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FOREWORD

Terms such as cryptocurrency, blockchain, 
and distributed ledger technology (DLT) have 
gradually entered our daily lexicon, featured 
prominently in news and media, and fuelled 
discussion and debate among communities, 
industry practitioners and policymakers. 
Nevertheless, there is no rigorously defined 
set of terminologies or commonly acceptable 
taxonomy available. As a result, people are 
often talking past each other, and these 
terms are often misconstrued, misused, and 
misinterpreted.
 
Without undertaking a systematic and 
holistic approach, attention and analysis can 
be narrowly devoted to fractions, parts, and 
the surface of the phenomenon, rather than 
the whole. Consequently, people ‘can’t see 
the forest for the trees’ and they are more 
susceptible to bias, misunderstanding, inflated 
claims, or conflicted views.
 
Therefore, a more thorough and reflective 
research to conceptualise and examine DLT 
as a functioning system with key layers, 
components, processes, and interactions with 
other systems (if applicable) is needed. By 
adopting a ‘systems perspective’, hopefully 
we can begin the journey to not only see 
‘trees’ and the ‘forest,’ but to develop a more 
nuanced understanding of the complex and 
living ‘DLT ecosystem’.
 
Building on the successes of our Centre’s 
Global Cryptocurrency and Blockchain 
Benchmarking Studies - and aware of our own 
limitations and the challenges of the task - we 
reached out to assemble a team of researchers 
and contributors from diverse backgrounds. In 
order to conceptualise DLT systems and reach 
some form of ‘consensus’ on definitions and 

taxonomies, it is essential for our own research 
process to be open, collaborative, and self-
critical. As we see it, this resulting study is a 
beginning and a catalyst to invite more input, 
discussion, and debate, as the landscape of 
DLT itself continues its swift evolution.
 
In this study, DLT systems were purposefully 
‘deconstructed’ and then ‘reconstructed’ 
using a ‘systems perspective’ and an analytical 
framework that envisions all DLT systems 
as constructed of three layers: Protocol, 
Network, and Data. It articulates how 
these core layers interact with each other 
through processes and flows, as well as their 
conditional dependency and hierarchy within 
the system. The analysis demonstrates how 
varying the ‘configuration’ of these layers and 
their components will result in ‘DLT systems’ 
(and by extension the records and assets 
within them) that function and behave very 
differently. It also illustrates how DLT systems 
might interact with each other within the 
wider ecosystem, how ‘centralisation’ and 
‘decentralisation’ should be understood as 
falling along a spectrum rather than binary, and 
the necessity for making a distinction between 
‘native’ and ‘non-native’ recordkeeping.
 
We are very grateful for the contribution of 
all of our research team members and the 
opportunity to do our small part to further our 
collective understanding of DLT systems.
 
Bryan Zhang
Executive Director and Co-Founder, 
Cambridge Centre for Alternative Finance 
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EXECUTIVE SUMMARY

The DLT ecosystem is plagued with the use 
of incomplete and inconsistent definitions 
and a lack of standardised terminology, 
creating a needlessly complicated landscape 
for everyone from experienced policymakers 
and developers to individuals venturing into 
the field for the first time. This study sets out 
to contribute to international discussions to 
create a shared, common language around DLT 
systems to clarify terminology and concepts. 
We provide a formal definition of DLT systems 
and a list of key characteristics that distinguish 
them from alternative systems. 

We then introduce a conceptual framework 
that serves as a multi-dimensional tool for 
examining and comparing existing DLT 
systems, which we believe will be useful 
for a wide range of readers and purposes: 
from businesses and institutions developing 
DLT-based applications, investors funding 
DLT ventures, to academics, regulators and 
policymakers who wish to have a better 
and more nuanced understanding of DLT 
systems. The framework breaks down a 
DLT system into a set of interconnected 
layers, components, and processes. It is the 
combination and interactions of these small 
and rather simple processes that together 
form a complex and dynamic system. 

We show that layers follow a hierarchy: the 
protocol layer dominates both the network 
layer and the data layer in that it can overrule 
any decisions taken at those layers. Typical 
roles and actors within a DLT system are 
grouped together into four categories. 
We discuss how roles and actors can be 

distributed across layers, which becomes 
crucial when examining the power structure 
around the system. We highlight that in DLT 
systems decentralisation is not a binary 
property, but a continuous variable resulting 
from interplay of the system components, 
hierarchies, and power structures at each 
layer.

Our framework presents a non-exhaustive 
list of potential configurations for various 
processes at each layer and component. It 
then shows how different design choices (i.e. 
different configurations) lead to particular 
outcomes that shape the properties and 
characteristics of the system. This exercise 
requires the application of different lenses 
developed in the framework for analysing 
each process. It also shows that trade-offs 
are inherent to DLT systems and move along 
a spectrum according to specific security 
assumptions, threat models, and trust 
relationships. There is no inherent ‘right’ or 
‘wrong’: use case requirements and objectives 
should drive the discussion around acceptable 
trade-offs to choose from.

We further note that DLT systems generally 
do not operate in isolation, but in concert with 
a variety of external systems: only transfers of 
endogenous resources internal to the system 
are automatically executed by the DLT system 
itself without the involvement of external 
agents. This is particularly relevant when 
the records produced by the DLT system 
reference exogenous objects, events, or facts 
external to the DLT system in question (e.g. 
items tracked in a supply chain; physical assets 
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held in custody). These exogenous objects 
require gateways that connect the system to 
the external world and are reliant on external 
agents and an existing legal structure to 
enforce decisions outside of the boundaries of 
the DLT system.

The study also demonstrates that choices 
made in the design, architecture, and 
governance of each DLT system can result in 
significant differences with regard to system 
properties and characteristics. We discuss 
the concept of provisional settlement and 
illustrate the life cycle of transactions within 
different architectures. In addition, we explore 
how record producers are incentivised by 
distinguishing between systems whose 
security model relies on intrinsic economic 
incentives (i.e. requiring a native asset for 
compensation) and systems that are secured 
through access controls and contractual 
obligations between record producers. 

We clear up misconceptions about the form 
taken by the shared data record structure and 
classify the data as transactions, logs, records, 
journals, and ledgers according to the extent 

the data has been processed by the DLT 
system network. Importantly, we use the term 
‘ledger’ to mean the set of records which are 
held in common by a substantial proportion of 
network participants.

Finally, we conduct a comparative analysis by 
applying the conceptual framework to six case 
studies (Bitcoin, Ethereum, Ripple, Alastria, 
Verified.me, and an anonymised DLT system 
referred to as “Project X”) and introduce a 
DLT systems landscape map that positions a 
dozen of DLT systems. We observe that open 
systems with permissionless participation 
in transaction processing primarily record 
transfers of ownership of endogenous 
resources, whereas the majority of closed 
systems with more fine-grained permission 
levels typically reference objects external 
to the system and depend on gateways and 
external enforcement. We demonstrate that 
open systems range from fully centralised 
to reasonably decentralised as a whole, 
while closed systems currently tend to be 
centralised for a variety of reasons, with plans 
to gradually distribute control over time.
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SECTION 1: 
INTRODUCTION

RATIONALE

The concept of distributed ledger technology 
(DLT) existed before Bitcoin and blockchain 
technology. The Byzantine Generals Problem 
theorised by Lamport et al. (1982) described 
how ‘computer systems must handle [...] 
conflicting information’ in an adversarial 
environment.1 Subsequent research led 
to the emergence of the first algorithm 
for ‘highly available systems that tolerate 
Byzantine faults’ with little increase in 
latency (Castro & Liskov, 2002).2 The earliest 
identified occurrences of the concept of a 
‘blockchain’ can be traced back to Haber & 
Stornetta (1991)3 and Bayer et al. (1992)4 
who introduced the notion of a chain of 

cryptographically-linked data blocks to 
efficiently and securely timestamp digital data 
in distributed systems using cryptographic 
hashing functions and Merkle trees.

However, these developments attracted little 
attention in contrast with recent enthusiasm 
around cryptocurrencies and blockchain 
technologies more generally. This new interest 
has attracted significant investment, resulting 
in the rapid evolution of DLT system types 
and applications, many of which have little 
in common with Bitcoin and its numerous 
copycats.

DLT systems conceptually emerged in 1982, while the earliest  
occurance of the ‘blockchain’ concept can be traced back to 1991

What Is DLT?

Distributed ledger technology (DLT) has established itself as an umbrella term to designate 
multi-party systems that operate in an environment with no central operator or authority, 
despite parties who may be unreliable or malicious (‘adversarial environment’). Blockchain 
technology is often considered a specific subset of the broader DLT universe that uses a 
particular data structure consisting of a chain of hash-linked blocks of data.
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Concomitant with the expansion and evolution 
in types and uses of DLT has been the 
widespread use of language and terminology 
which is frequently fuzzy, imprecise, and 
inconsistent across different projects. This 
report was motivated by a recognition that, 
left unsolved, this disorderly use of language 
and conceptual terminology could hinder 
development within the DLT sector, and 
may present society and industry with legal 
uncertainty and financial risks which are as yet 
unrecognised.

Currently, much of the general interest is 
focused on cryptographically-secured digital 
assets and other digital tokens that can be 
issued and transferred on DLT systems. 
Before the properties of these assets can 
be analysed, however, it is critical to have 
a robust understanding of the underlying 
infrastructure, and how specific design 
decisions impact the nature of the recorded 
data.

OBJECTIVES

This report seeks to establish a conceptual 
framework and terminology that can be 
applied with ease across DLT systems that 
predate cryptocurrencies such as Bitcoin, 
and the many DLT systems which have been 
inspired by or followed Bitcoin. It also seeks 
to distinguish these newer technologies from 
‘traditional’ databases and other systems. 
The purpose of the framework is to provide 
a multidimensional tool for examining and 
comparing existing DLT systems and their 

traits and features. It also can serve as 
an analytical tool useful when examining 
proposals for new DLT systems.

This framework for DLT analysis has 
been designed to be generic so it should 
be applicable to every type of DLT, and 
modular, so that new layers, components, 
processes, and configurations can be added 
independently without affecting the core of 
the framework. 

METHODOLOGY

We have taken a ‘systems perspective’ 
because it allows us to describe how a 
collection of parts work together to create 
a functional whole rather than presenting 
them as a set of disconnected parts. This 
enables assessment of the behaviors of such 
a system in the context of its environment. 
While the concept of a system itself is a more 
general notion that indicates separation of 
some part of the universe from the rest, the 
idea of a systems perspective is to use a non-

reductionist approach to the task of describing 
the properties of the system itself.
Further, we have sought to consider these 
systems in the context of their environments 
or ecosystems, and not as isolated entities. 
Thus, one can examine the interactions and 
relationships between a DLT system and its 
environment.

This analytical approach draws from Systems 
Theory which has developed in parallel 
streams of research, each with its own unique 
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orientation, that began to emerge in the 
1940s with the first published work by Ludwig 
von Bertalanffy (1949). He articulated the 
notion of a general systems theory5, which is 
multidisciplinary in nature and examines the 
general science of ‘wholeness’ as systems. 
Ervin Laszlo (1972) proposed an organisation 
of knowledge in terms of systems, systemic 
properties and inter-system relationships 
which he termed ‘systems philosophy’.6 Walter 
Buckley (1967)7 and James Grier Miller 
(1978)8 further refined Bertalanffy’s general 
systems theory as a theoretical framework 
and methodology that can be applied in 

physical, biological as well as social sciences. 
Especially notable was Miller’s concept of 
‘living systems’ which stipulates that systems 
can have hierarchical levels and subsystem 
layers, maintained by flows of information, 
energy and matter. 
We aim to conceptualise a DLT system in this 
vein as a set of interconnected and hierarchical 
components and their interacting processes. 
Rather than a simple collection of parts, it is 
the ‘configuration’ of hierarchical components 
- and their interrelations and interactions 
- that determines the functionality and 
characteristics of a particular DLT system. 

REPORT STRUCTURE

The remainder of the report is structured as follows:

Section 2 provides a review of the existing 
literature, summarises theoretical concepts 
and frameworks, and outlines their limitations. 
It then establishes a formal definition of a DLT 
system and highlights the necessary criteria it 
must meet, and defines several key terms.

Section 3 presents a high-level overview of 
the proposed tool by introducing the various 
elements of the conceptual framework.

Section 4 investigates the dependencies 
between layers within a particular DLT system 
as well as the interactions and relationships 
with external systems.

Section 5 offers a deep dive into each element 
of the conceptual framework by outlining 
potential configurations and their effects on 
the system illustrated by examples of existing 
DLT systems.

Section 6 applies the framework as a tool to 
Bitcoin and compares it to other case studies 
that have chosen alternative design decisions.

Section 7 summarises the present report 
and offers recommendations as to how the 
conceptual framework might be extended and 
what it can be applied to.

Appendix A presents the full framework 
in table form; Appendix B summarises the 
comparative analysis between the six case 
studies (Bitcoin, Ethereum, Ripple, Alastria, 
Verified.Me, and ‘Project X’9); and Appendix 
C features a glossary of the most commonly 
used terms.
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SECTION 2: DLT SYSTEMS 
- SETTING THE SCENE

2.1 DLT SYSTEMS IN THE LITERATURE

2.1.1 Definitions
There exist many different definitions of 
distributed ledger technology (DLT) systems 
in the literature, and many publications on the 
subject set out their own unique definition 
in their preamble. Some definitions are 
narrow, while others are very broad; some 
are contradictory. Consequently, a coherent 
definition for DLT has not yet developed.

For instance, the World Bank (2017) describes 
DLT systems as ‘a specific implementation of 
the broader category of ‘shared ledgers’, which 
are simply defined as a shared record of data 
across different parties’10.

Pinna & Ruttenberg (2016) from the European 
Central Bank (ECB) describe DLT as a 
technology that ‘allow[s] their users to store 
and access information relating to a given 
set of assets and their holders in a shared 
database of either transactions or account 
balances. This information is distributed 
among users, who could then use it to 
settle their transfers of, e.g. securities and 
cash, without needing to rely on a trusted 
central validation system’11. Davidson et al. 
(2016) consider a DLT system a ‘distributed, 

cryptographically secure, and crypto-
economically incentivised consensus engine’12.

In contrast, the Bank of England (2017) 
provides a set of key architectural 
characteristics that define DLT systems: ‘A 
DLT is a distributed database, in the sense that 
each node has a synchronized copy of the data, 
but departs from the traditional distributed 
database architectures in three important 
ways: (i) decentralisation; (ii) reliability in 
trust-less environments; (iii) cryptographic 
encryption’. The Bank of England summarises 
its definition as: ‘a database architecture 
which enables the keeping and sharing of 
records in a distributed and decentralised way, 
while ensuring its integrity through the use 
of consensus-based validation protocols and 
cryptographic signatures’13.

Similarly, Tasca & Tessone (2018) list a set of 
key features that seem unique to DLT systems: 
‘A DLT system is a community consensus-
based distributed ledger where the storage 
of data is not based on chains of blocks 
whose principles are (a.) decentralisation of 
consensus, (b.) transparency, (c.) security and 
immutability’14.
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Other definitions refer exclusively to 
‘blockchain technology’ and do not 
differentiate between DLT and ‘blockchain’. 
For instance, Cong & He (2018) define a 
blockchain as a ‘distributed database that 
autonomously maintains a continuously 
growing list of public records in unit of ‘blocks’, 
secured from tampering and revision’15, while 
Atzori (2015) describes it as an ‘irreversible 
and tamper-proof public records repository 
for documents, contracts, properties, and 
assets [that] can be used to embed information 
and instructions, with a wide range of 
applications’16. 

As shown by these examples, there is no 
genuine and universal definition for what is 
referred to as a DLT system. Adding to the 
challenge is that on the one hand, definitions 
are sometimes too specific, technical and 
inaccessible to general audiences; while on 
the other hand, some are too simplistic and 
broad so that no meaningful difference to 
more traditional database architectures can 
be observed. Either way, a lack of common 
terminology has resulted in misconceptions 
and the widespread formation of unrealistic 
expectations as to what this technology can 
achieve. 

2.1.2 Existing Frameworks
Ontologies - descriptions of things that 
exist, and how they can be grouped together 
according to similarities and differences - 
allow people to converge towards a common 
terminology in specific ecosystems. Therefore, 
the project team has carried out an analysis 
of ontologies previously proposed to 
understand the suggested categorisations 
of DLT ecosystems provided by academics, 
professionals and others who have written 
on this topic. We summarise some of 

these frameworks below and discuss their 
shortcomings in Section 2.1.3.

Okada et al. (2017) propose a classification 
of blockchain technology based on two 
dimensions: a) the existence of an authority 
and b) the incentive to participate.17

Lemieux (2017) analyses blockchains through 
the lens of archival science, the theory 
underpinning record keeping and preservation 
of authentic records. This work frames 
blockchains in terms of types of record keeping 
systems, namely ‘mirror type’, ‘digital record 
type’, and ‘tokenised type’, and examines each 
type in relation to a formal archival theoretic 
evaluation framework.18 

Platt (2017) presents a simple yet powerful 
two-dimensional framework that categorises 
DLT systems according to (a) their data 
diffusion model (global vs. local) and (b) on-
chain functionality (stateful vs. stateless).19

De Kruijff & Weigand (2017) attempt a 
solution to the lack of formalisation in the 
enterprise blockchain literature. Kruijff uses 
an enterprise ontology to distinguish between 
the datalogical, infological, and essential layer 
levels of blockchain transactions and smart-
contracts.20

Xu et al. (2017) have developed a ‘layer 
approach’ to the current framework. This work 
aims to assess the impact of the blockchain 
design decisions on the software architecture. 
The proposed taxonomy is intended to help 
with architectural (software) considerations 
about the performance and quality of 
blockchain-based systems.21

Glaser (2017) uses a clear terminology, 
contributing to a common basis for 
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communication and connects the terminology 
to digital market models in order to determine 
every component’s market implication22. 
His idea was also based on considerations 
arising in Glaser & Bezzenberger (2015) 
that aims to provide an early tool for 
classifying peer-to-peer transfer systems and 
decentralised consensus systems.23

Lastly, Tasca & Tessone (2018) attempted to 
add an overall perspective of DLT systems 
on top of previous definitions. This advanced 
ontology is quite comprehensive and 
detailed for the classification of blockchain 
technologies.24

2.1.3 Limitations Of Prior 
Work
There has been a plurality of definitions 
proposed for distributed ledger technologies, 
each varying in detail, which make it difficult 
to extrapolate from specific definitions into a 
general and modular framework capable of 
describing and classifying different types of 
DLT systems. 

Debate is further hampered by a lack of 
attention to the definitional clarity of DLT 
system components in prior works. For 
example, decentralisation is often treated 
as a binary feature of DLT systems, instead 
of a continuous variable resulting from the 
interplay of the various layers and nested 
subsystems within them. This is partially due 
to examples in the current literature which 
do not break down the system into different 
components and examine the relationships, 
dependencies, and interactions between these 
different elements.

In order to overcome these limitations, this 
study aims to provide a working definition of 
DLT systems and takes a holistic approach, 
building up from the process level to develop 
a generic and durable tool. The resulting 
conceptual framework can be used for various 
purposes, including the assessment of an 
existing system, a comparative analysis of 
multiple systems, and the development of  
new systems.

2.2 WHAT ARE DLT SYSTEMS?

Section 2.1 has highlighted the multitude of 
conflicting definitions as to what constitutes a 
‘blockchain’ or a ‘distributed ledger’. Unclear 
terminology and fuzzy boundaries have 
resulted in ‘DLT’ evolving into into an umbrella 
term used to designate a variety of loosely 
related concepts (which include, among others, 
blockchains). 

One interpretation of the DLT concept is 
its most narrow (and historically-grounded) 
definition: an append-only chain of 
cryptographically-linked ‘blocks’ of data, 

maintained and updated by a decentralised 
network, with network nodes encouraged 
by economic incentives to engage non-
strategically25 to maintain and secure the 
system so that the data - organised in a 
specific structure often referred to as ‘global 
ledger’ - is robust to adversarial interference, 
double-spend, censure, counterfeit, collusion, 
tampering, or other types of malicious actions.

Such a narrow definition, however, excludes 
many existing and potential future applications 
of distributed ledger technologies. It also 



22

excludes cases where an enterprise applies 
the term DLT in a context which is so broad 
that the line between it and more traditional 
distributed systems becomes blurred and 
many of the core elements of the narrow 
definition are missing or degraded.

In order to resolve this issue, we propose 
to balance the two ends of the spectrum by 
taking an alternative approach that focuses 

on the essential minimum requirements of a 
DLT system (i.e. the necessary and sufficient 
conditions), as opposed to articulating the 
full set of properties that a DLT system might 
ideally possess. We consider DLT systems 
as a type or subset of distributed systems, 
which exhibit a set of specific characteristics 
that distinguishes them from more traditional 
distributed systems.

DLT systems are designed to be capable of  
operating in an adversarial environment

In essence, a DLT system is a ‘consensus 
machine’: a multi-party system in which 
participants reach agreement over a set of 
shared data and its validity, in the absence of 
a central coordinator. What separates DLT 

systems from traditional distributed databases 
are features rooted in designs capable of 
supporting data and maintaining data integrity 
in an adversarial environment.

DLT systems are multi-party ‘consensus machines’

DLT systems can tolerate, within limits, the 
presence of both malicious actors actively 
attempting to attack the system and 
unreliable-yet-honest actors.27 This tolerance 
extends only to the recording and processing 
of data; parties who wish to transact together 
may be able to rely on the performance of 
the system, but must still generally trust their 

counterparties.28 For this reason, DLT systems 
can be characterised as a disintermediating 
technology that ‘delegates trust to the 
endpoints’ (i.e. the end users) of the system.29

These characteristics are dependent on, and 
specific to, the architecture and design of the 
system, as well as its operating environment; 

What Is An Adversarial Environment?

An adversarial environment is characterised by the presence of malicious actors within 
a system or network, who undermine the system by using it in ways it was not intended 
for. The prototypical adversary in a DLT system is an entity that attempts to exploit the 
consensus rules to transfer assets without authorisation, censor others’ transactions, or 
otherwise disrupt the network. Adversaries may operate inside or outside the system.26
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these are not the result of some ‘natural law’ or 
‘immutable requirement’. Similarly, tolerance 
to adversaries does not imply that all DLT 
systems necessarily operate in adversarial 
environments, or that they provide an 
invincible defense against adversarial attack.30

Figure 1 offers an illustration of the 
fundamental differences between a traditional 
database system operated by a single entity, 
a traditional distributed database and a 
distributed ledger system. While each system 
takes inputs from various sources, control over 
how data is stored, processed, and executed 
varies from one type to another.

Figure 1: From Centralised Databases To Distributed Ledgers 

Note: a traditional distributed database consists of multiple nodes that collectively store and process data, however, the 
nodes are generally controlled by the same entity as opposed to DLT systems where there are multiple controllers.

A DLT system is a system of electronic records that enables independent 
entities to establish a consensus around a shared ‘ledger’ - without relying on 

a central coordinator to provide the authoritative version of the records
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A DLT system needs to be capable of ensuring the following properties, either in the existing 
system or with minimal changes to the system.

a. Shared recordkeeping: enable multiple 
parties to collectively create, maintain, 
and update a shared set of authoritative31 
records (the ‘ledger’).

b. Multi-party consensus: enable all 
parties to come to agreement on a shared 
set of records

i. If permissionless, without relying on 
a single party or side-agreements, 
and in the absence of ex ante trusted 
relationships between parties; and 

ii. If permissioned, through multiple 
record producers who have been 
approved and bound by some form of 
contract or other agreement.

c. Independent validation: enable each 
participant to independently verify the 
state of their transactions and integrity of 
the system.

d. Tamper evidence: allow each participant 
to detect non-consensual changes 
applied to records trivially.

e. Tamper resistance: make it hard for a 
single party to unilaterally change past 
records (i.e. transaction history).

We therefore propose the following formal definition: 

A DLT system is a system of electronic records that 

i. enables a network of independent 
participants to establish a consensus 
around 

ii. the authoritative ordering of 
cryptographically-validated (‘signed’) 
transactions.32 These records are 
made 

iii. persistent34 by replicating the data 
across multiple nodes,35 and 

iv. tamper-evident36 by linking them by 
cryptographic hashes.36 

v. The shared result of the 
reconciliation/consensus process 
- the ‘ledger’ - serves as the 
authoritative version for these 
records.37 

The goal of a DLT system is thus to produce a set of authoritative records that are validated and 
executed via a multi-party consensus process that involves the participation of multiple separate 
entities - all in the absence of a central authority. Users create and broadcast unconfirmed 
transactions (i.e. proposals to make a new ledger entry), which get bundled together into records 
by record producers, and added to the ledger. The instructions contained in the now-confirmed 
transactions are then automatically executed by all auditors.
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2.3 CLARIFYING TERMINOLOGY

The ‘Ledger’ Concept
There is significant overlap and similarity 
among many of the terms used to describe the 
components of DLT systems. This often results 
in ambiguous or conflicting use of terminology. 
Consider, for example, the term ‘ledger’. Not 
only does the DLT system literature assign 
‘ledger’ a different meaning from the one used 
in disciplines like accounting or finance, but the 

DLT literature itself uses the term to describe 
two very different ideas: (i) the set of data 
held by an individual network node, and (ii) the 
set of data held in common by the majority of 
nodes.

Within this project we define the terms log, 
journal, record and ledger38 according to the 
extent transaction data has been accepted, 
processed, and validated by the network as a 
whole (Figure 2).

Key Concepts

• Transaction: any proposed change to the ledger; despite the 
connotation, a transaction need not be economic (value-transferring) 
in nature. 

• Log: an unordered set of valid39 transactions held by a node, which 
have not yet been incorporated into a formal record subject to 
network consensus rules (i.e. ‘unconfirmed’ transactions). 

• Record: transaction data which has been subject to network 
consensus rules. 
Note: A ‘candidate record’ is a record that has not yet been propagated to 
the network. 

• Journal: the set of records held by a node, although not necessarily 
consistent with the consensus of other nodes. Journals are partial, 
provisional, and heterogeneous: they may or may not contain all the 
same records.

• Ledger: the authoritative set of records collectively held by a 
significant proportion of network participants at any point in time, 
such that records are unlikely to be erased or amended (i.e. ‘final’).40

TXk
Event description
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Using Bitcoin as an example, a transaction can 
be a transfer of an asset from one address 
to another; a node’s log is its mempool (i.e. 
the collection of unconfirmed transactions 
the local node has received from connected 
nodes, which have not yet been processed 
into records);41 a record would be a confirmed 
block; a node’s journal is its individual, locally-

stored copy of the blockchain,42 which may 
be incomplete or contain data unknown to 
the rest of the network; and the ledger would 
be the authoritative set of blocks which are, 
by consensus, considered ‘final’ – i.e. which 
have a vanishingly low probability of being 
overwritten by a more-worked subchain.43

Figure 2: From Transactions To Records 
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Each node in the network has its own, 
potentially imperfect ‘copy’ of the ledger (i.e. a 
journal). This means not only that some of the 
data held by the node is provisional and partial, 
but that it may not always reflect the complete 
set of structured, authoritative records as 
determined by the consensus mechanism set 
out by the protocol.

The goal of a DLT system is to keep these 
individual instances (journals) of the 
structured record in sync, leading to a 
convergence towards a single accepted 
set of authoritative records (the ledger). 
This enables a group of separate parties 
that do not necessarily trust each other 

to reach agreement over a shared set of 
data without having to rely on a central 
authority. Conceptually, the ‘ledger’ should 
be regarded as a latent, abstract construct 
that is generated by the DLT system as whole 
through the constant efforts of synchronising 
the individual copies maintained by each full 
participant (Figure 3).44

The core of all DLT systems is the organisation 
and processing of shared data resulting in 
the ledger. A functional DLT system creates 
and maintains a ledger in spite of unreliable 
participants or adversaries.

Figure 3: Depicting The ‘Ledger’ Concept
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The ‘Private Key’ Concept

Users create transactions - or, technically 
speaking, state transitions in the form of 
ledger entries - by putting raw data into a 
standardised format, adding a cryptographic 
signature to the transaction for authentication 
purposes, and then broadcasting it to 
other nodes in the network. The signature, 
produced by a private key, represents the users’ 
permission for the DLT system to request a 
ledger entry reflecting the transaction.45 A 
valid signature provides the cryptographic 
assurance to the DLT system that the 
transaction initiator has the authorisation to 
enact a corresponding ledger entry.

Private keys can be stolen if not 
properly secured, allowing the 
thieves to engage in transactions 

indistinguishable from those of 
the true owner 

It is important to note that a valid signature 
does not automatically provide proof that the 
owner of the corresponding private key has 
produced the signature. Instead, it provides a 
guarantee that a holder of the private key has 
initiated the transaction. The use of a private 
key provides a strong presumption that a 
transaction was authorised. However, private 
keys can be stolen by attackers if they are not 
properly secured. Storing private keys securely 
can be a cumbersome task; key management 
is notoriously difficult and requires a certain 
level of technical proficiency, which is why it 
is often outsourced to third-party custodial 
services.46

2.4 ACTORS

A DLT system is composed of actors that 
perform various roles. In this context, an actor 
is any entity or individual that is either directly 
or indirectly interacting with a DLT system. 
Actors can be grouped together into four key 
categories according to the role they play in 
the system (Figure 4). 

One entity can take the roles of multiple 
actors simultaneously and operate on more 
than one layer. Similarly, a specific role can be 
performed by multiple actors at the same time.

Transactions In A DLT System

In a DLT system, a transaction is an authorised attempt - cryptographically signed by the 
initiator using a private key - to change the state of the accumulated records (i.e. a ‘state 
transition’). Transactions generally contain a set of instructions (e.g. issuance of a token, 
transfer of a token, update balances, redemption of a token, description of an event).
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Figure 4: Actor Types Found In DLT Systems 
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Ideally, a system of checks and balances should arise from the composition of actors and 
roles that ensures that no single party or cartel can take over the system unilaterally.  
This in turns ensures the tamper-resistant characteristic of DLT systems.
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2.4.2 Administrators
Administrators control access to the core 
codebase repository and can decide to add, 
remove and amend code to change system 
rules. Administrators are often considerably 
involved in the governance process and may 
have absolute control over it.

The nature and role of an administrator can 
vary greatly from one system to another. 
For instance, closed and permissioned DLT 
systems may have a dedicated entity taking 
the role of administrator, whereas open, 
permissionless systems often have a loosely 
connected set of ‘administrators’ in the form 
of volunteer core developers rather than a 
formal administrator. In the latter case, these 
developers do not actually directly control 
the codebase; rather, they propose changes 
which are ‘ratified’ by users independently (by 
choosing to incorporate the proposals in the 
software they run).

2.4.3 Gateways
Gateways provide interfaces to the system by 
acting as a bridge between the system and the 
external world.

• Gatekeeper(s): granting participants 
access to the system.

• Oracles: transmitting external data to the 
system.

• Custodians: holding assets in custody.

• Exchanges: facilitating purchase/sale of 
digital assets.

• Issuers: issuing or redeeming tokens 
representing the assets recorded in the 
system.

2.4.4 Participants
The network consists of interconnected 
participants that communicate by passing 
messages among each other.

• Auditors: checking submitted 
transactions and records for validity, 
reporting invalid records to the 
network, and relaying valid transactions 
and records. Ability to perform an 
independent audit of the system state. 
Often called full/fully-validating nodes.48

• Record Producers: producing and 
submitting sets of candidate records for 
potential inclusion into the ledger. Often 
called miners or validators.49

• Lightweight Clients: querying auditors 
for data regarding specific transactions; 
do not fully validate the system.

• End-users: indirect users of the system 
who require a gateway to access the 
system (e.g. custodial wallet service). 

Actors in a DLT system can take multiple roles 
and operate on more than one system layer. 
For instance, an entity can take multiple roles 
just as one role can be performed by multiple 
entities. Every DLT system has a different 
composition of actors, roles and entities; the 
distribution and repartition of roles across 
layers, components, and processes shapes the 
properties of the system.
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SECTION 3: 
INTRODUCING THE 
FRAMEWORK 
This section begins to examine the necessary and sufficient elements which comprise a DLT 
system. The aim is to provide flexibility in the analysis and classification of DLT systems.

As shown in Figure 5, a DLT system can be divided into three interdependent core layers:

1. Protocol: set of software-defined rules 
that determine how the system operates

2. Network: interconnected actors and 
processes that implement the protocol

3. Data: information flowing through the 
system that carries a specific meaning in 
relationship to the design and functions 
the system is intended to play for users

Layers  Components Processes

Figure 5: DLT System Anatomy
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Each layer is composed of one or more 
components involved in the creation or 
operation of a DLT system. A component is 
a logical set of related processes necessary 
for the functioning of the system. A process 
is a series of actions carried out by actors 

to achieve a specific objective or series of 
objectives involved in the successful operation 
of a component.

The full framework can be found in table 
format in Appendix A.

3.1 PROTOCOL LAYER

The protocol layer is the foundation of the 
entire DLT system: it defines the set of 
formal rules that governs the system and 
codifies its architectural design. The protocol 
can be considered a set of ‘constitutional’ 
arrangements agreed upon by all system 
participants. The protocol contains two 
components:

Figure 6: Protocol Layer

Genesis Component: 
Defines the processes of the DLT system at 
the time of network launch. It consists of the 
initial codebase and architecture specifying 
the rules of engagement within the system, 
including the first (‘genesis’) record.

Alteration Component:
Sets out how the protocol evolves over time. 
It includes a governance aspect (i.e. how 
collective decisions are made) as well as an 
implementation consideration (i.e. how the 
result of those decisions are incorporated). 
The alteration component need not be an 
explicit part of the protocol; indeed, most DLT 
systems move governance and related issues 
‘off-chain’.50

PROTOCOL LAYER

Genesis Component

• How the system is linked to other 
external systems? 

• How is the protocol generated?
• Where are rules defined?

Alteration Component

• How are decision-making and 
implementation processes created?

‘On-chain’ Versus ‘Off-chain’

The term ‘off-chain’ refers to anything that occurs outside of the formal boundaries of a 
DLT system. This is opposite of ‘on-chain’ which refers to anything that occurs within the 
boundaries of the DLT system.
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3.2 NETWORK LAYER

The network layer is comprised of 
interconnected actors that collectively 
store, share, and process data. The network 
layer is the practical implementation of the 
protocol rules, describing how participants 
access the system, how data is shared within 
the network, how the ledger is updated, 
and how participants verify the validity of 
transactions and records. It contains three 
core components:

Figure 7: Network Layer

Communications Component: 
Specifies which actors can become 
participants and access the network (open vs. 
closed), how data is shared (public vs. private) 
and who has the authorisation to initiate 
transactions (unrestricted vs. restricted).

Transaction Processing Component: 
A set of processes that specifies the 
mechanism of updating the shared set of 
authoritative records: (i) which participants 
have the right to update the the shared set 
of authoritative records (permissionless vs. 
permissioned) and (ii) how participants reach 
agreement over implementing these updates.

Validation Component:
Sets out the actions undertaken by each 
auditor to verify whether transactions and 
records conform to protocol rules, i.e. are valid 
and non-conflicting. This is a crucial aspect of 
a DLT system that provides nodes with the 
ability to verify independently what occurs 
within the system.

There is a popular belief that records stored on 
a DLT system are ‘immutable’ and can never 
be reversed. However, that is not necessarily 
the case: DLT systems provide different 
degrees of transaction finality depending 
on the system design. This means that a 
confirmed (and executed) transaction may 
be subject to reversal. Section 5.2.3 provides 
a more detailed overview of the transaction 
finality process.

NETWORK LAYER

Communications Component

• How can the network be accessed? 
• How is data shared?

Transaction Processing Component

• How are transactions processed? 
• What conflict resolution  

mechanism exist?

Validation Component

• How are transactions incorporated 
in the set of authoritative records?
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3.3 DATA LAYER

The data layer refers to the information 
processed and stored by the DLT system in 
the form of records. The data layer is at the 
core of the functionality the system delivers. 
A DLT system exists for the express purpose 
of creating a shared data structure – the 
ledger – that has a set of crucial features, 
the most important of which are usually 
persistence, transparency, standardisation51, 
and censorship resistance. Within a set 
of information states, functions, property 
rights, and relations defined by a DLT system 
protocol, this ledger provides an authoritative 
version of records at a moment in time that is 
both shared amongst the users of the system 
and updated over time as users engage with 
one another via the system.

The data layer consists of two components:

Figure 8 - Data Layer

Operations Component: 
The processes which govern how (and which) 
data is used in the creation of new records, 
modification of existing records, and the 
execution of code. This may also include ‘smart 
contracts’.

Journal Component:
Concerns the content of the stored records (i.e. 
what data within records is being referenced, 
or ‘what is in the blocks?’). 

DATA LAYER

Operations Component

• What operations are performed on 
data to produce an emergent ledger?

Journal

• What is the recorded data referencing?

Censorship Resistance

Censorship resistance is a term commonly used in the context of DLT which generally  
refers to the inability of a single party or cartel to unilaterally perform any of the following:

1. Change rules of the system

2. Block or censor transactions

3. Seize accounts and/or freeze balances
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Reference/Value Linking
The nature of the records, and the value(s) to 
which they point, are important aspects of the 
journal component. Records may reference 
an internal object (e.g. a native token such 
as bitcoin/BTC or ether/ETH) or something 
external to the system (e.g. a physical item 
tracked across a supply chain).

DLT systems can only enforce records 
that reference endogenous (internal) 
objects

The distinction between endogenous (internal) 
and exogenous (external) objects is crucial in 
illustrating the boundaries of a DLT system: 

it only has the ability to automatically and 
independently enforce transactions that 
point to internal resources endogenous to 
the system. As soon as the records reference 
exogenous objects, enforcement becomes 
dependent on external agents.

In such cases, enforcement relies on existing 
legal and socio-economic structures or 
other arrangements outside of the DLT 
system. Some architectures (e.g. Bitcoin) are 
incapable of conforming to the decisions of 
external agents (such as courts) without the 
cooperation of the participants who have 
control over the specific subset of assets at 
issue - a concept referred to as ‘sovereignty’. 
Native, endogenous and exogenous objects 
are discussed in detail in Section 4.2.2.

3.4 PUTTING IT ALL TOGETHER

The proposed conceptual framework breaks a 
DLT system down intro three essential layers: 

• The protocol layer defines, manages, and 
updates the global ruleset that governs 
the system; 

• The network layer implements the 
ruleset and performs the steps required 
to reach system-wide consensus; and 

• The data layer specifies the nature 
and meaning of the data over which 
agreement is reached.

Figure 9 summarises the components and 
processes pertaining to each layer of a 
functioning DLT system.

Programmatically-executed Transactions (Smart Contracts)

Programmatically-executed transactions (PETs) are computer scripts that, when triggered 
by a particular message, are executed by the system. When the code is capable of operating 
as all parties intend, the deterministic nature of the execution reduces the level of trust 
required for individual participants to interact with each other. 

For example, these scripts can replace fiduciary relationships, such as custody and escrow, 
with code. These are often called ‘smart contracts’, but are not autonomous or adaptive 
(‘smart’), nor contracts in a legal sense. Rather, they can be evidence of a contract, or a 
technological means of implementing a contract or agreement.
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Figure 9 - DLT Systems Framework Overview

The network comes as a direct result from the 
implementation of the protocol rules. The network 
consists of an interconnected group of actors and 
processes that adhere to a technology standard 
(protocol) and actively participate in the exchange 
of data and information.
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SECTION 4: SYSTEM 
INTERACTIONS

4.1 WITHIN THE SYSTEM BOUNDARIES

4.1.1 Layer Interdependencies
DLT systems consist of three layers that are 
interdependent in the sense that the ‘lower’ 
layers of the system make the ‘higher’ levels 
possible. The ordering is not spatial, but 
rather reflects conceptual and functional 
dependencies (see Figure 2 in Section 2.3). 

The protocol layer defines the rule set 
governing the operations of the network of 
interconnected participants. The protocol-
governed network layer, in turn, hosts the data 
layer that records the time-ordered entries 
and modifications to the ledger. 

A protocol is just a piece of software which 
by itself is inert. A protocol is ‘brought to 
life’ when it is implemented by a network. A 
network is a system of independent servers 
and storage that participate in protocol-
defined operations. Unlike many traditional IT 
architectures, where the servers and storage 
are all owned, operated, and maintained 
by single corporate or government entity, 
a DLT network involves a collection of 
heterogeneous participants who do not 
necessarily know or trust one another ex ante 
but who contribute resources to the network 

in exchange for value gained from participating 
in the DLT system.

The protocol and network layers, in turn, 
enable the construction and maintenance 
of the data layer: a shared database created 
by multi-party consensus and having special 
properties such as tamper resistance (see the 
five key attributes of a DLT system, listed in 
Section 2.2). 

4.1.2 Layer Hierarchy
It is important to assess the relationship 
between the layers, and understand how 
these impact each other, when considering the 
resilience, robustness and tamper resistance 
of a DLT system (Figure 10).



42

Figure 10: Layer Impact Hierarchy

The network can impact the data layer as 
it processes transactions: colluding record 
producers can decide to censor arbitrary 
data by ignoring and refusing to relay 
corresponding transactions (i.e. not adding 
them to records). This means that despite the 
data layer being ostensibly permissionless 
(allowing anyone to build applications on top 
of the DLT system), it runs the risk of being 
censored or manipulated by colluding record 
producers. 
The protocol layer can impact both the 
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specifies the rules under which the system 
operates, a change in rules can override 
decisions taken by record producers at 
the network layer during the transaction 
processing process. Moreover, modifying 
protocol rules can change the semantics 
of processed data and override previous 
configurations at the data layer.52 
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It follows that whoever has control over the 
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directly both the network and the data layer. 
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governance voting model).53 This means that a 
system truly resilient to external interference 
needs to have sufficient decentralization at 
both the protocol layer and the network layer 
in order to avoid single-party censorship 
and control. For example, particular blocks 
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protocol level. A decentralised network layer 
on top of a centralised protocol layer is always 
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susceptible to arbitrary rule changes that 
override consensus decisions taken by record 
producers.54 

4.1.3 Trade-offs: There Is No 
‘One Size Fits All’
Different objectives require different design 
choices. Design configurations at one layer 
of a DLT system can impact other layers or 
components and lead to different system 
characteristics, imposing a trade-off of costs 
and benefits. Every system makes these 
trade-offs in accordance with their objectives 
and their security, trust, and threat models. A 
system may favour a specific property, but that 
choice will inevitably come at the expense of 
another. For instance, the presence of trust in 
the system (e.g. identified, regulated entities in 
a closed DLT system) allows for a more flexible 
design approach than a DLT system built to 
minimise the trust requirement between 
participants (e.g. Bitcoin). 

Early DLT systems put particular emphasis 
on keeping all aspects of their system 
‘decentralised’, so as to improve the networks’ 
censorship resistance. This came at significant 
cost: inefficient redundancy, inherent scaling 
limitations, low throughput, slow confirmation 
speed, high energy costs, and poor user 
experience, to name a few. Subsequent DLT 
systems have sought to address some of these 
issues, but these design choices come at the 
expense of other system properties, or an 
increase in the system’s centralisation.55

Each design decision involves a 
complex set of trade-offs

With current technology, trade-offs most 
frequently revolve around the same set of 
properties (e.g. decentralization, validation 
speed, security, actor incentivisation, 
complexity, throughput, trust requirements, 
network size). The decentralization/performance 
trade-off has been the most discussed: 
generally, the more centralised the DLT 
system, the faster, cheaper, and more 
efficiently it runs.

Use case requirements should 
dictate design choices and 
acceptable trade-offs

It is rare for a design choice to strictly 
dominate another; generally, one cannot get 
all the benefits without any of the downsides. 
Hence, one should be aware of the trade-
offs involved when analysing specific design 
decisions, and carefully evaluate whether the 
resulting trade-offs are acceptable. Ultimately, 
a DLT system is designed to serve a specific 
purpose: that purpose should dictate design 
choices and acceptable trade-offs. Figure 23 
in Section 6.2.5 presents an overview of some 
common design choices that have an impact on 
other system properties.
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4.1.4 A Note On 
‘Decentralization’
‘Decentralization’, one of the key buzzwords 
in the DLT ecosystem, is often mistaken as an 
end in itself rather than being a means to an 
end. It is also surprisingly ill-defined given its 
importance in the many discussions about DLT 
applications.56

A systems theory approach can view 
decentralization as the absence of a privileged 
party, or, conversely, the ability for a 
participant to choose the parties it trusts or 
engages with. Under this view, a system is 
centralised if there exists a distinct entity (or 
collection of entities), at any layer, with which 
an actor must interact. The system is fully 
decentralised if an arbitrary number of entities 
can be feasibly ignored or bypassed. However, 
this does not mean - nor guarantee - a dilution 
of power.

One aspect of decentralization in the context 
of DLT systems, as defined by Buterin 
(2017), is that the data structures that are 
created through user engagement within the 
platform are distributed across many different 
machines under the control of participants 
who do not necessarily know or trust one 
another.57 However, this description over-
emphasises the replication of data to the 
exclusion of other critical elements.

Yet another view quantifies decentralization 
as the number of entities that must be 
compromised in order to prevent the system 
(or any subsystem) from operating as intended. 
In practice, however, measuring this number 
- or comparing it across different systems - is 
very difficult.58

Across all definitions for ‘decentralization’, the 
recurring theme is whether the system has 
processes and institutions which allow free 

and open participation and encourage vibrant 
debate, rather than relegating decision-making 
or system management to a fixed set of 
entities.

‘Decentralization’ in a DLT 
system is not a binary property: 
it is the accumulation of 
behaviours at multiple layers

Consequently, given that a DLT system 
consists of multiple processes and subsystems, 
‘decentralization’ of a DLT system is not 
a simple binary property. The degree of 
centralisation reflects the accumulation of 
interacting decisions and tradeoffs at various 
layers. In practice, it is more useful to identify 
the contributing factors to centralisation and 
decentralization across a spectrum, as pure 
decentralization is a seldom-achieved ideal at 
both the hardware and software levels.

A DLT system can have different 
degrees of decentralization at 
each of its layers

For instance, the data layer may be 
decentralised (i.e. permissionless application 
development) while the network and 
protocol layer are controlled by a single 
party. Or the network and data layers could 
be decentralised yet the protocol layer 
centralised. Even further, there could be 
differences within a particular layer: for 
instance, record proposal and network 
access processes in the network layer could 
be performed by a single authority, while 
transaction validation and record validation 
could be decentralised to a certain extent.
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In order to determine the potential source of 
authority within the system (and ultimately 
over the stored records), attention has to be 
paid to the hierarchy. Thus, a DLT system 
cannot be considered either ‘decentralised’ 
or ‘centralised’ without first assessing where 
and how the power dynamics can potentially 
play out within (and between) each layer 
under various scenarios. These dynamics can 
be fluid and evolve over time, which further 
complicates the task of forming a definitive 
assessment of the system. Most DLT systems 
have varying degrees of decentralization at 
different layers; some systems deliberately 
choose to centralise certain aspects so as to 
better meet specific objectives.

Open, public, and permissionless DLT systems 
such as Bitcoin strive for decentralization 
to achieve censorship resistance: no single 
party can shut down the system, manipulate 
the ledger, or censor transactions. This also 
enhances resilience and enables the system as 
a whole to survive shocks, including the loss of 
network participants.61 

It is important to highlight that design choices 
which centralise a DLT system using current 
technology impact not only censorship 
resistance, but other factors such as security, 
performance (or validation speed), and 
overhead (complexity of the information): as 
previously discussed, changing any component 
of a DLT system imposes trade-offs.

Figure 11 illustrates some of the trade-offs 
between a decentralised and centralised 
system. Some DLT systems may be more 
centralised in certain aspects to emphasise 
a specific property deemed desirable within 
the system. Given that there may be instances 
where the centralisation of a process would be 
desirable, it is not reasonable - nor feasible in 
practice - to require that all layers of a system 
be fully decentralised in order for it to be 
classified as a DLT.

Clarifying Distributed And Decentralised Processes

A decentralised process should not to be confused with a distributed process. When 
storage or computation is distributed, it is divided into parts and occurs across multiple 
servers or nodes (‘parallelised’), offering efficiencies and higher resilience over using just 
a single node. A distributed process may still rely on a central coordinator to act as an 
authoritative source of records. 

When a process is decentralized, multiple nodes are again in use - but in this case, the 
process is typically replicated across the various nodes, which are generally controlled by 
different entities.59 This means that each node is managing the same storage or executing 
the same program as all of the others, redundantly. 

This replication requirement is at the core of some DLT systems’ difficulty scaling to 
accommodate new users and growth in transaction volume, as the capabilities of the 
network are limited to that of its weakest node. If a network attempts to push past this limit, 
weak nodes will be unable to remain synchronised and will drop out of the network, thus 
leading to increasing centralisation.60
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Figure 11: One Choice At The Expense Of Others

For instance, prioritising the validation speed 
of records and transactions may come at the 
expense of the complexity and the size of 
the ledger, as the functions (recordkeeping, 
smart-contracting) and record sizes might be 
reduced to a minimum. It may also decrease 
the overall security, or tamper-resistance of 
the system, if the network is centralised in 
order to increase validation speed. Similarly, 
choosing a Proof-of-Stake (PoS)62 consensus 
mechanism over Proof-of-Work (PoW)63 - in 
order to improve speed and reduce energy 
consumption - may impact actors’ incentives 
and thus affect the security and tamper-
resistance of the system.

Alternatively, aiming at increasing the security 
of the system may hinder the validation speed, 
reduce the allowed transaction size due to the 
space necessary for encrypting transactions, 
and discourage actor participation, as the 
costs of running fully-validating nodes might 
become prohibitively expensive over time. 
With such an objective, the complexity of 
the technology might also be limited as a 
collateral effect, because reducing complexity 
would help improve speed and record size. 
Finally, dynamic membership networks that 
allow anyone to join or leave at will can grow 
particularly large in network size but will result 
in higher confirmation times due to latency 
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4.2 BEYOND THE SYSTEM BOUNDARIES

4.2.1 Systems Perspective
DLT systems are seldom self-sufficient. Instead, they are often in constant interaction with 
other systems. Figure 12 depicts the different types of systems configurations seen in DLT 
deployments.

Figure 12: A Systems Perspective

Self-sufficient Systems

A self-sufficient DLT system has all of the 
components necessary for its continued 
operation incorporated into its basic 
architecture, and the system itself is sufficient 
to enable the core functionality. Such systems 
do not depend on other systems for their 
operation, apart from the wider Internet 
infrastructure (e.g. reliance on TCP/IP or 
similar protocols and the underlying network 
infrastructure). Examples are open systems 
such as the Bitcoin and Ethereum main nets 
as well as permissioned systems such as the 
NASDAQ Linq blockchain.

Depending on the nature of the records 
(e.g. exogenous/external), a system may 
require inputs from external sources. This 
requirement alone is insufficient to preclude 
classifying a DLT system as self-sufficient. For 
example, a DLT system representing asset 
transfers in a supply chain should be able to 
persist and function even if external data is not 
received, although it will depend on gateways 
or interfaces to supply data pertaining to the 
creation or physical transfer of assets. Section 
4.2.2 elaborates on the relationship between 
self-sufficient and external systems.
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Dependent Systems

A dependent DLT system must interface 
with another DLT system in order to function 
properly. On its own, such a system is not self-
sufficient. Examples of dependent systems are 
Omni and Counterparty which operate on top 
of Bitcoin as well as the dApps (‘decentralised 
applications’) running on Ethereum. Omni, 
for instance, is wholly dependent on Bitcoin, 
as it is a protocol which tracks assets that 
exist as arbitrary data within certain Bitcoin 
transactions.64 Omni borrows its security and 
finality properties from Bitcoin while adding 
semantic content to transactions; it does not 
exist outside of Bitcoin.

Interfacing Systems

An interfacing DLT system is a system that 
‘opportunistically’ employs core functionality 
provided by another DLT system but which 
could easily be reconfigured to use another 
‘base-layer’ DLT system if needed/desired. 
This means that if one system ceased to 
exist, the interfacing system would be able 
to survive for at least some time on its own 
and may be able to continue operating by 
exploiting the functions of an alternative 
‘base layer’ DLT. The long-term survival of an 
interfacing system depends on the continued 
existence of at least one ‘base-layer’ DLT 
system, and a collapse of a base-layer system 
may cause significant disruption to the 
interfacing system. Examples include ‘layer-2’ 
solutions such as the Lightning Network 
based on Bitcoin and the Raiden Network 
based on Ethereum.65 These systems are 
commonly designed to improve the scalability 
and functionality of the base layer, without 
compromising network decentralization or 
security.

External Systems

An external system is any other system that 
is yoked to, or coupled with, a ‘focal’ DLT 
system. The external system is architecturally 
unrelated to, or distinct from, the focal DLT 
system. An external system can be connected 
to the system in question via a gateway (either 
via a direct or indirect interface). This could 
be other DLT systems as well as proprietary 
databases or services (e.g. wallets, exchanges, 
or applications). An example of a direct system 
gateway would be an atomic swap protocol, 
whereas an indirect system gateway would 
involve a trusted intermediary to transfer 
tokens from a proprietary database to the 
system, or between two incompatible DLT 
systems.

4.2.2 Exogenous And 
Endogenous References
Records may reference endogenous data 
and/or exogenous data. Endogenous data is 
information that comes exclusively from within 
the core system. Exogenous data refers to 
data that tracks information about the same 
entity or a relationship that is external to 
the DLT system. Exogenous entries may be 
representations of assets (monetary or non-
monetary), or other information. An example 
of endogenous data would be a record of 
bitcoin units within the Bitcoin system, while 
an example of exogenous data could be a 
record tracking luxury handbags on a global 
supply chain.
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Figure 13: Gateways Connect A DLT System To Exogenous Objects

More generally, if the data in a journal only 
refers to facts about user actions on the 
platform, or facts about the past history of 
the DLT system itself, then the reference type 
is endogenous. If, on the other hand, the data 
refers to some state in the world external 

to the DLT system or the users interaction 
with the DLT system, than the reference 
type is exogenous. Figure 13 provides a 
representation of the pathways for data 
interaction between the DLT system and 
external platforms.
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The distinction between exogenous and 
endogenous data may seem superficial, but 
it is not. Bitcoins, for example, only exist 
as data records within the Bitcoin DLT 
system. The only way to change its state is 
to change the data record within the Bitcoin 
system. Handbags, stock prices, or weather 
readings are all examples of things that exist 
independent of the DLT system, and whose 
state can change without altering records 
within the DLT system that tracks them. 

Linking a DLT with an external system requires 
gateways to act as an interface: oracles bridge 
the gap between the DLT system and external 
systems by serving as a source of information. 
In the case of a supply chain, this could be 
RFID tags attached to the luxury goods and 
scanned by machines at each intermittent 
station. Other external systems (e.g. other 
DLT systems, apps, proprietary enterprise 
databases, etc.) may communicate their own 
recorded information with the original DLT 
system, providing data that become part of it.

Interfacing with an external 
source of data requires a  
gateway; this undermines 
the ability of a DLT system to 
automatically and independently 
enforce decisions 

Using the example of a supply chain, a DLT 
system may properly record the movement 
of RFID tags, but those devices may not 
necessarily be attached to (or embedded 
in) the objects they are taken to represent: 
one could imagine a shipping crate filled with 
nothing but RFID tags that could fool the 
DLT system into accepting a false transaction 
representing a large transfer of physical assets. 
Similarly, some number of RFID tags may be 
defective, and transfers would not necessarily 
be recorded.

A DLT system only has effective enforcement 
capabilities (i.e. the ability to automatically 
execute decisions) with regards to endogenous 
data (i.e. internal references that exclusively 
exist within the boundaries of the system). 
Records referencing exogenous resources, 
facts, or events are provided by external 
agents who must be entrusted through 
non-system means to report honestly and/
or enforce decisions. In the prior supply chain 
example, parties with a shared interest in 
properly recording the transaction would need 
to develop systems to prevent or ameliorate 
any malfunctions, such as coupling the RFID 
interface with a physical inspection.

A DLT system can only 
independently and autonomously 
enforce decisions that involve 
endogenous record references

A Note On Native Assets

A DLT system’s native assets are the primary digital asset(s), if any, specified in the protocol. 
They are by definition endogenous to the system. These assets are typically used by the 
protocol to regulate record production, pay transaction fees on the network, conduct 
‘monetary policy’, or align incentives. For example, Ethereum’s ETH token is its native asset, 
although the Ethereum blockchain also hosts a wide range of other user-defined tokens 
(using the ERC20 standard, for example). Native assets generally play a system-critical 
role in the functioning of the system as they are an essential component of the complex 
economic incentive design.



51

What can be written to the journal are 
ultimately determined by the protocol. This 
doesn’t mean, however, that the protocol 
necessarily explicitly lays out all of the data 
types that can be recorded by the DLT 
system. For example, a DLT system capable of 
supporting a Turing-complete smart contract 
provides its users with the flexibility to define 
novel data types for the smart contracts that 
they create.
Finally, records may also reference data 
that carry aspects of both endogenous and 
exogenous nature, in which case they are 
referred to as ‘hybrid’. An example would be 
a security directly issued on a DLT system 
(endogenous because it exclusively exists within 
the system boundaries) that is dependent on 
off-chain cash flows (exogenous because it 
requires a connection to an external system). 
In the case of hybrid references, it is more 
difficult to determine the exact enforcement 
capabilities of the DLT system because the 
relationship between both aspects may vary 

from one record to another. Hybrid references 
are a fast-developing subfield as corporations 
are increasingly attempting to convert existing 
assets on to a DLT system. As such, it may 
require further gradation in the future.
Figure 14 summarises the three types of 
references that records in a DLT system can 
point to. Native assets are fully endogenous 
as they are entirely contained within the 
boundaries of the system and do not require 
a formal connection to the external world. 
In contrast, fully exogenous records are 
exclusively referencing external data, which 
necessitates the existence of a gateway to (a) 
receive information and (b) enforce decisions 
outside the DLT system. Exogenous data is 
meaningless within the system without an 
attached link bridging to the material world. 
In contrast, hybrid records reference data 
which shares both endogenous and exogenous 
characteristics. As a result, enforcement is to 
some extent dependent on gateways.

Figure 14: Three Types Of References
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SECTION 5: A DEEPER 
DIVE INTO THE 
FRAMEWORK
In this section we identify commonly adopted 
configurations of processes within the 
protocol, network, and data layers of the 
framework we introduced in Section 3. We 
apply these configurations to distinguish 

between specific DLT systems in Section 6: 
highlighting differences and similarities. 
This section assumes that the reader has 
familiarised themselves with the definitions, 
concepts, and terminology we introduced in 
preceding sections. 

5.1 PROTOCOL LAYER

The protocol layer defines, manages and 
updates the global ruleset that governs the 
system.

5.1.1 Genesis Component
The genesis component of the protocol layer 
refers to the processes required to undertake 
and complete before launching the DLT 
system.

Inter-System Dependencies

Inter-system dependencies defines the 
boundaries of the system that is being 
investigated. It determines whether the 
system can persist on its own (i.e. self-sufficient) 
or whether it is dependent on another system 
to properly function (e.g. dependent). Section 
4.2 discusses possible configurations in 
greater detail.

Table 1: Inter-System Dependencies

System type Description

Self-sufficient	
system

Able to operate on its own - not dependent on another system.

Dependent system Unable to operate on its own - relies on another system to function.

Interfacing system
Able to operate temporarily on its own - long-term survival closely reliant on another 
system

External system
Self-sufficient system that interacts with a DLT system (generally acting as data 
source/recipient)

Codebase Creation 

Codebase creation is the act of developing 
an adequate codebase as the foundation of 
the DLT system. The codebase can be based 

on an existing framework or written from 
scratch. Popular existing frameworks are 
open-source codebases from permissionless 
DLT systems (primarily Bitcoin and Ethereum) 



54

and permissioned DLT systems such as 
Hyperledger suite, Corda, Chain, and 
Multichain. There are also closed-source 

codebases for proprietary platforms available 
provided by companies such as Digital Asset, 
Clearmatics and SETL.

Table 2: Codebase Creation Configurations

Lens Configurations Description

Codebase

Existing framework
Many DLT systems share similar codebases that are based on 
existing frameworks

New/from scratch
Code is substantially different from existing frameworks, 
either in terms of purpose, coding language and/or 
architecture

Openness

Open-source Can be forked: network can be replicated

Closed-source
The codebase is developed by a private company or 
consortium for enterprise or consumer use

Rule Initiation 

Rule initiation refers to defining the ruleset 
upon which the DLT system will operate. This 

process can be performed by different actors 
and is specific to a particular DLT system. 

Table 3: Rule Initiation Configurations

Lens Configurations Description

Administrator

Anonymous
A founder whose real identity remains hidden by operating 
under a pseudonym. 

Volunteer
A set of people that collaborate on a project on a voluntary 
basis; often loosely connected with no formal governance 
structure.

Consortium
A group of private and/or public institutions that formally join 
forces to collaboratively develop and manage a project.

Foundation
A non-profit foundation coordinates and oversees activities; 
formally registered under a legal structure that may impose 
fiduciary obligations.

Company
The project is initiated (and generally managed) by a 
single corporation or joint venture entity with designated 
management.

Codebase 
Maintainer

Open-source community
Everyone has the right to propose changes to the codebase; a 
formal decision-making process may or may not be in place.

Company
Control over the codebase is exclusively exercised by a 
company.

Consortium
An organised group of stakeholders is in charge of collectively 
maintaining the codebase.

Means

Formal protocol 
specification

The protocol is formally specified - generally in the form 
of a specific documentation - and followed by all client 
implementations.

Reference client
The reference client dictates the rules of the protocol - 
generally in the absence of a formal protocol specification.66
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5.1.2 Alteration Component
The alteration component refers to the 
processes in place which enable modification 
of the protocol rules. Protocol alterations can 
include the removal of technical errors (bugs), 
improvement of security and functionality of 
the system, and extension or restriction of 
existing protocol rules.

Protocol Governance 

Protocol governance refers to the set of 
decision-making processes which enable 
alteration of the protocol in an orderly67 and 
legitimate68 manner. This is a subset of broader 

project governance, which encompasses the 
full set of processes and norms which guide 
and define coordination and action, but which 
may not be embedded formally within the DLT 
system.69

An essential element of any proposed 
protocol alteration is the means by which it is 
adopted and ratified - or, in other words, how 
legitimacy is conferred upon the proposal by 
the network’s participants. Because legitimacy 
in this context is a social concept, we find it 
appropriate to identify some of the possible 
‘socio-political’ relationships found in DLT 
systems.

Table 4: Protocol Governance Configurations

Configurations Description

Anarchic
Protocol change proposals are provided and approved on a cooperative and 
voluntary basis, due to absence of a central authority.70 Contentious proposals 
run the risk of fracturing the network, resulting in a permanent split.

Dictatorship
Decisions over changes on protocol rules are taken by a single entity (e.g. 
person, company, mining pool).

Hierarchical
Individuals have the ability to propose changes, but recognised leadership (e.g. 
Foundation or a committee in control of a key code repository) all but ensures 
protocol changes will rely on the consent of the leaders.

Federation
A group of agents vote on protocol alterations, linked by a horizontal 
relationship scheme. Members of a Federation need not have equal voice/
power, nor even necessarily known to each other.71

Plutocratic

Protocol change proposals are voted on, with each vote weighted by the 
importance of each proposer or voter. In the plutocratic case, substantial 
weight is given to a minority of voters (e.g. due to high ownership share of the 
weighting asset) .72

Democratic
Protocol change proposals are voted on, with each vote weighted by the 
importance of each proposer or voter. In the democratic case, a minority of 
voters do not have substantial weight in vote outcomes.

Protocol governance takes many forms 
and is often only implicitly defined. DLT 
systems considered to have anarchic (or 
loose) governance do not have a foundation, 
corporation, or ‘benevolent dictator’ to 
guide decision-making. These often rely 
on governance norms, processes, and 
procedures inherited from the free / open 
source software community. Examples include 

informal processes such as discussions among 
developers on mailing lists and at conferences. 
In a dictatorial setting, these same processes 
may exist, but with an acknowledged leader 
empowered to make unilateral decisions.
In some cases, protocol governance does not 
fit neatly into only one category. For example, 
the EOS blockchain operates as a federation of 
Block Producers, which are selected by user/
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custodian votes (weighted by token holdings). 
This arrangement implicitly divides the 
network into sets of ‘first-class’ and ‘second-
class’ nodes, giving it elements of hierarchy, 
federation, and democracy/plutocracy.73 
Accordingly, each category should be seen as 
a mechanism, rather than the mechanism, of 
protocol governance for a given DLT system; 
each system will exhibit one among countless 
permutations of these mechanisms, and the 
relative importance of each mechanism may 
change over time.

It is also important to realise that the ‘anarchic’ 
mode of governance will always exist as a 
governance mechanism for any open-source 
project, as distinct from closed-source and 

proprietary projects. This is because a DLT 
system based on an open-source codebase 
operates with the cooperation of its users and 
record producers. In the face of an attempt 
to force a protocol change on users, they will 
always have the option of forking the code 
to reverse or ignore it. This will result in the 
creation of a distinct DLT system, albeit one 
with a shared history up until the moment of 
divergence (a ‘hard fork’ leading to a network 
split).74 A consequence of this is that DLT 
systems can, in some circumstances, be 
regarded as decentralised with respect to 
governance, even when there is a single ‘core’ 
code repository.75 In contrast, proprietary 
systems may not allow for this kind of user-
driven ‘exit’.76

Protocol Change 

The protocol change process considers 
the entities who may propose protocol 
changes, the means by which protocol 
changes are funded, and how the changes are 
implemented. Implementation can involve 

different mechanisms such as providing 
updates to specific node software, forced 
upgrades to all nodes running a particular 
instance of the software, and the blacklisting 
of nodes running older versions of the 
software.

On-chain Governance

On-chain governance refers to the incorporation of protocol governance features within 
the data layer of the DLT system. The intent is to formalise governance, thereby enhancing 
legitimacy and avoiding network splits due to contentious or uncoordinated protocol 
changes. A diverse set of on-chain voting schemes have been developed for DLT systems, 
ranging from barometers of community sentiment to enforceable referenda. However, on-
chain governance features are generally only a supplement to other forms of governance.77
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Table 5: Protocol Change Configurations

Lens Configurations Description

Proposal

Open alteration Open systems allow anyone to propose changes.

Filtered alteration

Proposals are conditional on some requirement of the 
system. For example, Dash and Tezos allow anyone to 
propose changes, conditional on the approval of token 
holders. Other systems may require a centralised initial 
submission in which proposals undergo curation based on 
merit or strategic objectives.

Authorised 
alteration

Corporations or consortia may restrict who can propose 
changes.

Funding

Altruist

Some protocols rely on volunteer efforts, while others (e.g. 
Monero) may fund development work through voluntary 
charitable contributions by token holders or other 
interested parties.

Supported 
development

Foundations, such as the Ethereum Foundation, may fund 
development work through grants. Although this helps 
ensure coherence and developer accountability, it may also 
have a centralising effect on the protocol layer. Additionally, 
the Foundation itself may be vulnerable to capture by 
self-interested parties or state actors. Grants may be 
awarded by following a specific process determined by the 
Foundation.

Network-funded 
development

Development work is supported through the issuance of 
new tokens. The extent of this issuance may be determined 
by the network offering a bounty for meeting development 
objectives, or may be defined by developers themselves, 
subject to network approval.

Corporate-
sponsored 
development

Corporations or consortia fund development through the 
sponsoring organisation(s).

Implementation

Run client software 
of choice

Participants implement changes individually by choosing 
to run a specific instance of a client software. No action 
from an administrator is required, but this may result in 
network splits from contentious or uncoordinated changes. 
This mode tends to reduce developer or record producer 
control of the governance process.

Pushed to clients

Changes are implemented by pushing updates directly 
to clients - generally launched by an administrator or an 
on-chain governance system. This mode tends to prioritise 
the integrity of the network, but may tend to cede power to 
developers or record producers.

Different DLT systems may allow for a mix of 
these mechanisms. For example, Ethereum 
accepts voluntary contributions from its 

community as well as from developers 
supported by grants.
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5.2 NETWORK LAYER

The network of a DLT system exists as 
a direct result of the implementation of 
the protocol rules. The network consists 
of an interconnected group of actors and 
processes that adhere to a technology 
standard (protocol) and actively participate 
in the exchange of data and information over 
integrated communication channels.

5.2.1 Communications 
Component
Communications refer to the exchange and 
sharing of data across participants in a DLT 
system.

Network Access 

Network access determines the right of entry 
to the DLT system; this is the right to connect 
to the network. Access to the system can be 
unrestricted, meaning that anyone78 can freely 
join, leave, and rejoin the system at any point 

in time, or it may be restricted by a gatekeeper 
responsible for granting access rights to 
specific entities. Open networks generally 
have dynamic and flexible membership, 
whereas closed networks may have static/
fixed membership. 

Generally, auditors get direct access to the 
network by running fully-validating nodes: 
they are considered ‘first-class’ citizens with 
greater rights, as they are able to broadcast, 
validate and relay transactions and records. 
Participants can also get indirect access to 
the network by either running ‘lightweight 
clients’ (also called ‘SPV nodes’) that query full 
nodes for transaction data or by connecting 
to a particular service via an Application 
Programming Interface (‘API’) part of a server 
designed and programmed to receive requests 
and send responses to other servers or 
devices.

Table 6: Network Access Configurations

Lens Configurations Description

Openness

Open
Unrestricted network access: simply requires downloading 
and running a software client.

Semi-open
Access is partially restricted: prospective participants need 
to apply; generally decided via on-chain voting/approval of 
existing network participants.

Closed
Access is restricted to vetted participants. Requires a 
gatekeeper to onboard new members.

Channels

Full node

Fully performing the functions and tasks available in 
the system: receives, validates, stores and broadcasts 
transactions and records in the system; performs 
independent validation. 

Lightweight node

Client that allows performing basic tasks such as creating 
transactions - does not fully validate the system state. 
Requires connecting to a full node for receiving information of 
the system.

API access
External end-users connecting to a full node via an 
Application programming interface (API).
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Generally, the more open a system is, the more 
exposed it is to malicious actors. In particular, 
these systems are vulnerable to ‘Sybil’ attacks, 
where the attacker creates numerous fake 
identities to increase influence over the 
network. 

A Sybil attack is a class of attack 
in which a malicious actor 
gains influence or disguises 
malfeasance by creating 
numerous false identities

Because identity is an exogenous (i.e. ‘real 
world’) property, a DLT system cannot, by 
itself, prevent such attacks; it must rely on 
the intervention of an outside agent (such as 
a credentialing authority) or Sybil-resistance 
mechanisms (such as PoW or PoS) to mitigate 
these attacks.

Data Broadcast 

Data broadcast is the process of transmitting 
and relaying data across the network to 
connected nodes. Data can be raw and 
unformatted or in a standardised format (e.g. 
in the form of a transaction or record). Data 
can be broadcast to every node in the DLT 
system (universal diffusion) or only shared 
with a specific subset of nodes (multi-channel 

diffusion).79 In the latter case, data diffusion 
is generally limited to the transaction parties 
involved in a trade or who depend on specific 
historic transactions; effectively creating a 
private sub-network which is often referred 
to as a ‘channel’. This concept is commonly 
referred to as sharding.

Early DLT systems (e.g. Bitcoin, 
Litecoin) use the universal data 
diffusion model, which still 
remains the dominant broadcast 
method

In order to meet confidentiality and privacy 
requirements for enterprises, more recent 
frameworks have implemented the multi-
channel diffusion model (e.g. Hyperledger 
Fabric, Corda). Others, such as Cosmos, are 
designed to act as ‘hubs’ so that independent 
DLT systems can be linked together as part 
of an application-based sharding scheme. 
Although universal data diffusion is technically 
used within each Cosmos subnetwork, the 
inter-network system resembles multi-
channel diffusion. In either case, multi-channel 
diffusion prevents nodes from storing and 
processing data that is of little interest to them, 
and can theoretically lead to better scaling.80

Table 7: Data Broadcast Configurations

Configurations Description

Universal data diffusion
Data is broadcast to all nodes: convergence towards a single shared set of 
records (global consensus)

Multi-channel data diffusion
Data is only shared between a subset of nodes directly involved in a specific 
operation (local consensus)
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An implication of multi-channel data diffusion 
is that not all network participants need to 
be involved in reaching consensus over a 
channel state: only channel participants are 
required to reach agreement over data stored 
in that channel (‘local’ consensus). This differs 
significantly from systems with global data 
diffusion as every single node is required to 
come to consensus over the global state of the 
system (‘global’ consensus); failure to achieve 
consensus by some subset of nodes may result 
in the departure of the nodes which do not 
agree, or a divergent DLT system (network 
split).

Transaction Initiation 

A transaction contains a set of instructions 
that will be executed once the transaction 
has been added to the ledger. Generating a 
transaction can either be unrestricted (i.e. open 
to anyone) or restricted to select participants. 
Transactions are generated by users signing 
a message in a standardised format using the 

corresponding private key. There are different 
interfaces available to end-users for creating 
and broadcasting transactions to the network 
(e.g. desktop and mobile wallets).

5.2.2 Transaction Processing 
Component
Transaction processing describes the set 
of actions required to add an unconfirmed 
transaction to the shared set of authoritative 
records. A transaction is considered 
(provisionally) settled once added to a record 
(‘confirmed’), which results in the execution of 
the set of instructions embedded within the 
transaction. However, a single confirmation81 
is generally insufficient to be relied upon for 
subsequent transactions; the record must 
be ‘finalised’ before the transaction outputs 
may be relied upon by the system. Finality is 
discussed in Section 5.2.3.

Figure 15: Conceptualising Transaction Processing In A DLT System
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Records are subject to the consensus algorithm 
used by the DLT system to reach agreement 
over the state of the system. This includes a 
process for determining whether a proposed 
record is valid, as well as rejecting invalid 
records (e.g. records which are defective or 
noncompliant) and choosing among different, 
yet equally-valid records.

Record Proposal 

Record proposal refers to a record producer 
selecting a set of unconfirmed transactions 

and bundling them together to form a 
candidate record. Record proposal can be 
permissionless in that any network participant 
has the right to produce a new candidate 
record, or permissioned in the sense that only 
a specific subset of participants are allowed 
to generate a candidate record. Note that this 
only refers to network participants, i.e. actors 
that have already been approved to join the 
system.

Table 8: Record Proposal Configurations

Configuration Description

Permissionless Any network participant has the ability to create a candidate record

Permissioned Record creation is restricted to a subset of participants

As the records are subject to network 
consensus, they must adhere to the protocol 
rules. At a basic level, they must be formatted 
correctly and contain no invalid or conflicting 
transactions. Additionally, each record must 
include a reference/pointer to a previous 
record, and, if appropriate, a PoW or other 
Sybil resistance technique.

Consensus algorithms can be classified 
according to their difficulty level (in energy 
consumption or financial terms). Algorithms 
with unlimited difficulty are uncapped in 
the resources they may require to reach 
consensus. For instance, in the case of Bitcoin’s 
PoW computation, the difficulty of finding a 
valid solution increases as additional hashing 
power is added to the system.82 In contrast, 
other algorithms (e.g. Practical Byzantine Fault 
Tolerance/BFT) do not consume a significant 
amount of resources and have limited 
difficulty. 

In open systems, a mechanism for resisting 
Sybil attacks needs to be incorporated into 
the consensus algorithm. Permissioned and 
closed systems generally do not require this 
component, as Sybil attacks are prevented by 
carefully vetting entities before granting them 
permission to join the network and produce 
records.

Early open DLT systems exclusively used 
PoW as a Sybil prevention mechanism. PoW 
makes it computationally difficult (i.e. costly 
and time-consuming) to produce new records 
but easy for others to verify them. In contrast, 
emerging PoS-based systems use staking of 
endogenous resources (e.g. native asset) in 
order to choose the next record producer.83 
PoW systems are resource-intensive but are 
robust as long as the number of participants is 
large and sufficiently distributed.In contrast, 
PoS systems are less resource-intensive 
than PoW systems, but are also generally 
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vulnerable to ‘nothing-at-stake’ and ‘grinding’ 
attacks, among others.84

Closed DLT systems generally have static 
membership and thus a complete overview 
of all participants in the network should be 
possible. They often use mechanisms such as 
Round-Robin schemes or algorithms such as 
Practical Byzantine Fault Tolerance (PBFT), 
Paxos, or Raft in which nodes temporarily 
elect one node to be a leader (i.e. record 
producer). 

Consensus algorithms and Sybil resistance 
mechanisms are an active area of research. 
Further information on the variety of 
consensus mechanisms used in DLT system 
can be found in Seibold & Samman (2016).85

Conflict Resolution Rule

The conflict resolution rule determines how 
disputes regarding competing or conflicting 
versions of valid records are being resolved 
and depends on the consensus algorithm in 
use. For instance, Bitcoin resolves a temporary 
split caused by two competing valid blocks 
at equal height by choosing the block on the 
branch that carries most cumulative PoW 
(longest-chain rule).86 Tezos adapts the longest-
chain rule for PoS, defining the ‘weight’ of 
a block as the number of ‘endorsements’ 
it receives from randomly-selected record 
producers. Alternative resolution rules involve 
unanimous agreement of all record producers or 
passing a certain quorum threshold.

As with all design decisions, each consensus algorithm reflects a set of trade-offs 

Incentivised Transaction Processing

Incentivised transaction processing refers to 
the explicit and implicit incentives present in 
the system to encourage record producers to 
engage in transaction processing by creating 
and proposing records. These incentives can 
be of different nature (e.g. monetary, legal, 

social) and can be expressed directly by 
protocol rules (e.g. block rewards in native 
asset) or by external factors (e.g. contractual 
agreements established between participants). 
Many DLT systems use a combination  
(Table 9).
This distinction matters when categorising 
DLT systems. Open systems such as Bitcoin 

The 51% Attack

An attack in which an entity or cartel with a majority of the ‘votes’ (e.g. computing power) 
in a DLT system produces records faster than the rest of the network. Eventually, these 
records are revealed to the network, causing the records of ‘honest’ nodes to be replaced 
due to the conflict resolution rule. The 51% attack is the classic attack against DLT systems. 
PoW-based systems are especially vulnerable to such attacks; a similar attack in PoS-based 
systems is called the ‘long-range’ attack. It should be noted that in some cases, DLT systems 
are vulnerable to attacks carried out by less than 51% of voting power (e.g. selfish mining, 
which is theoretically feasible with only one-third of voting power).
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tend to be secured via economic incentive 
designs that make use of an endogenous 
network resource (native asset) as an 
economic coordination mechanism to align 
incentives. Dependent systems may use the 
native token of the system they are dependent 

upon. In contrast, closed networks with known 
and vetted participants generally rely on pre-
established authority relations through mutual 
contractual obligations. 

Table 9: Incentivised Transaction Processing Configurations

Intrinsic Extrinsic

Monetary87 Block rewards (subsidy + transaction 
fees)

Paid services (fees)

Non-monetary Required for transaction creation88 Contractual obligations, reputation, etc.

5.2.3 Validation Component
Validation refers to the set of processes 
required to ensure that actors independently 
arrive at the same conclusion with regard 
to the authoritative set of records. This 
includes verifying the validity of unconfirmed 
transactions, verifying record proposals, 
and auditing the state of the system. This 
component is a crucial differentiator from non-
DLT systems in that it provides participants 
with the ability to independently audit the 
system.

Transaction Validation 

Transaction validation consists of verifying 
whether an individual transaction complies 
with the protocol rules before relaying it to 
other actors. This involves verifying that the 
transaction is properly formatted, has a valid 
signature, and does not conflict with any other 
transaction. In certain systems, transactions 
may be subject to encumbrances (such as a 
prohibition on transfers until a certain time 
or condition is met). Such encumbrances 
are often integral to the operation of 
programmatically-executed transactions 
(‘smart contracts’).

Record Validation 

Record validation is verifying whether a 
candidate record proposed by a record 
producer is valid according to protocol rules. 
If the proposed record is deemed valid by an 
auditor, it is added to the journal and relayed 
to other nodes. While the exact process 
differs from one system to another, it generally 
involves verifying the validity and uniqueness 
of each transaction contained in the record, 
as well as checking whether the conditions 
specified by the record proposal process 
are met (e.g. verifying that a valid PoW is 
attached).89

The combination of transaction and record 
validation performed by auditors provides the 
ability to independently compute the entire 
state of the system from genesis (full audit). 

Transaction Finality 

Contrary to popular belief, a confirmed 
transaction or record is not necessarily 
irreversible. Transaction finality determines 
when a confirmed record can be considered 
final (i.e. not reversible). Finality can be 
probabilistic (e.g. PoW-based systems that 
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are computationally impractical to revert) 
or explicit (e.g. systems that incorporate 
‘checkpoints’ that must appear in every 
transaction history). Finalised records are 
also called permanently settled. Records that 
have been produced, but which are feasible to 

revert, are provisionally settled. Provisionally-
settled records become permanently settled 
after the transition period between record 
creation and finality.

Figure 16: Transaction Finality In DLT Systems

Figure 16 offers a schematic description of 
the steps involved in the settlement process. 
First, a user creates a transaction and 
broadcasts it to the network. Each auditor 
verifies whether the transaction complies with 
the protocol rules. If it is considered valid, the 
node adds the transaction to its log (also called 
‘mempool’), a virtual environment that stores 

unconfirmed transactions waiting to be added 
to the shared set of authoritative records. 

In the transaction processing phase, record 
producers will arbitrarily select unconfirmed 
transactions from their mempool and bundle 
them together into a candidate record. They 
will then perform the steps required by 
the consensus mechanism to propose this 

Pre-Validation Post-Validation (Verification)Transaction 
Processing

UNCONFIRMED 
TRANSACTIONS

UNCONFIRMED 
TRANSACTIONS

CANDIDATE 
RECORD

JOURNAL LEDGER

FINALITY: 
PERMANENT 
SETTLEMENT

Create TX

USERS

RECORD 
PRODUCER

Propose
Record

Provisional 
Settlement

Return 
to Log

Create 
Record

LOG

Provisional settlement: 
Confirmed records can be reversed by alternative records 
during the provisional settlement period. In this case, 
transactions included in the orphaned record move back 
to the log of other unconfirmed transactions waiting to get 
included in a new candidate record.

1

2

3
4 5a

5bThe log of a 
node contains 
all transactions 
that are waiting 
to get confirmed.

A record 
producer bundles 
transactions 
together into a 
candidate record.

Nodes validate 
the candidate 
record and add 
it to their journal 
if valid.

- Probabilistic
- Explicit

Transactions 
have been subject 
to network 
consensus and are 
now confirmed. 

NETWORK

‘Finalised’ Records are buried so deeply 
as to be impractical or infeasible to 
reverse. They have been permanently 
settled.

‘Provisional’ Records have been 
accepted by nodes, but may be replaced 
by an alternative version if one is 
presented to the network. These records 
are only provisionally settled.

‘Finalised’ Records
‘Candidate’ 

RecordsTransaction 
Finality

‘Chain Tip’ Record

‘Provisional’ Records



65

candidate record to the network. Nodes will 
review the received candidate record and 
its content; if it passes the validity checks, 
the record is added to the node’s journal. 
Individual journals eventually converge 
towards a single common ‘ledger’ as the 
transactions are confirmed and executed.

However, confirmed records could be 
abandoned (orphaned) for the sake of an 
alternative, competing record: this means 
that during the provisional settlement phase, 
confirmed transactions can get reversed - 
in which case they are returned to the log 
as unconfirmed transactions, waiting to be 
included in the next record. The duration of 
the provisional settlement phase depends on 
the system design and set-up. Some systems 
implement nearly immediate finality, whereas 
others have ‘probabilistic’ finality in the sense 
that, theoretically, records can always be 
reversed. In practice, however, the likelihood 
of such a ‘reorganisation’ decreases rapidly 
with each additional record added to the 
ledger, because the financial costs attached 
to PoW mining can become prohibitive as 
an attacker attempts to reach ‘deeper’ into 
the ledger. As long as records are in the 
provisional settlement phase, they should not 
be considered ‘final’.90

Typically, users refrain from interacting with 
data that is only provisionally settled, because 
the possibility of reversion creates a risk that 
assets can be double-spent. The provisional 
settlement period represents a safety factor 
for nodes, helping ensure that transactions are 
fully incorporated in the ledger (as opposed 
to the node’s local journal) before users rely 
on their outputs - thus preventing double-
spending attacks.91

Some systems also implement ‘checkpoints’ to 
limit the possibility of ‘long-range’ attacks. In a 
long-range attack, a block producer creates a 
competing subchain without revealing records 
to the network, and then reveals all these 
private records simultaneously to cause other 
nodes to orphan long-accepted records. A 
‘checkpoint’ is a block that an honest node will 
never orphan. As a result, the checkpoint limits 
the ‘reach’ of a long-range attack. However, 
checkpoints also create a theoretical risk 
of a permanent network split under certain 
conditions, such as ‘eclipse’ attacks.92

Finally, it should be noted that changes to 
protocol rules have the power to alter the 
form of the ledger, which can directly impact 
transaction finality.93

Table 10: Transaction Finality Configurations

Finality Probabilistic Explicit

Provisional
In theory always; practically, a time 
window determined by network 
conditions

Short time window determined by 
protocol

Finalised
In theory never; practically, after a 
certain block depth

After a specific block depth determined by 
protocol
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5.3 DATA LAYER

The protocol layer determines how a DLT 
system will function and how it will operate. 
The network layer implements the protocol 
layer. Together, the protocol layer and the 
network layer form the basis for the data layer 
which is assembled over time as transactions 
are written into the ledger by the activities of 
participants using the DLT system. 

5.3.1 Operations Component
The operations components of the Data Layer 
include all of the processes through which 
the journal – and, derivatively, the ledger – is 
co-created and transformed by users as they 
interact with the system. 

Input 

The input process refers to the source or 
method of acquiring data for the DLT system. 
As discussed in Section 4.2.2, data sources 
may be internal or external, which may reflect 

users actively interfacing with the system, or 
a change in state driven by an internal system 
process, or an externally-driven process 
(e.g. a transaction initiated by an external or 
interfacing system), or smart contract.

More generally, we define internal sources 
of input as any record or transaction that 
is created by, or the direct result of, a user 
interfacing with a DLT system ‘on the platform’ 
(i.e. on-chain). External sources of input, 
on the other hand, are the result of input 
from off-chain systems that interface with 
the DLT system but that are, in principle, 
separable from the core platform (i.e. they 
are a dependent or interfaced system in the 
framework outlined in Figure 12 in Section 
4.2.1). Hybrid sources such as ‘generalised 
state channels’ allow users to run programs 
outside the DLT system and relay the state to 
the system at any time; development of these 
techniques is, however, still in its infancy.

Table 11: Input Configurations

Types Configurations Description

Internal 
sources

Transactions A set of cryptographically-authenticated instructions to modify the 
state of the ledger. 

Records Bundle of transactions that have been added to the shared set of 
authoritative records (global ledger).

Automated 
executables

Programs that exist inside the system (or on another DLT system 
that interfaces with the focal system) which are allowed to trigger 
phenomena once a predetermined condition is verified.

External 
sources

Sensors Physical devices that are able to broadcast specific information to 
selected systems (e.g. RFID chips).

Information 
providers

Entities that collect and organise data which are allowed to interact 
with selected systems (e.g. a price API).

Hybrid 
sources

Generalised  
state channels

A transaction type that allows users to run programs outside the 
DLT system, with each state transition representing a private 
‘counterfactual’. At any time, the final state can be relayed to the DLT 
system.
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Programmatically-executable 
Transactions 

Not all changes to the data layer are the direct 
result of internal or external inputs. Some 
changes to the data layer are the result of 
code-directed events that are conditional 
on the occurrence of some state of affairs 
that is captured on the ledger. A prime 
example here are changes that are initiated by 
programmatically-executed transactions (i.e. 
‘smart contracts’). When encoded conditions 
are met, a smart contract automatically 
executes and, as a result, a number of 
downstream events occur – some of which 
may include changes to the ledger itself. 
DLT systems that support the design and 
execution of a wide range of programmatically-
executed transactions are generally referred 
to as stateful. Users can build and run complex 
expressive smart contracts directly at the 

system level: the supported computer 
language is flexible and general-purpose 
to theoretically allow the modeling of any 
imaginable program.
Other DLT systems only support a limited 
range of programmatically-executed 
transactions at the base layer: they are based 
on a simple script language that generally 
features a limited series of OP_Codes enabling 
the design of relatively simple, specific-
purpose programs. These systems are usually 
referred to as stateless.94 
Ethereum (Solidity), Tezos (Michelson) and 
EOS (WebAssembly) are three stateful DLT 
systems that are equipped with a Turing-
complete language to design complex smart 
contracts. They are often referred to as ‘smart 
contract platforms’. In contrast, DLT systems 
such as Bitcoin and Monero merely provide 
support for a simple scripting language that 
allows limited type of operations. 

Table 12: Programmatically-executed Transactions Configurations

Type Description

Stateless
Fixed-function machine at the base system layer: allows for the execution of limited 
computations.

Stateful
General-purpose computations executed on-chain by network participants via an 
integrated virtual machine.

Locus of Execution

The locus of execution determines where 
computations such as programmatically-
executed transactions are being executed. 
Generally, the locus of execution can either be 
on-chain (i.e. internal) or off-chain (i.e. external).

On-chain computations are executed 
internally in each auditors’ own environment 
(‘execution engine’). This environment can 
range from a simple fixed-purpose machine 
to a more complex general-purpose virtual 
machine (e.g. Ethereum Virtual Machine/
EVM) that provides a rich Turing-complete 

environment. On-chain smart contracts are 
executed by every auditor in the system and 
are thus often referred to as ‘self-executing’ or 
‘self-performing’.95

Off-chain computations are executed in 
environments that are external to the system 
(in an external or interfaced system). While 
off-chain computations are initiated by 
events and processes on the DLT system, the 
execution is ‘outside-the-system’ in the sense 
that relevant work is not being performed at 
the core DLT system layer. In this case, DLT 
systems can be understood as serving the 
function of a settlement layer for the external 
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or interfacing systems that run the core 
transaction logic.

In some systems, execution may occur in 
hybrid side-chains. For example, Ethereum’s 
Plasma network alleviates some computational 
burdens on nodes through parallelisation. 
Similarly, Cosmos acts as a ‘hub’ that regards 
each independent system it is connected to 
as a ‘side-chain’ from the perspective of the 
larger inter-network it coordinates.

In ’stateless’ DLT systems - characterised 
by limited expressiveness - more complex 
business logic generally tends to get pushed to 
external or interfacing systems where it will be 
executed in a different runtime environment. 
While this layered approach limits on-chain 
capabilities, it can also provide benefits such 
as reducing the ‘attack surface’ of the base 
layer, potentially providing increased privacy 
and confidentiality as well as the possibility of 
better scaling prospects and enabling low-
latency applications that would otherwise be 
constrained by network delays.96

Table 13: Locus Of Execution Configurations

Types Configurations Description

On-chain

Fixed-purpose machine Limited to a narrow set of operations.

General-purpose virtual 
machine

Capable of performing an open-ended range of operations.

Off-chain

Coordinator The DLT system’s primary purpose is to initiate and control 
off-chain computations.

Automated Arbiter The DLT system’s core function is to settle the outcomes of 
an automated executable, which is otherwise executed by off-
chain parties or systems.

Side-chain

Subnetwork Side-chains usually operate according to the same ‘on-chain’ 
architecture of their respective DLT systems, but distribute 
computational loads to subnetworks to improve overall 
system scaling.

5.3.2 Journal Component

Reference

A ledger emerges over time as users interact 
with a DLT system. The ledger, however, is an 
abstraction. Input processes and automated 
executables do not directly operate on the 
ledger per se, but rather the journal. The 
specific kinds of information and/or data 

structures that are held by a node are always 
specific to the DLT system. A DLT system 
focused on digital payments, for example, 
needs to hold information about the assets 
held by individual users. A DLT system that 
enables smart contracts, on the other hand, 
has to be able to hold the customised code 
implementing the smart contract on the 
platform.
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Types of Reference
There are four different kinds of reference 
data: endogenous variables, exogenous 
variables, hybrid variables, and self-referential 
data. 
Endogenous (internal reference) refers to 
data that tracks information about variables 
that are native to the system. In Bitcoin, one 
endogenous reference variable, for example, 
is used to track the number of bitcoins the 
user has at any particular time. This internal 
variable is updated as the user sends and 
receives bitcoins to/from other accounts. 
Exogenous (external reference) refers to data 
that tracks information about variables that 
exist outside of the system. A hybrid reference 

refers to data that shares both endogenous 
and exogenous characteristics. These three 
types of references are also discussed in 
Section 4.2.2. 

There is a fourth reference type that is neither 
endogenous nor exogenous: This neutral or 
null data type is a self-referential reference. 
For example, a smart contract is simply a 
piece of code that can execute when certain 
conditions are met. While a smart contact 
may require information about external and 
internal system variables, the code itself has 
no intrinsic reference to anything outside of 
itself (a ‘null reference’).

Table 14: Types Of References And Value Linking

Type Description

Endogenous

Refers to data or digital assets that exclusively exist within the boundaries of the system 
and do not require a connection to external systems. Decisions can be automatically 
enforced by the system as the data and/or assets are intrinsic to the system. For example, 
native assets such as ETH and associated dApp tokens are endogenous references of the 
Ethereum system.

Exogenous

Records referencing data that is exclusively extrinsic to the system and thus requires 
gateways for connecting to the external world and enforcing transactions. Recordkeeping-
only systems are an example of this type in that they only record events or facts occurring 
externally.

Hybrid
Digital assets that share both endogenous (i.e. exclusively exist within the boundaries of the 
system) and exogenous characteristics (i.e. have some link to the external world). Hybrid 
can also refer to systems that support both endogenous and exogenous references.

Self-
referential

Pieces of code (e.g. smart contracts) that do not reference endogenous or exogenous 
variables, although they may require information about internal or external variables.
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SECTION 6: APPLYING 
THE FRAMEWORK - 
CASE STUDIES
In this section, we use Bitcoin as a case study 
to show how the framework can be applied to 
analyse and characterise a DLT system. We 
will then proceed to compare other notable 
DLT systems and examine where they differ. 

All DLT systems presented in this section are 
self-sufficient systems; we omit discussion of 
dependent, external, and interfacing systems 
(e.g. ERC20 tokens, the Lightning Network).

6.1 BITCOIN

Bitcoin was introduced conceptually in 
October 2008 and launched in January 2009. 
The rationale behind Bitcoin was to create 

a digital value transfer and storage system 
with rapid settlement that would not rely on 
trusted third-parties. 

Protocol
Table 15: Bitcoin: Protocol Layer 

Layer Component Process Configuration

Protocol

Genesis Inter-System 
Dependencies

Self-sufficient system: not dependent on an external 
system.

Codebase 
Creation

Codebase is built from scratch and open-source.

Rule Initiation Reference client (‘Bitcoin Core’) specifies rules; 
alternative implementations follow the same ruleset.

Alteration Protocol 
Governance

Anarchic: coordinated via the Bitcoin Improvement 
Proposal (BIP) process; Bitcoin Core GitHub repository.

Protocol Change Open alteration: running software client of choice 
(generally ‘Bitcoin Core’).

Genesis

A self-sufficient system, Bitcoin was released 
as open-source software in the form of a 
reference client (the ‘Satoshi Client’, now 
‘Bitcoin Core’) by an individual or group of 

people under the pseudonym of Satoshi 
Nakamoto. There is no formal protocol 
specification: instead, the reference client 
specifies the rules which have tended to be 
followed by alternative client implementations 
(e.g. bitcoind, libbitcoin, Bcoin).
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Alteration

Bitcoin’s governance can be described as 
anarchic: there is no formal standard or set of 
procedures to make changes to the protocol. 
Instead, participants run the client version that 
implements (and thus enforces) the rule set 
that they deem valid. Applying changes to the 
protocol thus requires a global coordination 
effort to convince nodes to upgrade to 
a newer client version that supports the 
proposed changes. 
Nodes that do not upgrade will cause a split 
in the network that effectively leads to the 
emergence of a new DLT system where both 
systems share the same transaction history 
up until the point of the fork (e.g. Bitcoin Cash 
in August 2017). Because each subnetwork’s 
value to the participants is related to the 
number of users on it, users are strongly 

incentivised to upgrade simultaneously for all 
but the most contentious changes.
Users and developers can submit pull requests 
to the Github repository that hosts the 
relevant client implementation. The reference 
client Bitcoin Core has a standardised process 
(Bitcoin Improvement Proposals, or BIPs) to 
discuss proposed changes to the protocol. 
However, the changes are only effective if the 
vast majority of nodes decide to download 
and run the upgraded software client.97 As a 
result, miners ‘signal’ support of BIPs within 
the blocks they produce as a way of gauging 
community sentiment before adopting the 
associated proposal. Changing Bitcoin’s ruleset 
is very hard, as demonstrated by the SegWit 
debate which resulted in the creation of an 
alternative system - Bitcoin Cash - in August 
2017.98

Network
Table 16: Bitcoin: Network Layer

Layer Component Process Configuration

Network

Communications Network Access Open: open to anyone that downloads and runs a client. 

Data Broadcast Universal data diffusion: data is broadcast globally to the 
entire network.

Transaction 
Initiation

Unrestricted: anyone can submit a transaction through a 
node using a variety of ways.

Transaction 
Processing

Record Proposal Permissionless: Miners select unconfirmed transactions 
and create a candidate block. A valid candidate block 
requires attaching a valid SHA-256 hash to the block 
header (by selecting a nonce that gives the hash a 
sufficiently low value).

Conflict 
Resolution Rule

Nodes will follow the blockchain instance that carries 
most cumulative Proof-of-Work (‘longest/most-worked 
chain rule’).

Incentivised 
Transaction 
Processing

Intrinsic and monetary: miners receive a block reward 
(and transaction fees) in the form of a native token 
(‘bitcoin’) for submitting a valid block.

Validation Transaction 
Validation

Full nodes validate every unconfirmed transaction before 
relaying it to other nodes.

Record Validation Full nodes verify the PoW, block format, and every 
transaction in the block before adding the block to their 
journal and relaying it to other nodes.

Transaction 
Finality

Probabilistic: a transaction included in a valid block may 
get reversed if a competing (longer) blockchain instance 
takes over. General rule of thumb: 6 confirmations before 
a transaction can be considered settled.
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Communications

Bitcoin is an open system providing 
unrestricted access to the network: anyone 
can join, leave, and re-join the network 
simply by downloading and running a 
software client, limited only by their 
technical ability, equipment capability, and 
bandwidth. Within the network, all data is 
broadcast globally: every full node stores 
unconfirmed transactions in its mempool, 
and all confirmed transactions in the form of 
the Bitcoin blockchain. Anyone can submit a 
transaction, provided that transaction rules 
are respected.99 End users external to the 
system can use wallet software to create a 
transaction, which will then get sent over 
alternative communication channels to a full 
node that will broadcast it to the network.

Transaction Processing

Record producers (called miners) select 
unconfirmed transactions in the mempool and 
bundle them together into a candidate block. 
Before submitting the candidate block to the 
network, miners need to attach a valid PoW 
to the candidate block.100 This mining process 
generally requires a substantial amount of 
energy to find a valid solution because the 
difficulty adjusts to match the hashpower on 
the network. In case two unrelated miners 

find a valid solution at a similar time, the 
network applies the ‘longest-chain rule’ to 
decide which of the two candidate blocks to 
accept.101 Miners are incentivised to process 
transactions by receiving a reward intrinsic to 
the system for every successfully mined block: 
in addition to transaction fees, successful 
miners are allocated new units of the native 
token (bitcoin).

Validation

Bitcoin full nodes verify transactions twice. 
First, a node checks the validity of incoming 
unconfirmed transactions before relaying it to 
other nodes. This prevents invalid transactions 
from getting widely broadcast in the network 
and taking up significant network resources. In 
a second step, a node verifies the block (record) 
that includes the now-confirmed transactions. 
If the block passes the validity test, the node 
updates its journal and broadcasts the block 
to connected peers. Settlement in Bitcoin is 
only probabilistic: in theory, miners could, at 
any point, cause a chain reorganisation that 
would reverse all transactions included in 
now-orphaned blocks. In practice, however, 
it is considered safe to regard a transaction 
finalised after waiting for 6 confirmations (i.e. 
blocks mined on top of the block that includes 
the transaction in question).

Data
Table 17: Bitcoin: Data Layer

Layer Component Process Configuration

Data

Operations Input Primarily internal (e.g. previous outputs: UTXOs, scripts). 
External: arbitrary data for timestamping purposes (e.g. 
via OP_RETURN).

Programmatically-
executed 
Transactions

Fixed-function: limited scripting language enables simple 
on-chain smart contracts (e.g. multi-signature and time-
locked contracts) .

Locus of Execution On-chain for native asset transfer.

Journal Reference Endogenous: native asset unique to system (BTC).
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Operations

Bitcoin primarily takes internal sources as 
inputs for creating new records since the 
main purpose of the system is to provide 
secure value transfer of the native token. This 
means that internal asset units (‘bitcoin’) get 
used as inputs for transactions. Bitcoin can 
also be used as a global public notary: data 
(or pointers to externally stored data) can 
be embedded into Bitcoin transactions for 
tamper-resistant timestamping purposes. 
In terms of automated executables (‘smart 
contracts’), Bitcoin only allows the design 
and on-chain execution of relatively simple 
programs via its native scripting language 
(‘Script’): multi-signature and hashed timelock 

contracts are good examples of simple smart 
contracts implemented on Bitcoin.

Journal

The system records transactions describing 
the creation and transfer of the native token 
bitcoin. Bitcoins exist exclusively within the 
boundaries of the Bitcoin system as entries in 
the Bitcoin ‘ledger’. The records produced by 
the Bitcoin system thus point to internal values 
(‘bitcoin’) that have no direct connection to 
external systems.102 This means that transfers 
recorded by the Bitcoin system do not rely on 
external agents for enforcement; instead, they 
are automatically and independently enforced 
‘on-chain’ by network participants.103

6.2 COMPARATIVE ANALYSIS

The framework we have developed is a tool 
to map the relationships between system 
layers, components, processes, and actors 
for different DLT systems. These systems are 
dynamic and constantly evolving, requiring 
frequent updates to the analysis. The following 
comparative analysis should be understood as 
our best attempt to describe the state of the 
indicated systems at the time of this report’s 
publication.

6.2.1 Case Studies
We have selected a total of six case studies 
to show how the framework can be used for 
comparative analysis (Figure 17). Each of the 
selected systems has unique characteristics 
and properties that are a result of the design 
choices (chosen configurations) influenced by 
assumptions and assessments of trade-offs.
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Figure 17: Case Studies Overview

The following subsections will only highlight 
the most important differences between the 
case studies. A full comparative analysis using 
the framework can be found in Appendix B. 

6.2.2 Are These DLT Systems?
Recall that our formal definition of a DLT 
system required 5 elements. Table 18 
summarises whether these five elements are 
satisfied by the systems we include in our case 
study. We will discuss the technical aspect of 

each system that causes it to deviate from the 
results of Bitcoin within this section as part 
of our framework. Most importantly, notice 
that while all the systems we included have 
launched (‘Launch Date’), not all the systems 
we include are fully functional as DLT systems 
yet. However, all included systems have 
released plans that clearly indicate how they 
will gain properties required for DLT systems. 
We refer to these systems as potential DLT 
systems.

ETHEREUM

• Purpose: distributed 
computing platform and 
operating system for 
‘unstoppable’ applications

• Network launch: July 2015 
(Ethereum Foundation)

• Value proposition: on-chain 
smart contract functionality 
allows the design of 
programmatic, deterministic, 
and tamper-resistant 
agreements and interactions

BITCOIN
• Purpose: digital asset and 

peer-to-peer payments 

• Network launch: Jan. 2009 
(Anonymous creator)

• Value proposition: digital 
asset with artificial scarcity 
that cannot be seized; 
censorship-resistant 
payment networks

RIPPLE
• Purpose: cross-border 

payment network

• Network launch: 2012 
(OpenCoin, now RippleLabs, 
Inc.)

• Value proposition: fast 
and low-cost cross-border 
payments and currency 
conversion

ALASTRIA

• Purpose: multi-sectoral 
blockchain infrastructure 
for Spanish enterprises and 
public sector institutions

• Network launch: test net 
launched in Dec. 2017, main 
net launch expected for 
Q4 2018 (‘Consorcio Red 
Alastria’ Association)

• Value proposition: semi-
public network with shared 
governance and transparent 
on-boarding

• Purpose: trusted online 
identities to facilitate online 
registration

• Network launch: first 
trials launched in late 2016; 
expected to fully launch in 
Q4 2018 (SecureKey)

• Value proposition: private, 
secure and convenient online 
registration services for 
users with lower costs and 
higher trust for business

VERIFIED.ME

• Purpose: shared 
infrastructure for global 
trade

• Network launch: Sep. 2017 
(‘Company Y’)

• Value proposition: increased 
automation and efficiency in 
global trade via a reduction 
in fraud, errors, and 
reconciliation costs

*Note: the initiators of the 
project prefer not to be 
publicly disclosed. We will 
refer to them as ‘Company 
Y’ undertaking ‘Project X’ 
throughout this section.

‘PROJECT X’*
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Table 18: Not All Case Studies Currently Meet The DLT System Criteria 

Launch Date
Shared 

Recordkeeping

Multi-
party 

Consensus

Independent 
Validation

Tamper 
Evidence

Tamper 
Resistance

Bitcoin January 2009     

Ethereum July 2015     

Ripple 2012  ?   ?

Alastria 2018 (Testnet)     ?

Verified.Me 2016 (Trial)     ?

‘Project X’
September 
2017

    

Both Bitcoin and Ethereum satisfy the five 
properties required of a DLT system.104 
Ripple Labs’ influence over validator nodes 
makes both multi-party consensus and 
tamper resistance properties contentious. 
Both Alastria and Verified.Me have unclear 
tamper resistance properties as of yet. These 
contentious properties result in the three 
systems having disputed DLT status -- some 
see them as DLT systems, some do not -- but 

we include them as they can be analysed by 
our framework. ‘Project X’, which is still in its 
early stages and uses only a single validator, 
does not yet have multi-party consensus, 
independent validation, or tamper resistance, 
but it does have a clear plan to increase the 
number of record producers and independent 
auditors and so could eventually become a full-
fledged DLT system. 

The ability to use this framework to analyse and compare  
systems that are not yet fully functional DLT systems is an  

additional benefit of a systems-based approach.

Are ‘Potential’ DLT Systems A Thing?

It is important to note that not all systems that claim to be DLT systems can be considered 
DLT systems according to the formal definition presented in Section 3. In particular, both 
Verified.Me and ‘Project X’ - in their current state - do not meet all conditions specified by 
the definition. However, these systems have the potential to become a DLT system as their 
architecture lends itself to satisfy all necessary conditions.
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6.2.3 Protocol

System Launch

Bitcoin is the only DLT system within the case 
studies that was launched by an anonymous 
entity as an open-source project. In contrast, 
all other case studies were released by a 
known entity, albeit under different structures: 
for instance, Ethereum was released by the 
Ethereum Foundation and the Alastria main 
net will be launched by the ‘Consorcio Red 
Alastria’ Association, whereas Ripple, Verified.

Me and ‘Project X’ have all been launched by 
a single company (OpenCoin/Ripple Labs, 
SecureKey, and ‘Company Y’, respectively).

Codebase

Bitcoin, Ethereum, and Ripple are based on 
codebases designed from scratch, whereas 
Alastria is built on a slightly derived version of 
Ethereum called Quorum (initially developed 
by J.P. Morgan). Verified.Me and ‘Project 
X’ use the Hyperledger Fabric framework 
(Figure 18).

Figure 18 - Codebase Comparison

Bitcoin, Ethereum, Ripple, and Alastria 
are open-source: this means that network 
participants may decide to fork the project 
(i.e. ‘copy-paste’ the codebase) and create 
an alternative system which is based on 
similar premises. In contrast, Verified.Me and 
‘Project X’ are closed-source, which prevents 
participants from cloning the system.

Governance

System governance is one of the key 
differentiators for the analysed DLT systems.
Fully open and permissionless systems such 
as Bitcoin and Ethereum lack a formalised 

set of procedures and standards around how 
protocol rules are updated. However, there are 
differences in how both projects approach this 
issue: Bitcoin’s reference client Bitcoin Core 
has a dedicated BIP (Bitcoin Improvement 
Proposal) process through which changes 
to the codebase are submitted, reviewed, 
and finally accepted or rejected. While in 
theory access to the BIP process is open to 
anyone, practice has shown that a limited 
number of volunteering core developers have 
disproportionate influence over protocol 
changes.105 Nevertheless, the SegWit episode 
has shown that reaching global consensus over 
proposed rule changes is very difficult.106

Codebase from scratchBased on existing codebase

Open-source

Closed-source
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On the other hand, Ethereum development 
is heavily influenced by the Ethereum 
Foundation and its development roadmap. 
While there is an EIP (Ethereum Improvement 
Proposal) process in place and users can 
choose from multiple clients, history has 

shown that with one notable exception107, 
upgrades proposed by the Ethereum 
Foundation and its co-founder Vitalik Buterin 
have been accepted by system participants 
without contention. 

Figure 19: Governance Comparison

In closed systems, the administrators generally 
play a much more important role in the 
governance process. For example, protocol 
changes in ‘Project X’ are dictated by the 
key customer (a large logistics company) and 
implemented by ‘Company Y’. However, there 
exist alternative, more collaborative models 
as well: protocol changes are voted upon by 
record producers (validators) in Alastria and by 
a Steering Committee composed of network 
participants in Verified.Me. In contrast, key 

decisions in Ripple are taken by Ripple Labs 
which acts as a ‘benevolent dictator’, although 
validators have the possibility to vote on so-
called ‘Amendments’.108

Table 19 provides a more detailed analysis of 
the key differences based on the processes 
at the protocol layer as defined by the 
framework. 
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Table 19: Comparative Analysis: Protocol Layer

FRAMEWORK 
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

From scratch;  
open-source

From scratch; open-source From scratch; open-source Quorum-based codebase 
(which itself is a fork of 
Ethereum); open-source

Hyperledger Fabric; 
closed-source user 
modules

Hyperledger Fabric; closed 
source implementation

Rules set by reference 
client

Formal protocol 
specification (‘Yellow 
Paper’)

Rules set by reference 
protocol and client

Formal protocol 
specification

Formal protocol 
specification

Formal protocol 
specification (default 
recommendation by 
Hyperledger)

Anarchic: nodes vote 
by running software 
client of choice; but the 
Bitcoin Core reference 
implementation has 
significant influence over 
development

Hierarchical: Ethereum 
Foundation and specific 
devs have substantial 
influence over general 
development

Dictatorship: Ripple Labs 
has nearly ultimate control; 
validators can vote via 
‘Amendments’ feature

Democratic/Plutocratic: 
validator nodes need 
to reach agreement; no 
central administrator

Federation: a Steering 
Committee composed of 
providers is voting

Dictatorship: key customer 
has final authority

Bitcoin Improvement 
Proposal (BIP) via Core 
GitHub Repo; running 
software client of choice 
(generally Bitcoin Core)

Ethereum Improvement 
Proposal (EIP); running 
software client of choice 
(geth or Parity)

Validators vote on 
‘Amendments’ - if 80% 
agree, changes get 
implemented

Unclear - likely pushed to 
clients who can choose 
whether to update or not

Technical updates get 
pushed to network 
endpoints and clients; 
substantial rule changes 
need to be performed 
through a formal change 
management process

‘Company Y’ will update 
the clients it runs for their 
customers
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6.2.4 Network
The network level manifests a variety of 
important differences between the analysed 
systems. 

Network Access

While the Bitcoin, Ethereum, and Ripple 
networks are universally accessible (with the 
two former having several thousand auditors), 
access to Alastria, Verified.Me, and ‘Project 

X’ is restricted to select participants (Figure 
20).109 Alastria is open to any Spanish business, 
subject to a semi-open application process in 
which validators vote on whether to accept 
new members. Alastria is expecting to onboard 
hundreds of companies. In contrast, access 
to Verified.Me and ‘Project X’ is controlled by 
a single gatekeeper. Verified.Me has around 
15 service providers running fully-validating 
nodes, while ‘Project X’ is limited to three 
entities, with all nodes currently hosted by 
‘Company Y’ and accessible via API calls. 

Figure 20: Network Access Comparison

Communications

In Bitcoin, Ethereum, Ripple, and Alastria, 
data is broadcast globally to all nodes in the 
network, meaning that every node has to 
currently store and process every single 
transaction from genesis.110 On the other 
hand, Verified.Me and ‘Project X’ are based on 
the Hyperledger Fabric codebase which has 
native support for multi-channel data diffusion: 
data is only shared among participants of a 
specific channel (i.e. sub-network).

Fully closed

NETWORK ACCESS
Fully open

Distributed gatekeeping No gatekeeperSingle gatekeeper

‘Project X’
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Figure 21: Network Architecture Comparison

Transaction Processing

When it comes to determining how 
transactions get included in the form of 
records to the ledger, the systems in question 
take different approaches. 

• Participation: 
In a first step, we observe that once on-
boarded to the network, any network 
participant in Bitcoin, Ethereum, 
Ripple, and Verified.Me has the right to 
participate in transaction processing as a 
record producer (permissionless).111 This 
contrasts with Alastria and ‘Project X’, 
where only a select subset of network 
participants are authorised to become 
validators (permissioned). Alastria 
will launch with around 30 different 
validators, whereas ‘Project X’ currently 
only employs a single validator, with plans 
to gradually distribute control to multiple 
validators in the future.112

• Record Creation And Conflict 
Resolution: 
There are significant differences across 
these systems in terms of record 
processing: in Bitcoin and Ethereum, 
miners compete against each other 
to find a valid PoW to attach to their 
candidate record. In the case of two 
competing records, the ‘longest valid 

chain’ rule kicks in and the ledger version 
that contains the most accumulated PoW 
is considered authoritative.113

In contrast, the other systems use a less 
resource-intensive consensus mechanism 
to reach agreement over the state of the 
ledger: Ripple uses multiple consensus rounds 
until a ‘supermajority’ of 80% is reached, 
while Alastria plans to launch with a rather 
traditional Raft-based consensus mechanism 
in a first stage. ‘Project X’ does not use a 
distributed consensus mechanism at all since 
there is only a single validator at this stage. As 
such, ‘Project X’ cannot be properly called a 
DLT system until it implements a consensus 
mechanism that involves more than one 
validator.

• Incentives 
Bitcoin and Ethereum are secured 
through economic incentives: miners 
have intrinsic monetary incentives 
in the form of the block subsidy (i.e. 
newly minted native token units) and 
transaction fees (denominated in the 
native token). Record producers in these 
systems operate on the basis of economic 
incentives summarised by the Bitcoin 
white paper as follows: ‘He ought to find 
it more profitable to play by the rules [...] 
than to undermine the system and the 
validity of his own wealth’.114 As a result, 

Closed accessOpen access

Universal  
(global)

Multi-channel 
(local)
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planning to 
expand to 30+ 
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nodes hosted 
by Company Y
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companies 
each running 
nodes
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exclusive focus of record producers on 
economic self-interest ensures a smooth 
functioning of the system.

In contrast, record producers in other systems 
have primarily extrinsic incentives of non-
monetary nature, such as reputation (e.g. 
being perceived as responsible), reliability (e.g. 
providing a good service), and the threat of 

litigation in case they do not play by the rules. 
Verified.Me validators also have an extrinsic 
monetary incentive in that they receive fees 
(denominated in national currency) for the 
provision of their service. Security in these 
systems is primarily based on access control 
and contractual obligations between record 
producers.

Figure 22: Transaction Processing Comparison

Validation

Validation is a crucial aspect that provides 
individual auditors with the ability to 
independently verify transactions, records, 
and the state of the system without having to 
rely on a third party. Since Bitcoin, Ethereum, 
Ripple and Alastria use the global data 
diffusion model, every auditor has to validate 
and store every single transaction and record 
that have ever been generated. Auditors in 
Verified.Me and ‘Project X’, on the other hand, 
use the multi-channel data diffusion model 
and thus only need to validate transactions 
and records within their channels (local 
verification). In the case of ‘Project X’, there 
is no formal independent validation since all 
nodes are currently hosted by Company Y.

Bitcoin and Ethereum only provide 
probabilistic finality: as a result of the PoW 
mechanism used for transaction processing, a 

confirmed transaction runs the risk of getting 
reversed at any point in time. In practice, 
however, the likelihood of reversal decreases 
with each additional record added to the 
ledger, as reorganising the ledger requires 
re-doing the entire PoW for all subsequent 
blocks.115 A common rule of thumb is thus to 
consider records ‘quasi-final’ after more than 
six (Bitcoin) and 24 confirmations (Ethereum), 
i.e. additional records on top of the record in 
question. Ripple, Alastria, Verified.Me, and 
‘Project X’ have deterministic finality, which 
means that the records can be considered final 
after a specific provisional settlement phase. 
The duration of the provisional settlement 
phase generally differs from one system to 
another, although all of the case studies in 
question claim to have instant settlement after 
the record has been confirmed.116 

Table 20 summarises the comparative analysis 
of the six case studies at the network layer.

PermissionlessPermissioned

Primarily 
intrinsic & 
monetary

Primarily 
extrinsic & 
non-monetary
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‘Project X’

Block reward

Record 
Producers 
receive a 
service fee



Table 20: Comparative Analysis: Network Layer

FRAMEWORK 
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping 
distributed across validator 
nodes

Closed: access control performed 
by gatekeeper (SecureKey)

Closed: access control 
performed by gatekeeper 
(Company Y according to formal 
process

Universal data diffusion  
(public)

Universal data diffusion  
(public)

Universal data diffusion (public) Universal data diffusion 
(public)

Multi-channel data diffusion 
(selective privacy)

Multi-channel data diffusion 
(selective privacy); but all nodes 
are hosted and run by Company 

Unrestricted: anyone with a 
corresponding private key can 
create and sign a transaction: needs 
to broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can 
create and sign a transaction: needs 
to broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can 
create and sign a transaction: needs 
to broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Network participants can 
create transactions; likely 
external users can transmit 
signed transactions as well 
via an auditor/listener

Restricted: select set of end users 
trigger transactions via an API 
to nodes

Restricted: key customer’s ERP 
system creates transactions 
that get submitted via API to 
one of the auditors/listeners 
operated by Company Y 

Permissionless: miners select 
unconfirmed transactions from their 
mempool and bundle them together 
into a candidate block. A valid 
candidate block requires attaching 
a valid SHA-256 hash to the block 
header (by selecting a nonce that 
gives the hash a sufficiently low 
value)

Permissionless: miners select 
unconfirmed transactions from 
their mempool and bundle them 
together into a candidate block. 
A valid candidate block requires 
attaching a valid Ethash PoW to the 
block header (by selecting a nonce 
that gives the hash a sufficiently low 
value)

Permissioned: validators select 
unconfirmed transactions and 
create a new ledger instance. They 
relay candidate records for a ‘round 
of consensus’: multi-computation of 
new ledger

Permissioned: validator 
nodes (± 30 different 
entities) select unconfirmed 
transactions from their 
mempool and bundle them 
together into a candidate 
block. Raft-based consensus 
mechanism to reach 
agreement

Permissioned: validator nodes 
(all 15 providers) create records 
that contain transactions relating 
only to trades they are involved 
in. Simple state change proposal: 
generally no disagreement

Permissioned: Company 
Y-controlled validator selects 
unconfirmed transactions and 
creates records (centralised 
node)

Longest valid chain rule (i.e. most 
cumulative PoW)

Longest valid chain rule (i.e. most 
cumulative PoW)

Multiple consensus rounds among 
Unique Node List (UNL) until 
a 'supermajority' (80%) reach 
consensus

Race: the first block 
wins, competing blocks 
are discarded (rare since 
generally only one minter/
leader at a time)

Generally no dispute; all 
participants agree that something 
has happened. Exact consensus 
algorithm used is unknown

No-op (consensus ignored): no 
conflict possible

Intrinsic and monetary: block 
reward (newly minted BTC and 
transaction fees)

Intrinsic and monetary: block 
reward (newly minted ETH and 
transaction fees)

No monetary reward, implicit 
extrinsic incentives (network 
robustness & resilience)

No intrinsic monetary 
incentive (no native token)

(1) Extrinsic monetary incentive: 
providers get paid a service fee by 
destination service, denominated 
in national currency ; (2) Extrinsic 
non-monetary incentive: (a) 
value creation for customers 
of providers that helps them 
compete against GAFA; (b) helps 
them reduce fraud

No intrinsic nor monetary 
incentive - extrinsic non-
monetary incentive of running 
platform smoothly

Auditors and listeners validate every 
unconfirmed transaction before 
relaying it to connected nodes

Auditors and listeners validate every 
unconfirmed transaction before 
relaying it to connected nodes

Tracking nodes validate 
unconfirmed transactions before 
relaying them

Auditors and listeners 
validate every unconfirmed 
transaction before relaying 
it to connected nodes

Each auditor/listener validates 
every transaction within its 
channel

Company Y-controlled nodes 
validate every transaction 
occurring within a particular 
channel
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6.2.5 Data

Operations

Bitcoin’s inputs are generally of internal nature 
(e.g. previous outputs and scripts), whereas 
inputs in Ethereum, Ripple and Alastria 
originate from a combination of both internal 
and external sources. Verified.Me and ‘Project 
X’ have primarily external inputs sourced from 
external, connected systems.

Ethereum and Alastria are two systems 
that support general-purpose on-chain 
computations that can be used to design 
and run complex agreements and programs 
directly ‘on-chain’ (expressive). Applications and 
programs will be automatically executed at 
the system level - either by all fully-validating 
nodes (global data diffusion) or by those 
involved in that particular agreement (multi-
channel data diffusion).

In contrast, Bitcoin, Ripple, Verified.Me and 
‘Project X’ have rather limited capabilities for 
‘on-chain’ computations (prescribed). These 
systems do not come with an integrated 
runtime environment and virtual machine 
(VM), which means that expressive programs 
cannot be executed directly at the system 
level. Instead, more complex computations are 
often processed and executed in connected 
but external systems. This layered approach 
can provide certain advantages (e.g. better 
scaling, increased privacy, higher security) 
over more expressive systems.

Reference And Value Linking

Bitcoin, Ethereum, and Ripple all keep track 
of endogenous system variables that only 
exist within the boundaries of their systems: 
a native digital asset (bitcoin/BTC, ether/

ETH, and ripple/XRP, respectively). Since 
these assets are intrinsic to the system, 
transfers of ownership recorded by the system 
can effectively be automatically enforced 
by the system itself without requiring the 
intervention of external agents. 

In contrast, Verified.Me and ‘Project X’ 
are exclusively used for keeping track of 
exogenous system variables that reference 
resources and events external to the systems. 
For instance, records in Verified.Me contain 
hash pointers that point to identity data stored 
in external proprietary databases, whereas 
‘Project X’ is keeping track of insurance 
records that exist in external ERP systems. 

In addition to managing their native digital 
asset, Ethereum and Ripple can also be used 
to create records that reference exogenous 
resources at the system level.117 An example 
would be Ripple IOUs that are issued by 
Ripple gateways and function as a digital 
representation of national currency, which is 
held in custody by the gateways. Transactions 
that involve IOUs are referencing national 
currency held in external systems, which 
requires external agents and off-chain process 
to enforce transfers in the ‘real world’. As a 
result, Ethereum and Ripple can be considered 
hybrid in terms of record value linking.

Since Alastria has not formally launched 
yet, it is not possible to determine what the 
records will eventually reference. However, 
it is safe to assume that similar to Ethereum, 
network participants will take advantage of 
the platform versatility and create records that 
reference both endogenous and exogenous 
objects. 

Table 21 provides an overview of each case 
studies’ configurations at the data layer.
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Table 21: Comparative Analysis: Data Layer

FRAMEWORK 
ELEMENTS

BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

Primarily internal (e.g. 
previous outputs: UTXOs, 
scripts). External: arbitrary 
data for timestamping 
purposes using OP_
RETURN

Internal (previous outputs: 
accounts, smart contracts) 
and external (oracles)

Internal (previous outputs 
- accounts) and external 
(data related to IOU 
creation)

Internal (previous outputs: 
accounts, smart contracts) 
and external (oracles, IPFS 
implementation, off-chain 
private storage)

Primarily external 
(OpenID Connect 
(OIDC): connection 
service protocol). Internal 
= previous outputs: 
payload hashes; consent 
instruction; proof of 
reception

Primarily external (key 
customer ERP system via 
API; insurance records 
by insurance company). 
Internal = previous 
outputs/records

Stateless: limited scripting 
language enabling multi-
signature and timelocked 
contracts

Stateful: Turing-complete 
smart contract language 
allows for general-purpose 
computations

Stateless: special-purpose 
basic computations on-
chain

Stateful: Turing-complete 
smart contract language 
allows for general-purpose 
computations

Stateless: very simple 
business logic available 
on-chain

Stateless: very simple 
business logic available 
on-chain

Fixed-purpose machine 
for running simple scripts 
on-chain

General-purpose virtual 
machine: Ethereum Virtual 
Machine (EVM) allows for 
the execution of complex 
computations on-chain 

Fixed-purpose machine 
for basic on-chain 
computations

General-purpose virtual 
machine: Ethereum Virtual 
Machine (EVM) allows for 
the execution of complex 
computations on-chain 

Business logic to manage 
user consent is executed at 
a higher layer (off-chain)

Business logic is executed 
on an external platform 
(off-chain rule engine)

Endogenous: native asset 
unique to the system (BTC)

(1) Endogenous (native 
asset: ETH; user-defined 
tokens: dApps); (2) Hybrid 
(collateralised tokens and/
or records referencing 
external events)

(1) Endogenous (native 
asset: XRP); (2) Hybrid 
(gateway-issued IOUs and 
trust lines)

Depends on use 
case: endogenous 
if a native asset or 
user-defined token; 
hybrid if a combination 
of endogenous and 
exogenous references. 
Also possible to have fully 
exogenous references.

Fully exogenous:: identity 
data resides in an external 
system (identity sources: 
government, banks, etc.)

Fully exogenous: ERP 
systems and insurance 
records
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6.3 COMPARING KEY DIFFERENCES ACROSS 
DLT SYSTEM CASE STUDIES 

6.3.1 Summarising Framework Results

Figure 23: Overview Of Major Differences Between Case Studies 

Each of the selected case studies attempts 
to serve different use cases and objectives, 
which results in a great variety of architecture 
and design decisions. Systems like Bitcoin 
are optimising for trust-minimisation 
and censorship resistance, which require 
reasonable degrees of decentralisation at 
all layers and processes. This comes at the 
expense of performance, throughput capacity, 
speed, scaling, and user experience, to name 
just a few. Moreover, the lack of centralised 
governance and decision-making complicates 
coordination among diverse network actors 
and slows down collective action. 

Systems like Verified.Me and ‘Project X’ are 
designed to operate in a different context - a 
regulated multi-enterprise setting. This allows 

them to choose different trade-offs and adopt 
a more flexible approach, at the expense of a 
more centralised protocol and network layer. 
‘Project X’ takes a very conservative approach 
in the bootstrapping phase by starting off 
with a system in which every function is 
centralised to ‘put a toe into the water and get 
people on board’. The plan is to then gradually 
distribute control over these functions to more 
participants over time. The reasoning behind 
that decision is to gain a better understanding 
of the system’s functions and properties 
while operating in a safe environment: 
this enables participants to gain invaluable 
experience and insights that can then be used 
to gradually move forward. In contrast to open 
experiments such as Ethereum, the rationale is 
to move slowly and not break things.

‘Project X’

GOVERNANCE

Anarchic 

Hierarchical 

Dictatorship  

Federation  

NETWORK ACCESS

Open   

Semi-open 

Closed  

TRANSACTION 
PROCESSING

Decentralised  

Semi-centralised   

Centralised 

INCENTIVES
Intrinsic  

Extrinsic    

REFERENCE

Endogenous 

Hybrid   

Exogenous  
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6.3.2 Differences In 
Participation
Figure 24 shows how assessing ‘participation’ 
in a DLT system using the different 
components can result in a more nuanced 
final conclusion. The systems with the most 
open participation are Bitcoin and Ethereum. 
At its current stage, ‘Project X’ is purposefully 
choosing restricted participation to bootstrap 
the system and initiate a learning process in 
a contained environment. Of the remaining 
three systems, Verified.Me has the lowest 

participation in the protocol and data Layer, 
though things are less certain in the network 
layer.

When performing a comparative analysis on 
highly complex and dynamic systems, choosing 
the accurate lens(es) is critical. Failing to 
take into account the diverse nature of DLT 
systems can lead to incomplete conclusions 
and assessments. As a consequence, we 
recommend the use of multiple lenses to get a 
broader - and thus likely a more complete and 
accurate - picture.

Figure 24: Different Levels Of ‘Participation’ 

6.3.3 Exploring The Current 
DLT Systems Landscape
Figure 25 presents an overview of the current 
DLT systems landscape by mapping selected 
DLT systems according to three dimensions. 
Transaction processing refers to the degree 
of centralisation in terms of selecting 
transactions and adding records to the global 
ledger. 

Reference establishes whether the records 
produced by system participants reference 
purely internal - endogenous (e.g. native digital 
assets), or entirely external - exogenous. 
The latter refers to DLT systems that are 
exclusively used for recordkeeping purposes 
(i.e. tracking information external to the 
system, such as items in a supply chain). An 
additional category represent hybrid assets 
(e.g. physical assets in tokenised form), which 

DATA  
LAYER
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LAYER
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share a combination of both endogenous and 
exogenous attributes.118 
Network access determines the level of 
accessibility to the DLT system: access can be 

unrestricted and open to anyone or restricted 
to a selected group of entities that have to go 
through a particular selection process.

Figure 25: Current DLT Systems Landscape

Two main observations can be derived from 
the landscape map:

Open networks all require a native asset 
(generally referred to as cryptocurrency) that 
is being used as an economic coordination 
mechanism to align incentives of system 
participants to work towards a common 
goal: the native asset plays an essential role 
in incentivising record producers to process 
transactions. An increasing number of open 
DLT systems are used for referencing non-
native assets as well (e.g. Ripple, Ethereum, 
Cardano119). 

On the opposite end, closed DLT systems are 
currently - with a few notable exceptions (e.g. 
World Reserve Trust120, Royal Mint Gold121) 

- primarily being used for recordkeeping 
purposes to track and record external 
information. Enforcement can thus not be 
performed by these systems on their own; it is 
reliant on external agents. 

DLT systems with open networks operate 
across the entire spectrum from fully 
centralised transaction processing to nearly 
decentralised transaction processing, whereas 
the majority of closed DLT systems currently 
operate in a more centralised fashion with 
regards to transaction processing. This does 
not come at a surprise as enterprises tend 
to take a more prudent and conservative 
approach when it comes to deploying new 
systems in production.

Centralised

Endogenous
(native assets)

Exogenous 
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6.3.4 Key Design Decisions 
And Implications
Figure 26 summarises the key design decisions 
that result in distinct DLT systems. Each 
configuration can have specific implications 
on the system’s characteristics, properties 

and nature. Furthermore, the combination 
of particular configurations can give rise to 
additional implications on the level of second-
order effects: these can be difficult to predict 
as they often manifest themselves only post-
launch. 

Figure 26: Key Design Decisions And Implications

GOVERNANCE

Potential implications on:

• Decision-making

• Ruleset

• Sustainability/antifragility

• Perceived legitimacy

• Transparency

• Outsider access

• Efficiency and coordination

Anarchic Hierarchical Dictatorship Federation Democratic

TRANSACTION 
PROCESSING Potential implications on:

• Transaction finality

• Participation

• System maintenance costs

• Degree of tamper resistance
Resource-
intensive

‘Light’ on 
resources

NETWORK 
ACCESS Potential implications on:

• Diversity of network 
participants

• Choice of consensus 
mechanism

• Trust requirementsOpen Semi-open Closed

REFERENCE

Potential implications on:

• Enforcement
Endogenous

(native)
Exogenous

(non-native) Hybrid Self-referential

INCENTIVES Potential implications on:

• Nature of consensus (secured 
by economic incentives 
vs. secured by contractual 
agreements)

• SecurityMonetary Non-monetary

BROADCAST
Potential implications on:

• Privacy and confidentiality

• Scalability

• Complexity
Universal Multi-channel
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SECTION 7: CONCLUSION

7.1 SUMMARY

Nearly 10 years after Bitcoin entered 
the world, the DLT ecosystem is still in 
early stages: it is constantly evolving and 
characterised by relentless experimentation 
and R&D. New systems, applications, 
and implementations are emerging on an 
almost daily basis, and novel configurations, 
technology assumptions, and vulnerabilities 
are frequently presented. Despite growing 
interest and much progress in recent years, 
DLT systems are generally still considered 
relatively immature. Doubts about cost-
benefit trade-offs and the utility of deploying 
such systems to solve specific problems 
continue to cast clouds over the ubiquitous 
hype that surrounds the technology.

As a result, there are many misconceptions 
about the nature of DLT systems, their 
properties, applicability for specific use cases, 
and remaining technological (and other) 
challenges. Apart from native digital assets 
issued on open, public and permissionless 
DLT systems - used primarily as speculative 
instruments - meaningful applications and 
implementations of DLT systems in production 
have rarely materialised to date: most projects 
are still in early trial or pilot phases, and it is 
unclear when they will be mature enough to 
be live. In addition, ‘blockchain’ and ‘DLT’ have 
become almost meaningless buzzwords that 
are - in many cases - mainly used for marketing 
and PR purposes.

For this reason, we have attempted to outline 
the five key properties that a DLT system 
needs to be capable of ensuring with no or 
little modification to its architecture. A DLT 
system is a distributed recordkeeping system 
that operates in an adversarial environment 
and is collectively maintained and updated by 
multiple entities. Every participant needs to be 
able to independently verify the validity and 
integrity of transactions and ultimately the 
system state. Finally, any attempt to tamper 
with transaction history needs to be trivial to 
detect and difficult to perform. 

We find that on the basis of their current 
settings and configurations, many self-
proclaimed ‘DLT systems’ do not meet these 
criteria and can thus only be considered 
‘potential DLT systems’ that have the basic 
architectural features to allow eventual 
evolution into ‘pure’ DLT systems. In order to 
analyse a specific DLT system’s key properties 
and power dynamics, we propose a conceptual 
framework that breaks down the system 
into three layers; each layer features a set of 
components, which in turn are composed of 
several processes that make the component 
function. We show how these components and 
processes interact, and how specific design 
choices in one process can have a significant 
impact on related processes and ultimately 
system properties. We also introduce different 
actor types, the roles they perform, and on 
which layers they are active. 
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We then apply the framework to six case 
studies of real systems that have been 
deployed (Bitcoin, Ethereum, Ripple, Alastria, 
Verified.Me and ‘Project X’), and use it as an 
analytical tool to examine similarities and 
differences between these systems. We 
demonstrate how every design choice is a 

conscious trade-off between a variety of 
properties, and exhibit that the most common 
trade-off is between ‘decentralisation’ and 
performance. As a result, every DLT system is 
a unique culmination of multiple configuration 
choices and needs to be examined at an 
individual level. 

7.2 CONTRIBUTION

The study addresses the need for a clear and 
shared ontology regarding DLT systems. It 
aims at filling the gap in common terminology 
by proposing a formal definition of a DLT 
system that involves a set of criteria it should 
meet. Furthermore, it provides a conceptual 
framework that breaks down the system into a 
set of system-critical layers, components and 
processes. 

The framework serves four purposes:

• Identifying DLT systems

• Analysing existing DLT systems

• Comparing different DLT systems 

• Serving as a useful tool for new system 
design by highlighting the trade-offs of 
different design choices

The key contribution consists in providing a 
conceptual tool for studying the components 
of a DLT system and understand the 
dependencies: before looking at the assets, 
tokens, or recorded information, one needs 
to understand the infrastructure that the 
former are based upon. A system is not simply 
‘decentralised’ or ‘centralised’, i.e. simple 
binary: instead, there are different degrees of 
control and authority prevalent at each layer, 
component, and process. For this reason, 
it is of utmost importance to understand 
the dependencies between these layers to 
accurately assess what is built on top of the 
infrastructure.

This framework provides regulators with a 
clear picture of where authority - if any - is 
held in a DLT system, and hence who can be 
held accountable for the resulting technology 
and outcomes. For instance, it would appear 
that in many cases, the protocol layer is often 
controlled by a central authority who has the 
capability of modifying the rules of the game. 
In other cases, validating and processing 
transactions may be restricted to a single 
entity - or alternatively to a small group of 
intimately related entities. It is important 
to understand how power dynamics are 
distributed across different layers in a DLT 
system. The framework identifies the layers 
and participants who may be subjected to 
regulation, in addition to promoting general 
understanding of the technology.

For businesses, system engineers, and 
developers seeking to develop these systems 
in-house, the framework will prove useful as a 
guide to the different aspects essential to the 
development of new DLT systems.

For investors looking to get exposure to DLT 
enterprises, the framework could serve as 
a yardstick to understand the credibility of 
design proposals what different trade-offs this 
technology implies, and how economic value 
can be produced and extracted. Importantly, it 
will help investors make informed investment 
decisions, and not be misled into a ‘distributed’ 
technology that would, in fact, be centralised 
or incapable of meeting its design objectives.
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Academics and researchers may find the 
framework useful as a clear foundation 
upon which to develop theories related 

to communications, economics, industrial 
organization, and many other disciplines.

7.3 SHORTCOMINGS AND AVENUES FOR 
FUTURE RESEARCH

The framework and its applications described 
in this report is a modular and generic tool for 
the analysis of DLT systems. This tool uses a 
three-layer analysis approach that is mostly 
based on qualitative interpretation. While this 
analysis has attempted to remain as objective 
as possible, the difficulty of objectively 
quantifying abstract aspects of DLT systems 
such as ‘decentralisation’ necessitates an 
inherently subjective inquiry based on the 
authors’ assessments, conceptions of the 
technology stack, and role of the actors 
inhabiting them.

Future research on the distributed technology 
systems could focus on the more technical 

aspects of the processes described in this 
report. For instance, in performing case 
studies of DLT systems, the framework could 
be a first step towards more case-specific 
technical developments. Similarly, additional 
configurations for given processes could be 
added or developed, including new processes 
or components that might be necessary over 
the development trajectory of the technology. 
Additionally, regulatory and legislative 
research could be conducted in relation to this 
framework. This would help determine which 
process configurations correspond to what 
legal framework (e.g. authority, dependency).
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APPENDICES

APPENDIX A: ANATOMY OF A DLT SYSTEM 

Layer Component Process Description

Protocol 
Layer

Genesis 
Component

Inter-System 
Dependencies

Investigate the dependencies of the system at the operation and/or the 
data level (self-sufficient, dependent, interfacing, external).

Codebase Creation
Choose adequate codebase (existing, from scratch) as foundation of the 
system and set access conditions (open-source, closed-source).

Rule Initiation Define and agree on the rules that govern the DLT system.

Alteration 
Component

Protocol 
Governance

Specify the decision-making process for altering the protocol in an 
orderly and legitimate manner.

Protocol Change Specify how agreed-upon rule changes will be implemented.

Network 
Layer

Communications 
Component

Network Access Decide who to grant access to the system (open, closed).

Data Broadcast Specify how data is replicated (universal, multi-channel).

Transaction 
Initiation

Determine who can create transactions and how these are broadcast to 
the system (unrestricted, restricted).

Transaction 
Processing 

Component

Record Proposal

Select a set of unconfirmed transactions and bundle them together into 
a candidate record. Propose adding the candidate record to the ledger 
by performing the necessary steps specified by the protocol rules (e.g. 
attach valid PoW).

Conflict Resolution 
Rule

Set the rule that solves the conflict between equally-valid proposed 
records for addition to the ledger (e.g. longest-chain rule).

Incentivised 
Transaction 
Processing

Specify the incentive nature behind transaction processing (intrinsic/
extrinsic, monetary/non-monetary).

Validation 
Component

Transaction 
Validation

Confirm the legitimacy and validity of unconfirmed transactions before 
adding them to the log.

Record Validation
Verify whether a record complies with protocol rules before adding it to 
the journal.

Transaction Finality
Determine the transition period between 'provisional’ settlement 
and 'permanent’ settlement for confirmed records (deterministic, 
probabilistic).

Data  
Layer

Operations 
Component

Input
Designate the data sources used to generate ledger entries (internal, 
external).

Programmatically-
executed 

Transactions

Specify the degree of expressiveness of on-chain computations at the 
core system layer - often referred to as smart contract capabilities 
(stateless, stateful).

Locus of Execution
Determine where computations are being executed  
(on-chain, off-chain).

Journal 
Component

Reference
Decide what the data stored in records is pointing to (endogenous, 
exogenous, hybrid, self-referential).
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APPENDIX B: CASE STUDY COMPARISON 
FRAMEWORK ELEMENTS BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

PROCESS

Inter-System 
Dependencies

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

Codebase 
Creation

From scratch; open-source From scratch; open-source From scratch; open-source Quorum-based codebase (which itself is a fork of 
Ethereum); open-source

Hyperledger Fabric; closed-source user modules Hyperledger Fabric; closed source 
implementation

Rule Initiation Rules set by reference client Formal protocol specification  
(‘Yellow Paper’)

Rules set by reference protocol  
and client

Formal protocol specification Formal protocol specification Formal protocol specification  
(default recommendation by Hyperledger)

Protocol 
Governance

Anarchic: nodes vote by running 
software client of choice; but 
the Bitcoin Core reference 
implementation has significant 
influence over development

Hierarchical: Ethereum Foundation 
and specific devs have substantial 
influence over general development

Dictatorship: Ripple Labs has nearly 
ultimate control; validators can vote 
via ‘Amendments’ feature

Democratic/Plutocratic: validator nodes need to 
reach agreement; no central administrator

Federation: a Steering Committee composed of 
providers is voting

Dictatorship: key customer has final authority

Protocol 
Change

Bitcoin Improvement Proposal (BIP) 
via Core GitHub Repo; running 
software client of choice (generally 
Bitcoin Core)

Ethereum Improvement Proposal 
(EIP); running software client of 
choice (geth or Parity)

Validators vote on ‘Amendments’ - if 
80% agree, changes get implemented

Unclear - likely pushed to clients who can choose 
whether to update or not

Technical updates get pushed to network 
endpoints and clients; substantial rule changes 
need to be performed through a formal change 
management process

‘Company Y’ will update the clients it runs for their 
customers

Network 
Access

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping distributed across 
validator nodes

Closed: access control performed by gatekeeper 
(SecureKey)

Closed: access control performed by gatekeeper 
(Company Y according to formal process

Data Broadcast Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Multi-channel data diffusion (selective privacy) Multi-channel data diffusion (selective privacy);  
but all nodes are hosted and run by Company 

Transaction 
Initiation

Unrestricted: anyone with a 
corresponding private key can 
create and sign a transaction: needs 
to broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can create 
and sign a transaction: needs to 
broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can create 
and sign a transaction: needs to 
broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Network participants can create transactions; 
likely external users can transmit signed 
transactions as well via an auditor/listener

Restricted: select set of end users trigger 
transactions via an API to nodes

Restricted: key customer’s ERP system creates 
transactions that get submitted via API to one of 
the auditors/listeners operated by Company Y 

Record 
Proposal

Permissionless: miners select 
unconfirmed transactions from 
their mempool and bundle them 
together into a candidate block. 
A valid candidate block requires 
attaching a valid SHA-256 hash 
to the block header (by selecting 
a nonce that gives the hash a 
sufficiently low value)

Permissionless: miners select 
unconfirmed transactions from 
their mempool and bundle them 
together into a candidate block. 
A valid candidate block requires 
attaching a valid Ethash PoW to the 
block header (by selecting a nonce 
that gives the hash a sufficiently low 
value)

Permissioned: validators select 
unconfirmed transactions and create 
a new ledger instance. They relay 
candidate records for a ‘round of 
consensus’: multi-computation of new 
ledger

Permissioned: validator nodes (± 30 different 
entities) select unconfirmed transactions from 
their mempool and bundle them together into a 
candidate block. Raft-based consensus mechanism 
to reach agreement

Permissioned: validator nodes (all 15 providers) 
create records that contain transactions relating 
only to trades they are involved in. Simple state 
change proposal: generally no disagreement

Permissioned: Company Y-controlled validator 
selects unconfirmed transactions and creates 
records (centralised node)

Conflict	
Resolution Rule

Longest valid chain rule (i.e. most 
cumulative PoW)

Longest valid chain rule (i.e. most 
cumulative PoW)

Multiple consensus rounds among 
Unique Node List (UNL) until a 
'supermajority' (80%) reach consensus

Race: the first block wins, competing blocks are 
discarded (rare since generally only one minter/
leader at a time)

Generally no dispute; all participants agree 
that something has happened. Exact consensus 
algorithm used is unknown

No-op (consensus ignored): no conflict possible

Incentivised 
Transaction 
Processing

Intrinsic and monetary:: block 
reward (newly minted BTC and 
transaction fees)

Intrinsic and monetary:: block 
reward (newly minted ETH and 
transaction fees)

No monetary reward, implicit extrinsic 
incentives (network robustness & 
resilience)

No intrinsic monetary incentive (no native token) (1) Extrinsic monetary incentive: providers get paid 
a service fee by destination service, denominated 
in national currency ; (2) Extrinsic non-monetary 
incentive: (a) value creation for customers of 
providers that helps them compete against GAFA; 
(b) helps them reduce fraud

No intrinsic nor monetary incentive - extrinsic 
non-monetary incentive of running platform 
smoothly

Transaction 
Validation

Auditors and listeners validate 
every unconfirmed transaction 
before relaying it to connected 
nodes

Auditors and listeners validate every 
unconfirmed transaction before 
relaying it to connected nodes

Tracking nodes validate unconfirmed 
transactions before relaying them

Auditors and listeners validate every unconfirmed 
transaction before relaying it to connected nodes

Each auditor/listener validates every transaction 
within its channel

Company Y-controlled nodes validate every 
transaction occurring within a particular channel

Input

Primarily internal (e.g. previous 
outputs: UTXOs, scripts). External: 
arbitrary data for timestamping 
purposes using OP_RETURN

Internal (previous outputs: 
accounts, smart contracts) and 
external (oracles)

Internal (previous outputs - accounts) 
and external (data related to IOU 
creation)

Internal (previous outputs: accounts, smart 
contracts) and external (oracles, IPFS 
implementation, off-chain private storage)

Primarily external (OpenID Connect (OIDC): 
connection service protocol). Internal = previous 
outputs: payload hashes; consent instruction; 
proof of reception

Primarily external (key customer ERP system via 
API; insurance records by insurance company). 
Internal = previous outputs/records

Programmati-
cally-executed 

Transactions

Stateless: limited scripting language 
enabling multi-signature and 
timelocked contracts

Stateful: Turing-complete smart 
contract language allows for 
general-purpose computations

Stateless: special-purpose basic 
computations on-chain

Stateful: Turing-complete smart contract language 
allows for general-purpose computations

Stateless: very simple business logic available 
on-chain

Stateless: very simple business logic available 
on-chain

Locus of 
Execution

Fixed-purpose machine for running 
simple scripts on-chain

General-purpose virtual machine: 
Ethereum Virtual Machine (EVM) 
allows for the execution of complex 
computations on-chain 

Fixed-purpose machine for basic on-
chain computations

General-purpose virtual machine: Ethereum 
Virtual Machine (EVM) allows for the execution of 
complex computations on-chain 

Business logic to manage user consent is executed 
at a higher layer (off-chain)

Business logic is executed on an external platform 
(off-chain rule engine)

Reference

Endogenous: native asset unique to 
the system (BTC)

(1) Endogenous (native asset: ETH; 
user-defined tokens: dApps); (2) 
Hybrid (collateralised tokens and/or 
records referencing external events)

(1) Endogenous (native asset: XRP); 
(2) Hybrid (gateway-issued IOUs and 
trust lines)

Depends on use case: endogenous if a native asset 
or user-defined token; hybrid if a combination 
of endogenous and exogenous references. Also 
possible to have fully exogenous references.

Fully exogenous:: identity data resides in an 
external system (identity sources: government, 
banks, etc.)

Fully exogenous: ERP systems and insurance 
records
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APPENDIX B: CASE STUDY COMPARISON 
FRAMEWORK ELEMENTS BITCOIN ETHEREUM RIPPLE ALASTRIA VERIFIED.ME ‘PROJECT X’

PROCESS

Inter-System 
Dependencies

Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system Self-sufficient system

Codebase 
Creation

From scratch; open-source From scratch; open-source From scratch; open-source Quorum-based codebase (which itself is a fork of 
Ethereum); open-source

Hyperledger Fabric; closed-source user modules Hyperledger Fabric; closed source 
implementation

Rule Initiation Rules set by reference client Formal protocol specification  
(‘Yellow Paper’)

Rules set by reference protocol  
and client

Formal protocol specification Formal protocol specification Formal protocol specification  
(default recommendation by Hyperledger)

Protocol 
Governance

Anarchic: nodes vote by running 
software client of choice; but 
the Bitcoin Core reference 
implementation has significant 
influence over development

Hierarchical: Ethereum Foundation 
and specific devs have substantial 
influence over general development

Dictatorship: Ripple Labs has nearly 
ultimate control; validators can vote 
via ‘Amendments’ feature

Democratic/Plutocratic: validator nodes need to 
reach agreement; no central administrator

Federation: a Steering Committee composed of 
providers is voting

Dictatorship: key customer has final authority

Protocol 
Change

Bitcoin Improvement Proposal (BIP) 
via Core GitHub Repo; running 
software client of choice (generally 
Bitcoin Core)

Ethereum Improvement Proposal 
(EIP); running software client of 
choice (geth or Parity)

Validators vote on ‘Amendments’ - if 
80% agree, changes get implemented

Unclear - likely pushed to clients who can choose 
whether to update or not

Technical updates get pushed to network 
endpoints and clients; substantial rule changes 
need to be performed through a formal change 
management process

‘Company Y’ will update the clients it runs for their 
customers

Network 
Access

Open and unrestricted Open and unrestricted Open and unrestricted Semi-open: gatekeeping distributed across 
validator nodes

Closed: access control performed by gatekeeper 
(SecureKey)

Closed: access control performed by gatekeeper 
(Company Y according to formal process

Data Broadcast Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Universal data diffusion (public) Multi-channel data diffusion (selective privacy) Multi-channel data diffusion (selective privacy);  
but all nodes are hosted and run by Company 

Transaction 
Initiation

Unrestricted: anyone with a 
corresponding private key can 
create and sign a transaction: needs 
to broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can create 
and sign a transaction: needs to 
broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Unrestricted: anyone with a 
corresponding private key can create 
and sign a transaction: needs to 
broadcast it to the network via an 
auditor/listener, SPV client or third-
party service (API)

Network participants can create transactions; 
likely external users can transmit signed 
transactions as well via an auditor/listener

Restricted: select set of end users trigger 
transactions via an API to nodes

Restricted: key customer’s ERP system creates 
transactions that get submitted via API to one of 
the auditors/listeners operated by Company Y 

Record 
Proposal

Permissionless: miners select 
unconfirmed transactions from 
their mempool and bundle them 
together into a candidate block. 
A valid candidate block requires 
attaching a valid SHA-256 hash 
to the block header (by selecting 
a nonce that gives the hash a 
sufficiently low value)

Permissionless: miners select 
unconfirmed transactions from 
their mempool and bundle them 
together into a candidate block. 
A valid candidate block requires 
attaching a valid Ethash PoW to the 
block header (by selecting a nonce 
that gives the hash a sufficiently low 
value)

Permissioned: validators select 
unconfirmed transactions and create 
a new ledger instance. They relay 
candidate records for a ‘round of 
consensus’: multi-computation of new 
ledger

Permissioned: validator nodes (± 30 different 
entities) select unconfirmed transactions from 
their mempool and bundle them together into a 
candidate block. Raft-based consensus mechanism 
to reach agreement

Permissioned: validator nodes (all 15 providers) 
create records that contain transactions relating 
only to trades they are involved in. Simple state 
change proposal: generally no disagreement

Permissioned: Company Y-controlled validator 
selects unconfirmed transactions and creates 
records (centralised node)

Conflict	
Resolution Rule

Longest valid chain rule (i.e. most 
cumulative PoW)

Longest valid chain rule (i.e. most 
cumulative PoW)

Multiple consensus rounds among 
Unique Node List (UNL) until a 
'supermajority' (80%) reach consensus

Race: the first block wins, competing blocks are 
discarded (rare since generally only one minter/
leader at a time)

Generally no dispute; all participants agree 
that something has happened. Exact consensus 
algorithm used is unknown

No-op (consensus ignored): no conflict possible

Incentivised 
Transaction 
Processing

Intrinsic and monetary:: block 
reward (newly minted BTC and 
transaction fees)

Intrinsic and monetary:: block 
reward (newly minted ETH and 
transaction fees)

No monetary reward, implicit extrinsic 
incentives (network robustness & 
resilience)

No intrinsic monetary incentive (no native token) (1) Extrinsic monetary incentive: providers get paid 
a service fee by destination service, denominated 
in national currency ; (2) Extrinsic non-monetary 
incentive: (a) value creation for customers of 
providers that helps them compete against GAFA; 
(b) helps them reduce fraud

No intrinsic nor monetary incentive - extrinsic 
non-monetary incentive of running platform 
smoothly

Transaction 
Validation

Auditors and listeners validate 
every unconfirmed transaction 
before relaying it to connected 
nodes

Auditors and listeners validate every 
unconfirmed transaction before 
relaying it to connected nodes

Tracking nodes validate unconfirmed 
transactions before relaying them

Auditors and listeners validate every unconfirmed 
transaction before relaying it to connected nodes

Each auditor/listener validates every transaction 
within its channel

Company Y-controlled nodes validate every 
transaction occurring within a particular channel

Input

Primarily internal (e.g. previous 
outputs: UTXOs, scripts). External: 
arbitrary data for timestamping 
purposes using OP_RETURN

Internal (previous outputs: 
accounts, smart contracts) and 
external (oracles)

Internal (previous outputs - accounts) 
and external (data related to IOU 
creation)

Internal (previous outputs: accounts, smart 
contracts) and external (oracles, IPFS 
implementation, off-chain private storage)

Primarily external (OpenID Connect (OIDC): 
connection service protocol). Internal = previous 
outputs: payload hashes; consent instruction; 
proof of reception

Primarily external (key customer ERP system via 
API; insurance records by insurance company). 
Internal = previous outputs/records

Programmati-
cally-executed 

Transactions

Stateless: limited scripting language 
enabling multi-signature and 
timelocked contracts

Stateful: Turing-complete smart 
contract language allows for 
general-purpose computations

Stateless: special-purpose basic 
computations on-chain

Stateful: Turing-complete smart contract language 
allows for general-purpose computations

Stateless: very simple business logic available 
on-chain

Stateless: very simple business logic available 
on-chain

Locus of 
Execution

Fixed-purpose machine for running 
simple scripts on-chain

General-purpose virtual machine: 
Ethereum Virtual Machine (EVM) 
allows for the execution of complex 
computations on-chain 

Fixed-purpose machine for basic on-
chain computations

General-purpose virtual machine: Ethereum 
Virtual Machine (EVM) allows for the execution of 
complex computations on-chain 

Business logic to manage user consent is executed 
at a higher layer (off-chain)

Business logic is executed on an external platform 
(off-chain rule engine)

Reference

Endogenous: native asset unique to 
the system (BTC)

(1) Endogenous (native asset: ETH; 
user-defined tokens: dApps); (2) 
Hybrid (collateralised tokens and/or 
records referencing external events)

(1) Endogenous (native asset: XRP); 
(2) Hybrid (gateway-issued IOUs and 
trust lines)

Depends on use case: endogenous if a native asset 
or user-defined token; hybrid if a combination 
of endogenous and exogenous references. Also 
possible to have fully exogenous references.

Fully exogenous:: identity data resides in an 
external system (identity sources: government, 
banks, etc.)

Fully exogenous: ERP systems and insurance 
records
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APPENDIX C: GLOSSARY

ADMINISTRATOR
Actors that controls access to the core 
codebase repository and can decide to add, 
remove and amend code to change system 
rules. An administrator is often considerably 
involved in the governance process. 

CANDIDATE RECORD
A record that has not yet been propagated 
to the network and thus not been subject to 
network consensus.

CENSORSHIP RESISTANCE
Inability of a single party or cartel to 
unilaterally perform any of the following: 1) 
change rules of the system; 2) block or censor 
transactions; and 3) seize accounts and/or 
freeze balances.

CONFIRMATION
The number of records that must be reversed 
or overwritten to remove a transaction from 
the ledger state.

CONSENSUS ALGORITHM
A set of rules and processes used by the 
network to reach agreement and validate 
records.

DEVELOPER
Actor that writes and reviews code that 
underlies the technological building blocks of 
a DLT system and its connected system(s). A 
developer can be professionally employed or 
participating as volunteer contributor. 

DLT SYSTEM
A system of electronic records that (i) enables 
a network of independent participants 
to establish a consensus around (ii) the 
authoritative ordering of cryptographically-
validated (‘signed’) transactions. These records 
are made (iii) persistent by replicating the data 
across multiple nodes, and (iv) tamper-evident 
by linking them by cryptographic hashes. 
(v) The shared result of the reconciliation/

consensus process - the ‘ledger’ - serves as the 
authoritative version for these records.

ENDOGENOUS REFERENCE
Data which can be created and transferred 
solely through the means of the system and 
has meaning within the system. Enforcement is 
automatically performed by the system.

EXOGENOUS REFERENCE
Data that makes reference to some real-world 
condition and needs to be incorporated from 
the outside. This generally requires a gateway 
to make the connection to the external system 
and enforce decisions outside the DLT system.

FORK
The event of a DLT system splitting into two 
or more networks. A fork can occur when 
two or more record producers publish a valid 
set of records at roughly the same time, as a 
part of an attack (e.g. 51% attack) or when 
a DLT system protocol change is attempted 
(such a fork is ‘hard’ if all users are required to 
upgrade, otherwise it is ‘soft’).

GATEWAY
Actor that provides interfaces to the system 
by acting as a bridge between the system and 
the external world. 

HYBRID REFERENCE
Data that shares both endogenous and 
exogenous characteristics. Enforcement is 
dependent to some extent on gateways.

INDEPENDENT VALIDATION
Ability of the system to enable each participant 
to independently verify the state of their 
transactions and integrity of the system.

JOURNAL
Ahe set of records held by a node, although 
not necessarily consistent with the consensus 
of other nodes. Journals are partial, 
provisional, and heterogeneous: they may or 
may not contain all the same records.
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LEDGER
The authoritative set of records collectively 
held by a substantial proportion of network 
participants at any point in time, such that 
records are unlikely to be erased or amended 
(i.e. ‘final’).

LOG
An unordered set of valid transactions 
held by a node, which have not yet been 
incorporated into a formal record subject to 
network consensus rules (i.e. ‘unconfirmed’ 
transactions). Also called mempool.

MULTI-PARTY CONSENSUS
Ability of the system to enable independent 
parties to come to agreement on a shared 
set of records without requiring a central 
authority.

NATIVE ASSETS
The primary digital asset(s), if any, specified in 
the protocol that are typically used to regulate 
record production, pay transaction fees on the 
network, conduct ‘monetary policy’, or align 
incentives. 

NETWORK
Interconnected actors and processes that 
implement the protocol.

NODE
A network participant communicating with 
peers over a shared communication channel.

OFF-CHAIN
Interactions, actions, and processes that occur 
outside of the formal system boundaries.

ON-CHAIN
Interactions, actions, and processes that occur 
within the system (i.e. at the system level) and 
are reflected in the data layer.

ORACLE
A gateway that bridges the gap between the 
DLT system and external systems by serving 
as a source of information.

PARTICIPANT
Actor interconnected with other participants 
in the network and communicating by passing 
messages among each other. 

PERSISTENCE
The ability of data to remain available after 
the program execution, and to survive the 
catastrophic loss of an arbitrary number of 
nodes. 

PROGRAMMATICALLY-EXECUTED 
TRANSACTION
A computer script that, when triggered by a 
particular message, is executed by the system. 
When the code is capable of operating as all 
parties intend, the deterministic nature of the 
execution reduces the level of trust required 
for individual participants to interact with 
each other. They are commonly referred to 
as smart contracts due to the scripts’ ability to 
replace certain fiduciary relationships, such as 
custody and escrow, with code. However, they 
are not autonomous or adaptive (‘smart’), nor 
contracts in a legal sense - rather, they can be 
the technological means of implementing a 
contract or agreement.

PROTOCOL
Set of software-defined rules that determine 
how the system operates.

RECORD
A bundle of transaction data which has been 
subject to network consensus rules and is part 
of the global ledger.

RECORD REORGANISATION
A node discovers that a new ledger version 
has been formed which excludes one or more 
records that the node previously thought were 
part of the ledger. These excluded records 
then become ‘orphaned’.  

SHARED RECORDKEEPING
The ability of the system to enable multiple 
parties to collectively create, maintain, and 
update a shared set of records.
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SMART CONTRACT
See ‘Programmatically-executed transaction’.

TAMPER EVIDENCE
The ability of participants to easily detect 
arbitrary changes to confirmed records.

TAMPER RESISTANCE
The ability to make it hard for a single party 
to unilaterally change past records (i.e. 
transaction history).

TRANSACTION
Any proposed change to the ledger; despite 
the connotation, a transaction need not be 
economic (value-transferring) in nature. 
Transactions can be unconfirmed (not included 
in the ledger) or confirmed (part of the ledger).

TRANSACTION FINALITY
Determines when a confirmed record can be 
considered ‘final’ (i.e. not reversible). Finality 
can be probabilistic (e.g. PoW-based systems 
that are computationally impractical to revert) 
or explicit (e.g. systems that incorporate 
‘checkpoints’ that must appear in every 
transaction history). Finalised records are 
considered permanently settled, whereas 
records that have been produced but which 
are feasible to revert are referred to as 
provisionally settled.

TRANSACTION PROCESSING
The set of processes that specifies the 
mechanism of updating the ledger: (i) which 
participants have the right to update the 
the shared set of authoritative records 
(permissionless vs. permissioned) and (ii) 
how participants reach agreement over 
implementing these updates. Also called 
mining.

VALIDATION
The set of processes required to ensure that 
actors independently arrive at the same 
conclusion with regard to the state of the 
ledger. This includes verifying the validity of 
unconfirmed transactions, verifying record 
proposals, and auditing the state of the system. 

WALLET
A software program capable of storing and 
managing public and private key pairs used to 
store and transfer digital assets. 
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41 Records in Bitcoin are generally referred to as ‘blocks’.

42 In Bitcoin, the journal/ledger uses a specific data structure called ‘blockchain’: records (‘blocks’) are 
cryptographically linked together as to form a chain of blocks. This data structure is used by many 
instances of DLT systems.

43 We discuss transaction finality in more detail in Section 5.2.3.

44 Because each node technically possesses only a journal, it is common for nodes to insist on a ‘safety factor’ 
of some number of new records before attempting to interact with the data in a particular record. This 
safety factor helps ensure that the node only interacts with data on the ledger; records that have achieved 
this safety level are called ‘final’. The concept of settlement finality will be discussed in section 5.2.3.

45 This authentication and asymmetric encryption system is known as ‘public-key cryptography’ and was 
pioneered in 1976 by American cryptographers Whitfield Diffie and Martin Hellman. Using a pair of 
mathematically related keys (public and private), the public key is used to encrypt a message before sending 
it, and only the paired private key holder can decrypt the message encrypted with the public key. This way, 
effective security only requires keeping the private key private; the public key can be openly distributed 
without compromising security.

46 For instance, many custodial cryptocurrency wallets have emerged to store customer assets (or more 
accurately, the private keys that provide access to the assets). While many wallet providers operate secure 
and reliable services, some providers have been dishonest and have stolen customers’ assets, while others 
have lacked sufficient security and lost those assets to hackers. This has frequently been misreported as 
a ‘hack’ of the cryptocurrency system itself rather than the result of improper private key management 
among external service businesses. Such losses do not compromise the network itself but can have a 
significant reputational effect upon the DLT system.

47 A software client is a computer programme which sends requests to other programmes or computers to 
access services made available by a server. While the term continues to be applied to computers that run 
‘client software’ or access the ‘client software’ code which is located on other computers, the client and 
server may be separate computer programs which run on the same machine and connect via interprocess 
communication (IPC) techniques (i.e. mechanisms in an operating system that permit separate processes to 
manage shared data).

48 Auditors can store the entire transaction history since the genesis of the system (archival nodes) or opt 
for reduced storage requirements by deleting older records that have received sufficient confirmations 
(pruned nodes).

49 The term used to describe this role usually depends on the consensus algorithm of a particular DLT 
system. Bitcoin popularised ‘miner’ as a general term for block producers in blockchain systems, but others 
regard mining as particular to Proof-of-Work algorithms, describing Proof-of-Stake or enterprise record 
producers variously as ‘validators’, ‘forgers’, ‘mints’, or ‘bakers’.

50 Examples include discussions on platforms like Reddit and GitHub, or decisions taken within a boardroom.

51 Many proposed use cases for DLT systems involve the unification of many disparate and proprietary 
recordkeeping systems into one universal standard, for the purpose of reducing economic transaction 
costs.

52 For instance, an attacker finding a vulnerability in The DAO smart contract in June 2016 that allowed 
to steal 3.6m ether led to the Ethereum community - spearheaded by the Ethereum Foundation - to 
implement an ‘emergency hard fork’ to recover the stolen funds. A hard fork is a software update that 
changes the protocol in a backwards-incompatible way: all nodes need to upgrade in order to avoid a 
network split. The DAO hard fork resulted in a permanent network split which led to the emergence of 
Ethereum Classic. Another example is the Monero system: the roadmap specifies updates to the protocol 
once every six months through a hard fork in order to change its proof-of-work algorithm to deter the 
development and use of specialised ASIC mining equipment, among other reasons.

53 Indeed, the mechanics of the BIP process implicitly defer to the reality that the approval of block producers 
is necessary to maintain and enforce any protocol change. A protocol change made without the support of 
block producers would tend to be vulnerable to attack.

54 This is not limited to software: centralisation of hardware supply (e.g. mining equipment) may render a 
network susceptible to control by a single party.

55 For an example of particular trade-offs, see Zamfir, V. (2018) Zamfir’s Triangle. Twitter. Available at: https://
twitter.com/VladZamfir/status/942271978798534657 [Accessed 8 June 2018].

56 The US Securities and Exchange Commission (SEC) has indicated that they will incorporate 
decentralisation in their measure for whether tokens in DLT systems represent a security for regulatory 
purposes. They do not define, nor provide a measure for, decentralisation in this context. The first such 
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public statement can be found at https://www.sec.gov/news/speech/speech-hinman-061418 [Accessed: 
15 July 2018].

57 Buterin, V. (2017) The Meaning Of Decentralization. Medium. Available at: https://medium.com/@
VitalikButerin/the-meaning-of-decentralization-a0c92b76a274 [Accessed: 29 May 2018].

58 Srinivasan, B. & Lee, L. (2017) Quantifying Decentralization. Medium, Available at: https://news.earn.com/
quantifying-decentralization-e39db233c28e [Accessed: 17 June 2018].

59 There exist proposals to increase throughput by ‘sharding’ (i.e. dividing the total transaction volume into 
subsets and allocating each subset to a smaller number of nodes for processing). In effect this would be a 
hybrid, as it would be designed to operate both distributed and decentralised processing.

60 This effect was a central issue in the SegWit on-/off-chain scaling debates leading to the split of the Bitcoin 
network and culminating in the creation of Bitcoin Cash (BCH) in 2017.

61 This loss may range from temporary (e.g. connectivity problems) to more challenging (e.g. increased 
regulatory scrutiny, difficult media attention) to catastrophic (e.g. natural disaster, government prohibition).

62 Proof-of-Stake (PoS) is a consensus mechanism in which a new record producer is chosen proportionally to 
the amount or age of coins ‘staked’, i.e. held by users during the election period. Tokens are usually bonded 
(locked up) to motivate honest behavior, and risk destruction if malicious actions are detected by the 
network.

63 A Proof-of-Work (PoW) is a piece of data which satisfies a set of requirements and is difficult to produce 
(e.g. resource- or time-consuming) but it is easy for others to verify. Producing a PoW can be designed as 
a low probability random cryptographic challenge which requires trial and error to produce a valid answer 
(e.g. Bitcoin’s PoW) or it may be a true PoW which is a complex mathematical computation. In a competition 
to be the first to complete a random puzzle PoW, anyone has a chance to win; in a true PoW, the most 
powerful and fastest computer will win. PoW computations are used in programmes designed to prevent 
spam email (e.g. Hashcash) as well as in cryptocurrency applications.

64 Omni leverages the OP_RETURN opcode to achieve this effect. The bit strings embedded in OP_RETURN 
outputs are collectively understood by users of the Omni protocol as representations of assets, but 
to other, indifferent Bitcoin users not interacting through the Omni protocol, they look like typical 
transactions (albeit with some embedded metadata), and are treated as such. The outputs of these 
transactions are commonly called ‘coloured coins’.

65 These networks are built on top of the respective platform and are based on a specific concept called ‘state 
channels’. In essence, parties ‘route’ payments by exchanging signed transactions among each other off-
chain, and only broadcast back to the DLT system to open or close channels. This allows for near-real-time 
and cost-efficient transactions by converting the base layer from a ‘cash’ layer to a ‘settlement’ layer.

66 For instance, Bitcoin does not have a formal specification; instead, the reference client ‘Bitcoin Core’ 
determines its consensus model and rules.

67 Orderliness refers to the extent to which a protocol alteration is coordinated to minimize network 
disruptions during the alteration process.

68 Legitimacy refers to the degree to which a protocol alteration is accepted by the community as a whole 
(users, holders, miners, etc.). For example, the perceived illegitimacy of the Ethereum hard fork after the 
DAO incident led to parts of the network remaining on the original blockchain (Ethereum Classic/ETC).

69 The process of forming consensus and implementing a protocol update is a visible - but not all-
encompassing - aspect of governance in a DLT context. Not all DLT systems have formal procedures in 
place to decide on protocol changes. These systems rely instead on implicit and social norms that inform 
admission of new participants to the governance process.

70 It should be noted that some entities (or particular groups/types of entities) may still have disproportionate 
influence over the protocol governance process.

71 For example, a system based explicitly on miner consensus (as opposed to user consensus) would be 
governed primarily by a fluid set of anonymous entities, each with fluctuating degrees of influence over 
time.

72 This can also involve ‘on-chain’ voting in which network participants vote on whether to accept or reject a 
suggested protocol change, generally proportionate to their ownership of endogenous network resources 
(e.g. native assets).

73 Some protocols allow users to delegate their voting power to other users. Due to the need to prevent 
undue influence from Sybil identities (described in Section 5.2.1), some ‘democratic’ protocols may be 
plutocratic in reality; alternatively, custodians may exercise ‘political’ rights on behalf of their customers, 
with or without explicit consent. Democratic/plutocratic mechanisms are generally the most diverse, 
sophisticated, and unproven.
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74 A fork need not necessarily preserve transaction history - for example, some records or transactions 
may be blacklisted, as in the case of the Ethereum hard fork after the DAO incident. Similarly, not all 
network splits destroy aggregate network value; in cases where each subnetwork represents a distinct 
and conflicting vision, aggregate value may be enhanced by freeing each to pursue its vision unfettered 
by the other. It should also be noted that some changes to the protocol can be implemented via a soft fork 
rather than a hard fork. This prevents a network split: non-upgraded nodes will continue to be on the same 
network despite not understanding the semantics of the rule changes.

75 As noted in Section 4.1.4, ‘decentralisation’ does not necessarily preclude a concentration of power or 
influence, but rather reflects the ability of participants to route around a compromised actor. In this case, 
the catastrophic loss of a repository or a key contributor would not necessarily disrupt the network or its 
governance processes - provided that the reference code was not exclusively held by a small number of 
entities.

76 The infeasibility of an exit may allow for more rapid innovation. This is not always an advantage because 
while open-source projects are likely to be more conservative about adopting protocol changes, the ability 
of users to exit can help encourage developers to make decisions which are aligned with users’ interests.

77 While projects like Tezos and Decred emphasize the importance of stakeholder votes in determining policy, 
on-chain votes alone do not constitute the entire set of governance processes. In many cases, users must 
necessarily coordinate off-chain to at least some extent (for example, to become aware of proposals or 
calls for votes. For example, Tezos boasts a foundation, a corporation, and acknowledged leaders all of 
which will influence decision-making, especially in the immature network. stages; Decred has an off-chain 
assembly, a corporation which controls pooled funds, and PoW-based validation which complements on-
chain votes.

78 There remain practical limitations such as technical proficiency of the operator, equipment requirements, 
and connectivity/bandwidth.

79 See Platt, C. (2017) Thoughts on the taxonomy of blockchains & distributed ledger technologies. Medium. 
Available at: https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-
technologies-ecad1c819e28 [Accessed: 29 May 2018].

80 There are, of course, trade-offs involved: these channels are better for scaling as long as all relevant 
operations are performed within a particular channel. Moving records from one channel to another adds 
complexity and generally requires trusted gateways as a bridge between the channels.

81 The number of confirmations of a transaction is the number of records that must be reversed or 
overwritten to remove it from the ledger state.

82 A cryptographic hash function is computer code which takes a string of data of any length as an input and 
produces a fixed length string which can act as a ‘fingerprint’ for the provided data. Knowing the output 
(‘hash value’) does not enable someone to reconstruct the original message; only a person who knows the 
original message can prove the hash was created from that message. Hashing power measures the number 
of times a particular hashing function is computed within a given system during a specified time window 
(e.g. hashes per second).

83 Newer variants are in development. Delegated PoS (DPoS) schemes resemble representative voting 
systems by enabling users to elect record producers, with votes weighted according to the amount of 
assets staked. ‘Proof-of-Burn’ requires record producers to prove that they ‘burned’ some endogenous 
resources (e.g. tokens) by sending them to a verifiably unspendable address. This consumes no resources 
other than the burned underlying asset, and thus simulates the economic costs of PoW without requiring 
consumption of real-world resources.

84 The ‘nothing-at-stake’ problem describes the fact that a block producer may be able to add records to 
multiple subchains simultaneously, because all but one will be discarded. As a result, multiple ‘histories’ 
can persist because no record producer is incentivised to detect or resolve conflicts, opening the door 
for double-spending attacks. In a ‘grinding’ attack, a block producer can strategically choose (or create) 
transactions to manipulate the source of randomness used to select stakes, thereby causing the system to 
‘randomly’ select the same record proposer repeatedly, enabling censorship.

85 Seibold, S. & Samman, G. (2016) Consensus: Immutable agreement for the Internet of Value. KPMG 
Publication. Available at: https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-
consensus-mechanism.pdf [Accessed: 19 June 2018].

86 The longest-chain rule is also called the most-worked-chain rule, because it is sometimes possible for a 
series of records to be shorter despite carrying more work.

87 We use ‘monetary’ as a convenient label to refer to both national fiat currency, or to anything that can be 
reliably and easily converted into national fiat currency or used to purchase goods or services. 

https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28
https://medium.com/@colin_/thoughts-on-the-taxonomy-of-blockchains-distributed-ledger-technologies-ecad1c819e28
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf
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88 IOTA uses a model wherein every node that would like to create a transaction is required to process two 
other transactions.

89 Transactions in a DLT system generally get validated and verified multiple times. Figure 12 provides an 
overview of the different phases.

90 Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A. & Felten, E. W. (2015) Research Perspectives 
and Challenges for Bitcoin and Cryptocurrencies, 36th IEEE Symposium on Security and Privacy. Available at: 
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf [Accessed: 25 June 2018].

91 In Bitcoin, the provisional settlement period is typically considered 6 ‘confirmations’ (i.e. blocks built 
over the transaction of interest). However, this is a choice made by each user; a node may require more 
(or fewer) confirmations based on its risk tolerance. Exchanges and custodians typically require 6 
confirmations, while some merchants even accept ‘0-confirmation’ transactions if they can be assured of a 
block being mined before a conflicting transaction is posted.

92 An eclipse attack is a situation where a node’s connections are blocked or manipulated by the attacker, who 
then feeds the target records which are not part of the network’s consensus. The effect is to cause the 
node to accept double-spends when it eventually rejoins the network. Eclipse attacks are generally much 
easier to perpetrate than 51% attacks.

93 ‘Settlement finality’ may become a legal matter - rather than a technical distinction - which arises from 
agreements between network participants.

94 It should be noted that despite its popularity, usage of the term in this context is not entirely accurate 
because even systems considered ‘stateless’ have some notion of state. For example, Bitcoin’s state is the 
entire UTXO (unconfirmed transaction output) set.

95 These terms are somewhat erroneous, as connected nodes/systems will generally be relied upon to pass 
transactions to initiate some function in the smart contract. Simply deploying an executable will not lead to 
its autonomous execution.

96 An emerging area of cryptography, called zero-knowledge proofs, is currently being investigated as a 
possible scaling solution for stateful systems, as it allows computation to be moved off-chain and paired 
with a proof that the computation was performed correctly.

97 It should be noted that not all nodes are equal. Record producers have the right to create and propose 
new records, whereas auditors are verifying whether these records comply with protocol rules. Record 
producers have a certain degree of power in terms of deciding whether to adopt or reject rule changes; 
auditors can be considered to have a veto right as they are ultimately deciding whether to accept or reject 
records submitted by record producers. 

98 SegWit (‘Segregated Witness’) is a soft fork change that has been implemented in Bitcoin in 2017. It fixes 
long-standing transaction malleability issues preventing the development of applications and ‘layer-2’ 
systems. The SegWit proposal was met with resistance by some community members and eventually led 
to the Bitcoin Cash hard fork, which established a new system with a different scaling roadmap (primarily 
on-chain).

99 This generally involves referencing the coins to move (select UTXOs as inputs), proving that one has 
ownership of the coins to move (provide a digital signature), and specifying the necessary conditions that 
the recipient will have to fulfil to unlock the funds (setting the encumbrance conditions).

100 A valid Bitcoin PoW is achieved by finding a nonce that causes the SHA-256 hash of the block to have a 
sufficiently low value.

101 The ‘longest-chain rule’ specifies that nodes should accept the block that is built on top of the blockchain 
instance that has accumulated the most PoW, i.e. was hardest to produce. Contrary to the name, the 
longest chain in terms of the number of blocks does not always correspond to the chain with most 
accumulated PoW. This means that the ‘longest-chain rule’ terminology is confusing and actually refers to 
the chain with the most accumulated PoW. Thus, it is sometimes called the ‘most-worked chain rule’.

102 Bitcoin (the system) has a link to the physical world via its PoW-based mining process: miners are ‘burning’ 
physical resources in the form of energy and specialised equipment to solve the cryptographic hashing 
puzzles which lead to the creation of new bitcoin units.

103 However, it should be noted that this only applies to one side of the trade: the system can enforce the 
transfers of bitcoin (endogenous to the system) but not the corresponding transfer of goods or services that 
makes up the other side of the trade (exogenous to the system).

104 We assume that there is no collusion between the different Bitcoin or Ethereum mining pools. If there is 
collusion, as some warn, then this statement is no longer true.

http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf
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105 It is important to note here that because Bitcoin has no formal protocol specification, clients implement the 
protocol rules instead. In Bitcoin, Bitcoin Core currently functions as the reference client which dictates 
rules. Nevertheless, there are half a dozen competing clients that users can choose to run. This means that 
any of the competing clients could implement a rule change which would then be enforced by the users 
running that particular client.

106 The Bitcoin network needs at least 95% to agree for a proposal to be implemented.Thus, SegWit seemed 
unlikely to be achieved, until key players signed an agreement that the bar for SegWit activation would be 
lowered. Following this, consensus for SegWit was reached and it was activated in August 2017.

107 Disagreements over how to handle The DAO smart contract bug led to the Ethereum blockchain split into 
two separate systems: a minority disagreed with the Foundation’s plan to reverse The DAO smart contract 
and refused to upgrade their clients, which led to the creation of Ethereum Classic following the original 
Ethereum blockchain (including The DAO smart contract).

108 Currently, the default Unique Node List (UNL) is composed of a majority of Ripple-controlled validators. A 
successful ‘Amendment’ requires an 80% consensus threshold.

109 It should be noted that while access to the Ripple DLT system is theoretically open and unrestricted, it can 
prove difficult in practice to reliably receive and collect network data.

110 There are methods available to alleviate the storage burden by pruning older transactions that are buried 
deep enough under new records. The exact implementation differs across systems and implementations.

111 In practice, however, we observe that except for Verified.Me, the majority of auditors do take the role 
of record producers for a variety of reasons. Transaction processing (‘mining’) in Bitcoin and Ethereum 
requires substantial upfront investment into mining equipment and electricity contracts, whereas 
validators in Ripple need to be part of the Unique Node List (UNL) of the majority of auditors in the system 
in order to participate in transaction processing.

112 ‘Company Y’ chose this conservative approach to account for unforeseen circumstances at this early 
stage. The goal is to test the system and make participating entities comfortable with the idea of gradually 
distributing control. 

113 It is important to note that the ‘longest-chain rule’ only applies to competing system versions that share 
the same protocol rules. For instance, Bitcoin Cash (BCH) is ‘longer’ than Bitcoin (BTC) but operates on the 
basis of a different rule set, which invalidates the ‘longest-chain rule’.

114 Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System. Available at: https://bitcoin.org/
bitcoin.pdf [Accessed: 21 June 2018]. The quote can be found on page 4.

115 A record (or block) reorganisation designates the ability of record producers to mine an alternative version 
of the ‘ledger’ that, provided it overtakes the original ledger, will replace the original version and invalidate 
all transactions contained in these records.

116 This effectively reduces the provisional settlement phase to nearly zero. However, one needs to keep in 
mind that changes to the protocol rules can always override transaction processing, which then impacts 
finality as well. In the end, ‘settlement finality’ is rather a legal than a technical concept that is ultimately 
based on social agreements between network participants.

117 Metalayers built on Bitcoin - e.g. Counterparty, Coloured Coins and Omni - are considered external 
systems that are dependent on Bitcoin in this context. Ethereum’s ERC20 tokens and smart contracts are 
considered to be part of the core system since nodes are able to understand the semantics without having 
to run an additional client.

118 Some systems support both endogenous and hybrid assets.

119 Cardano is building a distributed computing platform based on PoS consensus. An initial version with 
limited functionality was released in September 2017.

120 The World Reserve Trust (WRT) is building a government-endorsed DLT system that issues a native digital 
currency (SiLuBi) acting as an intermediary currency to facilitate global trade by eliminating inefficiencies 
(e.g. substantial reduction in settlement period, foreign-exchange risk and transaction costs). Participants 
will have the ability to control and oversee platform development via a DAO governance model. 

121 The Royal Mint Gold (RMG) platform is a DLT system operated by the CME Group to facilitate the 
issuance and trading of digital gold tokens backed by gold reserves. Each token confers direct ownership 
rights of physical gold securely stored and held in custody by the UK Royal Mint.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
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