateless: limited scripting language
enabling multi-signature and
timelocked contracts

Stateful: Turing-complete smart
contract language allows for
general-purpose computations

Stateless: special-purpose basic
computations on-chain

Stateful: Turing-complete smart contract language
allows for general-purpose computations

Stateless: very simple business logic available
on-chain

Stateless: very simple business logic available
on-chain

Locus of
Execution

Fixed-purpose machine for running
simple scripts on-chain

General-purpose virtual machine:
Ethereum Virtual Machine (EVM)
allows for the execution of complex
computations on-chain

Fixed-purpose machine for basic on-
chain computations

General-purpose virtual machine: Ethereum
Virtual Machine (EVM) allows for the execution of
complex computations on-chain

Business logic to manage user consent is executed
at a higher layer (off-chain)

Business logic is executed on an external platform
(off-chain rule engine)

Reference

Endogenous: native asset unique to
the system (BTC)

(1) Endogenous (native asset: ETH;
user-defined tokens: dApps); (2)
Hybrid (collateralised tokens and/or
records referencing external events)

(1) Endogenous (native asset: XRP);
(2) Hybrid (gateway-issued IOUs and
trust lines)

Depends on use case: endogenous if a native asset
or user-defined token; hybrid if a combination
of endogenous and exogenous references. Also
possible to have fully exogenous references.

Fully exogenous:: identity data resides in an
external system (identity sources: government,
banks, etc.)

Fully exogenous: ERP systems and insurance
records

P
R

O
T

O
C

O
L

D
A

TA

G
E

N
E

SI
S

A
LT

E
R

A
T

IO
N

LA
Y

E
R

C
O

M
P

O
N

E
N

T
C

O
M

M
U

N
IC

A
T

IO
N

S
T

R
A

N
SA

C
T

IO
N

 P
R

O
C

E
SS

IN
G

O
P

E
R

A
T

IO
N

S
V

A
LI

D
A

T
IO

N
JO

U
R

N
A

L

N
E

T
W

O
R

K

http://verified.me

99

APPENDIX C: GLOSSARY

ADMINISTRATOR
Actors that controls access to the core
codebase repository and can decide to add,
remove and amend code to change system
rules. An administrator is often considerably
involved in the governance process.

CANDIDATE RECORD
A record that has not yet been propagated
to the network and thus not been subject to
network consensus.

CENSORSHIP RESISTANCE
Inability of a single party or cartel to
unilaterally perform any of the following: 1)
change rules of the system; 2) block or censor
transactions; and 3) seize accounts and/or
freeze balances.

CONFIRMATION
The number of records that must be reversed
or overwritten to remove a transaction from
the ledger state.

CONSENSUS ALGORITHM
A set of rules and processes used by the
network to reach agreement and validate
records.

DEVELOPER
Actor that writes and reviews code that
underlies the technological building blocks of
a DLT system and its connected system(s). A
developer can be professionally employed or
participating as volunteer contributor.

DLT SYSTEM
A system of electronic records that (i) enables
a network of independent participants
to establish a consensus around (ii) the
authoritative ordering of cryptographically-
validated (‘signed’) transactions. These records
are made (iii) persistent by replicating the data
across multiple nodes, and (iv) tamper-evident
by linking them by cryptographic hashes.
(v) The shared result of the reconciliation/

consensus process - the ‘ledger’ - serves as the
authoritative version for these records.

ENDOGENOUS REFERENCE
Data which can be created and transferred
solely through the means of the system and
has meaning within the system. Enforcement is
automatically performed by the system.

EXOGENOUS REFERENCE
Data that makes reference to some real-world
condition and needs to be incorporated from
the outside. This generally requires a gateway
to make the connection to the external system
and enforce decisions outside the DLT system.

FORK
The event of a DLT system splitting into two
or more networks. A fork can occur when
two or more record producers publish a valid
set of records at roughly the same time, as a
part of an attack (e.g. 51% attack) or when
a DLT system protocol change is attempted
(such a fork is ‘hard’ if all users are required to
upgrade, otherwise it is ‘soft’).

GATEWAY
Actor that provides interfaces to the system
by acting as a bridge between the system and
the external world.

HYBRID REFERENCE
Data that shares both endogenous and
exogenous characteristics. Enforcement is
dependent to some extent on gateways.

INDEPENDENT VALIDATION
Ability of the system to enable each participant
to independently verify the state of their
transactions and integrity of the system.

JOURNAL
Ahe set of records held by a node, although
not necessarily consistent with the consensus
of other nodes. Journals are partial,
provisional, and heterogeneous: they may or
may not contain all the same records.

100

LEDGER
The authoritative set of records collectively
held by a substantial proportion of network
participants at any point in time, such that
records are unlikely to be erased or amended
(i.e. ‘final’).

LOG
An unordered set of valid transactions
held by a node, which have not yet been
incorporated into a formal record subject to
network consensus rules (i.e. ‘unconfirmed’
transactions). Also called mempool.

MULTI-PARTY CONSENSUS
Ability of the system to enable independent
parties to come to agreement on a shared
set of records without requiring a central
authority.

NATIVE ASSETS
The primary digital asset(s), if any, specified in
the protocol that are typically used to regulate
record production, pay transaction fees on the
network, conduct ‘monetary policy’, or align
incentives.

NETWORK
Interconnected actors and processes that
implement the protocol.

NODE
A network participant communicating with
peers over a shared communication channel.

OFF-CHAIN
Interactions, actions, and processes that occur
outside of the formal system boundaries.

ON-CHAIN
Interactions, actions, and processes that occur
within the system (i.e. at the system level) and
are reflected in the data layer.

ORACLE
A gateway that bridges the gap between the
DLT system and external systems by serving
as a source of information.

PARTICIPANT
Actor interconnected with other participants
in the network and communicating by passing
messages among each other.

PERSISTENCE
The ability of data to remain available after
the program execution, and to survive the
catastrophic loss of an arbitrary number of
nodes.

PROGRAMMATICALLY-EXECUTED
TRANSACTION
A computer script that, when triggered by a
particular message, is executed by the system.
When the code is capable of operating as all
parties intend, the deterministic nature of the
execution reduces the level of trust required
for individual participants to interact with
each other. They are commonly referred to
as smart contracts due to the scripts’ ability to
replace certain fiduciary relationships, such as
custody and escrow, with code. However, they
are not autonomous or adaptive (‘smart’), nor
contracts in a legal sense - rather, they can be
the technological means of implementing a
contract or agreement.

PROTOCOL
Set of software-defined rules that determine
how the system operates.

RECORD
A bundle of transaction data which has been
subject to network consensus rules and is part
of the global ledger.

RECORD REORGANISATION
A node discovers that a new ledger version
has been formed which excludes one or more
records that the node previously thought were
part of the ledger. These excluded records
then become ‘orphaned’.

SHARED RECORDKEEPING
The ability of the system to enable multiple
parties to collectively create, maintain, and
update a shared set of records.

101

SMART CONTRACT
See ‘Programmatically-executed transaction’.

TAMPER EVIDENCE
The ability of participants to easily detect
arbitrary changes to confirmed records.

TAMPER RESISTANCE
The ability to make it hard for a single party
to unilaterally change past records (i.e.
transaction history).

TRANSACTION
Any proposed change to the ledger; despite
the connotation, a transaction need not be
economic (value-transferring) in nature.
Transactions can be unconfirmed (not included
in the ledger) or confirmed (part of the ledger).

TRANSACTION FINALITY
Determines when a confirmed record can be
considered ‘final’ (i.e. not reversible). Finality
can be probabilistic (e.g. PoW-based systems
that are computationally impractical to revert)
or explicit (e.g. systems that incorporate
‘checkpoints’ that must appear in every
transaction history). Finalised records are
considered permanently settled, whereas
records that have been produced but which
are feasible to revert are referred to as
provisionally settled.

TRANSACTION PROCESSING
The set of processes that specifies the
mechanism of updating the ledger: (i) which
participants have the right to update the
the shared set of authoritative records
(permissionless vs. permissioned) and (ii)
how participants reach agreement over
implementing these updates. Also called
mining.

VALIDATION
The set of processes required to ensure that
actors independently arrive at the same
conclusion with regard to the state of the
ledger. This includes verifying the validity of
unconfirmed transactions, verifying record
proposals, and auditing the state of the system.

WALLET
A software program capable of storing and
managing public and private key pairs used to
store and transfer digital assets.

104104

ENDNOTES
1 Lamport, L., Shostak, R. & Pease, R. (1982) The Byzantine Generals Problem. ACM Transactions on

Programming Languages and Systems. 4 (3): 387–389.

2 Castro, M. & Liskov, B. (2002) Practical byzantine fault tolerance and proactive recovery. ACM Trans.
Comput. Syst. 20 (4): 398-461.

3 Haber, S. & Stornetta, W. S. (1991) How to time-stamp a digital document. Journal of Cryptology. 3 (2): 99-
111.

4 Bayer, D., Haber, S. & Stornetta, W. S. (1992) Improving the efficiency and reliability of digital time-
stamping. In: Capocelli R., De Santis A., Vaccaro U. (eds) Sequences II. Springer: New York, NY.

5 Bertalanffy, L. v. (1949) General Systems Theory, Biologia Generalis, 19: 114-129.

6 Laszlo, E. (1972) Introduction to Systems Theory: Toward a New Paradigm of Contemporary Thought.
New York: Harper Torchbooks and (1973) The Rise of General Theories in Contemporary Science, Journal
for General Philosophy of Science, 4: 335-344.

7 Buckley, W. (1967) Sociology and Modern Systems Theory, Englewood Cliffs: Prentice-Hall.

8 Miller, J. G. (1978) Living Systems. New York: McGraw Hill.

9 We use the name ‘Project X’ to refer to a live DLT system in production whose operator prefers to remain
anonymous.

10 World Bank Group (2017) Distributed Ledger Technology (DLT) and Blockchain. FinTech Note No. 1.
Available at: http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-
PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf [Accessed: 28 May 2018].

11 Pinna, A. & Ruttenberg, W. (2016) Distributed Ledger Technologies in Securities Post-Trading Revolution
or Evolution?. ECB Occasional Paper No. 172. Available at: https://www.ecb.europa.eu/pub/pdf/scpops/
ecbop172.en.pdf [Accessed: 29 May 2018].

12 Davidson, S., De Filippi, F. & Potts, J. (2016) Disrupting Governance: The New Institutional Economics
of Distributed Ledger Technology. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2811995 [Accessed: 29 May 2018].

13 Bank of England (2017) The economics of distributed ledger technology for securities settlement.
Staff Working Paper n.670. Available at: https://www.bankofengland.co.uk/-/media/boe/files/
working-paper/2017/the-economics-of-distributed-ledger-technology-for-securities-settlement.
pdf?la=en&hash=17895E1C1FEC86D37E12E4BE63BA9D9741577FE5 [Accessed: 29 May 2018].

14 Tasca, P. & Tessone, C. (2018) Taxonomy of Blockchain Technologies. Principles of Identification and
Classification. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2977811 [Accessed: 29
May 2018].

15 Cong, L.W. & He, Z. (2018) Blockchain disruption and smart contracts. NBER working paper series. Working
paper 24399. Available at: http://www.nber.org/papers/w24399.pdf [Accessed: 29 May 2018].

16 Atzori, M. (2015) Blockchain Technology and Decentralized Governance: Is the State Still Necessary?.
Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2709713 [Accessed: 29 May 2018].

17 Okada, H., Yamasaki, S. & Bracamonte, V. (2017) Proposed classification on blockchains based on authority
and incentive dimensions. 2017 19th International Conference on Advanced Communication Technology
(ICACT). Available at: https://ieeexplore.ieee.org/document/7890159/#full-text-section [Accessed: 29
May 2018].

18 Lemieux, V. (2017) A typology of blockchain recordkeeping solutions and some reflections on their
implications for the future of archival preservation. In: Big Data, IEEE International Conference on Big Data:
2271-2278.

19 Platt, C. (2017) Thoughts on the taxonomy of blockchains & distributed ledger technologies. Medium.
Available at: https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-
technologies-ecad1c819e28 [Accessed: 29 May 2018].

20 de Kruijff, J. & Weigand, H. (2017) Understanding the Blockchain Using Enterprise Ontology. In:
Dubois E., Pohl K. (eds) Advanced Information Systems Engineering. CAiSE 2017. Lecture Notes

http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecbop172.en.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecbop172.en.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2811995
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2811995
https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2017/the-economics-of-distributed-ledger-technology-for-securities-settlement.pdf?la=en&hash=17895E1C1FEC86D37E12E4BE63BA9D9741577FE5
https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2017/the-economics-of-distributed-ledger-technology-for-securities-settlement.pdf?la=en&hash=17895E1C1FEC86D37E12E4BE63BA9D9741577FE5
https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2017/the-economics-of-distributed-ledger-technology-for-securities-settlement.pdf?la=en&hash=17895E1C1FEC86D37E12E4BE63BA9D9741577FE5
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2977811
http://www.nber.org/papers/w24399.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2709713
https://ieeexplore.ieee.org/document/7890159/#full-text-section
https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28
https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28

105

in Computer Science, vol 10253. Springer, Cham. Available at: https://link.springer.com/content/
pdf/10.1007%2F978-3-319-59536-8.pdf [Accessed: 29 May 2018].

21 Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C. & Rimba, P. (2017) A Taxonomy
of Blockchain-Based Systems for Architecture Design. 2017 IEEE International Conference on Software
Architecture. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7930224
[Accessed: 29 May 2018].

22 Glaser, F. (2017) Pervasive Decentralisation of Digital Infrastructures: A Framework for Blockchain
Enabled System and Use Case Analysis. 50th Hawaii International Conference on System Sciences. Available
at: https://pdfs.semanticscholar.org/859d/0535e16095f274df4d69df54954b21258a13.pdf [Accessed:
29 May 2018].

23 Glaser, F. & Bezzenberger, L. (2015) Beyond Cryptocurrencies - A Taxonomy of Decentralized Consensus
Systems. 23rd European Conference on Information Systems (ECIS), 2015. Available at: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=2605803 [Accessed: 29 May 2018].

24 Bertalanffy, L. v. (1949) General Systems Theory, Biologia Generalis, 19: 114-129.

25 ‘Strategic’ actors opportunistically extract benefits from others through the misuse of a system. In
contrast, ‘honest’ or ‘non-strategic’ actors use the system as intended by its designer.

26 An adversary within a system might attempt to double-spend an asset. In contrast, an adversary outside
the system may attempt to control the communication networks the DLT system relies upon.

27 Nodes may display faulty behaviour that does not originate from malicious intent (e.g. hardware failure,
connectivity issues).

28 For example, a payment network can be trusted to reliably transfer funds from a consumer to a merchant,
but cannot guarantee that the merchant will provide the desired goods or services.

29 DLT systems do not remove trust requirements; they merely shift them from operators to users.

30 As we will see, a number of DLT systems currently operate in a closed, safeguarded environment that is
void of adversarial dynamics for a variety of reasons.

31 The term ‘authoritative’ is used to designate the set of records that all network participants agree upon,
and which are not subject to subsequent alteration without consensus.

32 ‘Transaction’ is taken in the sense used by computer scientists: a change to the records in the system (i.e.
state change).

33 Persistence refers to the ability of data to remain available after the program execution, and to survive the
catastrophic loss of an arbitrary number of nodes.

34 A node is a network participant communicating with peers over a shared communication channel.

35 Tamper-evident refers to the the ability of participants to easily detect changes to records.

36 The ideal DLT system is Byzantine-fault tolerant, which refers to the ability of a system to remain
operational even in the presence of unreliable components and where there is imperfect information
about whether a component is faulty. Byzantine faults may originate from imperfect information, latency,
hardware failures, or adversaries, and may originate from either unintentional error or malicious behaviour.

37 Computer scientists refer to this as ‘truth’, in the sense that a particular piece of data in the authoritative
record exists and does not conflict with other data in the system, but the data itself is not necessarily true
in the objective sense. For example, a record saying that ‘Alice reports that the sky is green’ would be
‘truth’ only in that it confirms what Alice reported, not the truth of the statement itself.

38 ‘Close examination discloses that blockchain technology, as implemented in Bitcoin and many other
systems, does not meet the formal accounting definition of a ledger; it is a journal which provides limited
netting as each transaction discloses the net remaining unspent amount (‘UTXO’) belonging to the
private encryption key associated with the transaction. It does not organise, summarise or present a
comprehensive report by category of the transaction results.’ In Vagneur, K. (2018) Blockchain Distributed
Technology: Governance, accounting and risk implications in the face of potential disruption. Available
at: https://www.researchgate.net/publication/325541604_Blockchain_Distributed_Technology_
Governance_accounting_and_risk_implications_in_the_face_of_potential_disruption? [Accessed: 04 June
2018].

39 A transaction is valid if it is properly formatted, authorised (i.e. cryptographically signed), and conforms to
other standard rules determined by the protocol (e.g. equality of inputs and outputs).

40 Formally, ‘the ledger’ has no independent existence and is not stored anywhere uniquely; rather, it is a
latent, abstract construct.

https://link.springer.com/content/pdf/10.1007%2F978-3-319-59536-8.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-59536-8.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7930224
https://pdfs.semanticscholar.org/859d/0535e16095f274df4d69df54954b21258a13.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2605803
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2605803
https://www.researchgate.net/publication/325541604_Blockchain_Distributed_Technology_Governance_accounting_and_risk_implications_in_the_face_of_potential_disruption
https://www.researchgate.net/publication/325541604_Blockchain_Distributed_Technology_Governance_accounting_and_risk_implications_in_the_face_of_potential_disruption

106

41 Records in Bitcoin are generally referred to as ‘blocks’.

42 In Bitcoin, the journal/ledger uses a specific data structure called ‘blockchain’: records (‘blocks’) are
cryptographically linked together as to form a chain of blocks. This data structure is used by many
instances of DLT systems.

43 We discuss transaction finality in more detail in Section 5.2.3.

44 Because each node technically possesses only a journal, it is common for nodes to insist on a ‘safety factor’
of some number of new records before attempting to interact with the data in a particular record. This
safety factor helps ensure that the node only interacts with data on the ledger; records that have achieved
this safety level are called ‘final’. The concept of settlement finality will be discussed in section 5.2.3.

45 This authentication and asymmetric encryption system is known as ‘public-key cryptography’ and was
pioneered in 1976 by American cryptographers Whitfield Diffie and Martin Hellman. Using a pair of
mathematically related keys (public and private), the public key is used to encrypt a message before sending
it, and only the paired private key holder can decrypt the message encrypted with the public key. This way,
effective security only requires keeping the private key private; the public key can be openly distributed
without compromising security.

46 For instance, many custodial cryptocurrency wallets have emerged to store customer assets (or more
accurately, the private keys that provide access to the assets). While many wallet providers operate secure
and reliable services, some providers have been dishonest and have stolen customers’ assets, while others
have lacked sufficient security and lost those assets to hackers. This has frequently been misreported as
a ‘hack’ of the cryptocurrency system itself rather than the result of improper private key management
among external service businesses. Such losses do not compromise the network itself but can have a
significant reputational effect upon the DLT system.

47 A software client is a computer programme which sends requests to other programmes or computers to
access services made available by a server. While the term continues to be applied to computers that run
‘client software’ or access the ‘client software’ code which is located on other computers, the client and
server may be separate computer programs which run on the same machine and connect via interprocess
communication (IPC) techniques (i.e. mechanisms in an operating system that permit separate processes to
manage shared data).

48 Auditors can store the entire transaction history since the genesis of the system (archival nodes) or opt
for reduced storage requirements by deleting older records that have received sufficient confirmations
(pruned nodes).

49 The term used to describe this role usually depends on the consensus algorithm of a particular DLT
system. Bitcoin popularised ‘miner’ as a general term for block producers in blockchain systems, but others
regard mining as particular to Proof-of-Work algorithms, describing Proof-of-Stake or enterprise record
producers variously as ‘validators’, ‘forgers’, ‘mints’, or ‘bakers’.

50 Examples include discussions on platforms like Reddit and GitHub, or decisions taken within a boardroom.

51 Many proposed use cases for DLT systems involve the unification of many disparate and proprietary
recordkeeping systems into one universal standard, for the purpose of reducing economic transaction
costs.

52 For instance, an attacker finding a vulnerability in The DAO smart contract in June 2016 that allowed
to steal 3.6m ether led to the Ethereum community - spearheaded by the Ethereum Foundation - to
implement an ‘emergency hard fork’ to recover the stolen funds. A hard fork is a software update that
changes the protocol in a backwards-incompatible way: all nodes need to upgrade in order to avoid a
network split. The DAO hard fork resulted in a permanent network split which led to the emergence of
Ethereum Classic. Another example is the Monero system: the roadmap specifies updates to the protocol
once every six months through a hard fork in order to change its proof-of-work algorithm to deter the
development and use of specialised ASIC mining equipment, among other reasons.

53 Indeed, the mechanics of the BIP process implicitly defer to the reality that the approval of block producers
is necessary to maintain and enforce any protocol change. A protocol change made without the support of
block producers would tend to be vulnerable to attack.

54 This is not limited to software: centralisation of hardware supply (e.g. mining equipment) may render a
network susceptible to control by a single party.

55 For an example of particular trade-offs, see Zamfir, V. (2018) Zamfir’s Triangle. Twitter. Available at: https://
twitter.com/VladZamfir/status/942271978798534657 [Accessed 8 June 2018].

56 The US Securities and Exchange Commission (SEC) has indicated that they will incorporate
decentralisation in their measure for whether tokens in DLT systems represent a security for regulatory
purposes. They do not define, nor provide a measure for, decentralisation in this context. The first such

https://twitter.com/VladZamfir/status/942271978798534657
https://twitter.com/VladZamfir/status/942271978798534657

107

public statement can be found at https://www.sec.gov/news/speech/speech-hinman-061418 [Accessed:
15 July 2018].

57 Buterin, V. (2017) The Meaning Of Decentralization. Medium. Available at: https://medium.com/@
VitalikButerin/the-meaning-of-decentralization-a0c92b76a274 [Accessed: 29 May 2018].

58 Srinivasan, B. & Lee, L. (2017) Quantifying Decentralization. Medium, Available at: https://news.earn.com/
quantifying-decentralization-e39db233c28e [Accessed: 17 June 2018].

59 There exist proposals to increase throughput by ‘sharding’ (i.e. dividing the total transaction volume into
subsets and allocating each subset to a smaller number of nodes for processing). In effect this would be a
hybrid, as it would be designed to operate both distributed and decentralised processing.

60 This effect was a central issue in the SegWit on-/off-chain scaling debates leading to the split of the Bitcoin
network and culminating in the creation of Bitcoin Cash (BCH) in 2017.

61 This loss may range from temporary (e.g. connectivity problems) to more challenging (e.g. increased
regulatory scrutiny, difficult media attention) to catastrophic (e.g. natural disaster, government prohibition).

62 Proof-of-Stake (PoS) is a consensus mechanism in which a new record producer is chosen proportionally to
the amount or age of coins ‘staked’, i.e. held by users during the election period. Tokens are usually bonded
(locked up) to motivate honest behavior, and risk destruction if malicious actions are detected by the
network.

63 A Proof-of-Work (PoW) is a piece of data which satisfies a set of requirements and is difficult to produce
(e.g. resource- or time-consuming) but it is easy for others to verify. Producing a PoW can be designed as
a low probability random cryptographic challenge which requires trial and error to produce a valid answer
(e.g. Bitcoin’s PoW) or it may be a true PoW which is a complex mathematical computation. In a competition
to be the first to complete a random puzzle PoW, anyone has a chance to win; in a true PoW, the most
powerful and fastest computer will win. PoW computations are used in programmes designed to prevent
spam email (e.g. Hashcash) as well as in cryptocurrency applications.

64 Omni leverages the OP_RETURN opcode to achieve this effect. The bit strings embedded in OP_RETURN
outputs are collectively understood by users of the Omni protocol as representations of assets, but
to other, indifferent Bitcoin users not interacting through the Omni protocol, they look like typical
transactions (albeit with some embedded metadata), and are treated as such. The outputs of these
transactions are commonly called ‘coloured coins’.

65 These networks are built on top of the respective platform and are based on a specific concept called ‘state
channels’. In essence, parties ‘route’ payments by exchanging signed transactions among each other off-
chain, and only broadcast back to the DLT system to open or close channels. This allows for near-real-time
and cost-efficient transactions by converting the base layer from a ‘cash’ layer to a ‘settlement’ layer.

66 For instance, Bitcoin does not have a formal specification; instead, the reference client ‘Bitcoin Core’
determines its consensus model and rules.

67 Orderliness refers to the extent to which a protocol alteration is coordinated to minimize network
disruptions during the alteration process.

68 Legitimacy refers to the degree to which a protocol alteration is accepted by the community as a whole
(users, holders, miners, etc.). For example, the perceived illegitimacy of the Ethereum hard fork after the
DAO incident led to parts of the network remaining on the original blockchain (Ethereum Classic/ETC).

69 The process of forming consensus and implementing a protocol update is a visible - but not all-
encompassing - aspect of governance in a DLT context. Not all DLT systems have formal procedures in
place to decide on protocol changes. These systems rely instead on implicit and social norms that inform
admission of new participants to the governance process.

70 It should be noted that some entities (or particular groups/types of entities) may still have disproportionate
influence over the protocol governance process.

71 For example, a system based explicitly on miner consensus (as opposed to user consensus) would be
governed primarily by a fluid set of anonymous entities, each with fluctuating degrees of influence over
time.

72 This can also involve ‘on-chain’ voting in which network participants vote on whether to accept or reject a
suggested protocol change, generally proportionate to their ownership of endogenous network resources
(e.g. native assets).

73 Some protocols allow users to delegate their voting power to other users. Due to the need to prevent
undue influence from Sybil identities (described in Section 5.2.1), some ‘democratic’ protocols may be
plutocratic in reality; alternatively, custodians may exercise ‘political’ rights on behalf of their customers,
with or without explicit consent. Democratic/plutocratic mechanisms are generally the most diverse,
sophisticated, and unproven.

https://www.sec.gov/news/speech/speech-hinman-061418
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://news.earn.com/quantifying-decentralization-e39db233c28e
https://news.earn.com/quantifying-decentralization-e39db233c28e

108

74 A fork need not necessarily preserve transaction history - for example, some records or transactions
may be blacklisted, as in the case of the Ethereum hard fork after the DAO incident. Similarly, not all
network splits destroy aggregate network value; in cases where each subnetwork represents a distinct
and conflicting vision, aggregate value may be enhanced by freeing each to pursue its vision unfettered
by the other. It should also be noted that some changes to the protocol can be implemented via a soft fork
rather than a hard fork. This prevents a network split: non-upgraded nodes will continue to be on the same
network despite not understanding the semantics of the rule changes.

75 As noted in Section 4.1.4, ‘decentralisation’ does not necessarily preclude a concentration of power or
influence, but rather reflects the ability of participants to route around a compromised actor. In this case,
the catastrophic loss of a repository or a key contributor would not necessarily disrupt the network or its
governance processes - provided that the reference code was not exclusively held by a small number of
entities.

76 The infeasibility of an exit may allow for more rapid innovation. This is not always an advantage because
while open-source projects are likely to be more conservative about adopting protocol changes, the ability
of users to exit can help encourage developers to make decisions which are aligned with users’ interests.

77 While projects like Tezos and Decred emphasize the importance of stakeholder votes in determining policy,
on-chain votes alone do not constitute the entire set of governance processes. In many cases, users must
necessarily coordinate off-chain to at least some extent (for example, to become aware of proposals or
calls for votes. For example, Tezos boasts a foundation, a corporation, and acknowledged leaders all of
which will influence decision-making, especially in the immature network. stages; Decred has an off-chain
assembly, a corporation which controls pooled funds, and PoW-based validation which complements on-
chain votes.

78 There remain practical limitations such as technical proficiency of the operator, equipment requirements,
and connectivity/bandwidth.

79 See Platt, C. (2017) Thoughts on the taxonomy of blockchains & distributed ledger technologies. Medium.
Available at: https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-
technologies-ecad1c819e28 [Accessed: 29 May 2018].

80 There are, of course, trade-offs involved: these channels are better for scaling as long as all relevant
operations are performed within a particular channel. Moving records from one channel to another adds
complexity and generally requires trusted gateways as a bridge between the channels.

81 The number of confirmations of a transaction is the number of records that must be reversed or
overwritten to remove it from the ledger state.

82 A cryptographic hash function is computer code which takes a string of data of any length as an input and
produces a fixed length string which can act as a ‘fingerprint’ for the provided data. Knowing the output
(‘hash value’) does not enable someone to reconstruct the original message; only a person who knows the
original message can prove the hash was created from that message. Hashing power measures the number
of times a particular hashing function is computed within a given system during a specified time window
(e.g. hashes per second).

83 Newer variants are in development. Delegated PoS (DPoS) schemes resemble representative voting
systems by enabling users to elect record producers, with votes weighted according to the amount of
assets staked. ‘Proof-of-Burn’ requires record producers to prove that they ‘burned’ some endogenous
resources (e.g. tokens) by sending them to a verifiably unspendable address. This consumes no resources
other than the burned underlying asset, and thus simulates the economic costs of PoW without requiring
consumption of real-world resources.

84 The ‘nothing-at-stake’ problem describes the fact that a block producer may be able to add records to
multiple subchains simultaneously, because all but one will be discarded. As a result, multiple ‘histories’
can persist because no record producer is incentivised to detect or resolve conflicts, opening the door
for double-spending attacks. In a ‘grinding’ attack, a block producer can strategically choose (or create)
transactions to manipulate the source of randomness used to select stakes, thereby causing the system to
‘randomly’ select the same record proposer repeatedly, enabling censorship.

85 Seibold, S. & Samman, G. (2016) Consensus: Immutable agreement for the Internet of Value. KPMG
Publication. Available at: https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-
consensus-mechanism.pdf [Accessed: 19 June 2018].

86 The longest-chain rule is also called the most-worked-chain rule, because it is sometimes possible for a
series of records to be shorter despite carrying more work.

87 We use ‘monetary’ as a convenient label to refer to both national fiat currency, or to anything that can be
reliably and easily converted into national fiat currency or used to purchase goods or services.

https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28
https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf

109

88 IOTA uses a model wherein every node that would like to create a transaction is required to process two
other transactions.

89 Transactions in a DLT system generally get validated and verified multiple times. Figure 12 provides an
overview of the different phases.

90 Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A. & Felten, E. W. (2015) Research Perspectives
and Challenges for Bitcoin and Cryptocurrencies, 36th IEEE Symposium on Security and Privacy. Available at:
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf [Accessed: 25 June 2018].

91 In Bitcoin, the provisional settlement period is typically considered 6 ‘confirmations’ (i.e. blocks built
over the transaction of interest). However, this is a choice made by each user; a node may require more
(or fewer) confirmations based on its risk tolerance. Exchanges and custodians typically require 6
confirmations, while some merchants even accept ‘0-confirmation’ transactions if they can be assured of a
block being mined before a conflicting transaction is posted.

92 An eclipse attack is a situation where a node’s connections are blocked or manipulated by the attacker, who
then feeds the target records which are not part of the network’s consensus. The effect is to cause the
node to accept double-spends when it eventually rejoins the network. Eclipse attacks are generally much
easier to perpetrate than 51% attacks.

93 ‘Settlement finality’ may become a legal matter - rather than a technical distinction - which arises from
agreements between network participants.

94 It should be noted that despite its popularity, usage of the term in this context is not entirely accurate
because even systems considered ‘stateless’ have some notion of state. For example, Bitcoin’s state is the
entire UTXO (unconfirmed transaction output) set.

95 These terms are somewhat erroneous, as connected nodes/systems will generally be relied upon to pass
transactions to initiate some function in the smart contract. Simply deploying an executable will not lead to
its autonomous execution.

96 An emerging area of cryptography, called zero-knowledge proofs, is currently being investigated as a
possible scaling solution for stateful systems, as it allows computation to be moved off-chain and paired
with a proof that the computation was performed correctly.

97 It should be noted that not all nodes are equal. Record producers have the right to create and propose
new records, whereas auditors are verifying whether these records comply with protocol rules. Record
producers have a certain degree of power in terms of deciding whether to adopt or reject rule changes;
auditors can be considered to have a veto right as they are ultimately deciding whether to accept or reject
records submitted by record producers.

98 SegWit (‘Segregated Witness’) is a soft fork change that has been implemented in Bitcoin in 2017. It fixes
long-standing transaction malleability issues preventing the development of applications and ‘layer-2’
systems. The SegWit proposal was met with resistance by some community members and eventually led
to the Bitcoin Cash hard fork, which established a new system with a different scaling roadmap (primarily
on-chain).

99 This generally involves referencing the coins to move (select UTXOs as inputs), proving that one has
ownership of the coins to move (provide a digital signature), and specifying the necessary conditions that
the recipient will have to fulfil to unlock the funds (setting the encumbrance conditions).

100 A valid Bitcoin PoW is achieved by finding a nonce that causes the SHA-256 hash of the block to have a
sufficiently low value.

101 The ‘longest-chain rule’ specifies that nodes should accept the block that is built on top of the blockchain
instance that has accumulated the most PoW, i.e. was hardest to produce. Contrary to the name, the
longest chain in terms of the number of blocks does not always correspond to the chain with most
accumulated PoW. This means that the ‘longest-chain rule’ terminology is confusing and actually refers to
the chain with the most accumulated PoW. Thus, it is sometimes called the ‘most-worked chain rule’.

102 Bitcoin (the system) has a link to the physical world via its PoW-based mining process: miners are ‘burning’
physical resources in the form of energy and specialised equipment to solve the cryptographic hashing
puzzles which lead to the creation of new bitcoin units.

103 However, it should be noted that this only applies to one side of the trade: the system can enforce the
transfers of bitcoin (endogenous to the system) but not the corresponding transfer of goods or services that
makes up the other side of the trade (exogenous to the system).

104 We assume that there is no collusion between the different Bitcoin or Ethereum mining pools. If there is
collusion, as some warn, then this statement is no longer true.

http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf

110

105 It is important to note here that because Bitcoin has no formal protocol specification, clients implement the
protocol rules instead. In Bitcoin, Bitcoin Core currently functions as the reference client which dictates
rules. Nevertheless, there are half a dozen competing clients that users can choose to run. This means that
any of the competing clients could implement a rule change which would then be enforced by the users
running that particular client.

106 The Bitcoin network needs at least 95% to agree for a proposal to be implemented.Thus, SegWit seemed
unlikely to be achieved, until key players signed an agreement that the bar for SegWit activation would be
lowered. Following this, consensus for SegWit was reached and it was activated in August 2017.

107 Disagreements over how to handle The DAO smart contract bug led to the Ethereum blockchain split into
two separate systems: a minority disagreed with the Foundation’s plan to reverse The DAO smart contract
and refused to upgrade their clients, which led to the creation of Ethereum Classic following the original
Ethereum blockchain (including The DAO smart contract).

108 Currently, the default Unique Node List (UNL) is composed of a majority of Ripple-controlled validators. A
successful ‘Amendment’ requires an 80% consensus threshold.

109 It should be noted that while access to the Ripple DLT system is theoretically open and unrestricted, it can
prove difficult in practice to reliably receive and collect network data.

110 There are methods available to alleviate the storage burden by pruning older transactions that are buried
deep enough under new records. The exact implementation differs across systems and implementations.

111 In practice, however, we observe that except for Verified.Me, the majority of auditors do take the role
of record producers for a variety of reasons. Transaction processing (‘mining’) in Bitcoin and Ethereum
requires substantial upfront investment into mining equipment and electricity contracts, whereas
validators in Ripple need to be part of the Unique Node List (UNL) of the majority of auditors in the system
in order to participate in transaction processing.

112 ‘Company Y’ chose this conservative approach to account for unforeseen circumstances at this early
stage. The goal is to test the system and make participating entities comfortable with the idea of gradually
distributing control.

113 It is important to note that the ‘longest-chain rule’ only applies to competing system versions that share
the same protocol rules. For instance, Bitcoin Cash (BCH) is ‘longer’ than Bitcoin (BTC) but operates on the
basis of a different rule set, which invalidates the ‘longest-chain rule’.

114 Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System. Available at: https://bitcoin.org/
bitcoin.pdf [Accessed: 21 June 2018]. The quote can be found on page 4.

115 A record (or block) reorganisation designates the ability of record producers to mine an alternative version
of the ‘ledger’ that, provided it overtakes the original ledger, will replace the original version and invalidate
all transactions contained in these records.

116 This effectively reduces the provisional settlement phase to nearly zero. However, one needs to keep in
mind that changes to the protocol rules can always override transaction processing, which then impacts
finality as well. In the end, ‘settlement finality’ is rather a legal than a technical concept that is ultimately
based on social agreements between network participants.

117 Metalayers built on Bitcoin - e.g. Counterparty, Coloured Coins and Omni - are considered external
systems that are dependent on Bitcoin in this context. Ethereum’s ERC20 tokens and smart contracts are
considered to be part of the core system since nodes are able to understand the semantics without having
to run an additional client.

118 Some systems support both endogenous and hybrid assets.

119 Cardano is building a distributed computing platform based on PoS consensus. An initial version with
limited functionality was released in September 2017.

120 The World Reserve Trust (WRT) is building a government-endorsed DLT system that issues a native digital
currency (SiLuBi) acting as an intermediary currency to facilitate global trade by eliminating inefficiencies
(e.g. substantial reduction in settlement period, foreign-exchange risk and transaction costs). Participants
will have the ability to control and oversee platform development via a DAO governance model.

121 The Royal Mint Gold (RMG) platform is a DLT system operated by the CME Group to facilitate the
issuance and trading of digital gold tokens backed by gold reserves. Each token confers direct ownership
rights of physical gold securely stored and held in custody by the UK Royal Mint.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Cambridge Centre for Alternative Finance
10 Trumpington Street
Cambridge CB2 1QA

United Kingdom
Email: ccaf@jbs.cam.ac.uk
Tel: +44 (0)1223 339111

	Distributed Ledger Technology Systems: A Conceptual Framework
	Table of Contents
	Foreword
	Research Team
	Disclosures
	Acknowledgements
	Executive Summary
	Section 1: Introduction
	Rationale
	Objectives
	Methodology
	Report Structure

	Section 2: DLT Systems - Setting The Scene
	2.1 DLT Systems In The Literature
	2.2 What Are DLT Systems?
	2.3 Clarifying Terminology
	2.4 Actors

	Section 3: Introducing The Framework
	3.1 Protocol Layer
	3.2 Network Layer
	3.3 Data Layer
	3.4 Putting It All Together

	Section 4: System Interactions
	4.1 Within The System Boundaries
	4.2 Beyond The System Boundaries

	Section 5: A Deeper Dive Into The Framework
	5.1 Protocol Layer
	5.2 Network Layer
	5.3 Data Layer

	Section 6: Applying the Framework - Case Studies
	6.1 Bitcoin
	6.2 Comparative Analysis
	6.3 Comparing Key Differences Across DLT System Case Studies

	Section 7: Conclusion
	7.1 Summary
	7.2 Contribution
	7.3 Shortcomings And Avenues for Future Research

	APPENDICES
	Appendix A: Anatomy Of A DLT System - Full Framework
	Appendix B: Case Study Comparison
	Appendix C: Glossary

	ENDNOTES

