Initial Coin Offering and Platform Building

Jiasun Li† William Mann‡

First draft: August 31, 2017
This draft: June 17, 2018

Abstract

In an initial coin offering (ICO), a company (or an open-source project) pre-sells tokens which will serve as an internal medium of exchange within a peer-to-peer platform yet to be built. We present a model that rationalizes the use of ICOs for launching such platforms: by adding dynamics to a platform launch, ICOs can 1) solve a coordination failure inherent in many platforms with network effects; and 2) harness the “wisdom of the crowd” by aggregating dispersed information about platform quality. Through either mechanism, an ICO increases platform value, makes the launch of a valuable platform more likely, and thus increases social welfare. We use our model to provide guidance to regulators: We analyze under what circumstances ICOs should be banned or allowed, and discuss governance mechanisms that they should include.

Keywords: coordination game, ICO, FinTech, network effect, wisdom of the crowd

*For helpful comments we thank seminar participants at George Mason, George Washington, Fudan, ASU Sonoran Winter Finance Conference, Southern California PE Conference, and Shanghai FinTech Forum; conference discussions by Gilles Chemla, Richard Lowery, and Ser-Huang Poon.

†George Mason University, 4400 University Drive, MSN 5F5, Fairfax, VA 22030. jll29@gmu.edu.

‡UCLA Anderson School of Management, Entrepreneurs Hall C.406, 110 Westwood Plaza, Los Angeles, CA 90095. william.mann@anderson.ucla.edu.
Initial coin offerings, or ICOs, have recently emerged as a popular alternative venture financing method. In a typical ICO, an entrepreneur raises capital by pre-selling a “token” which gives its owner the right to use the company’s product or service once it is developed. Many token owners also expect to resell their holdings for financial gain. These features blur the boundary of product pre-sale and security issuance.

According to CB Insights, “2017 was a record year for equity deals and dollars to blockchain startups, but it was nothing compared to ICO market activity. ICOs raised over $5B across nearly 800 deals in 2017 while equity investors deployed $1B in 215 deals to the sector.”1 This startling growth could be interpreted as evidence of either a valuable innovation, or a dangerous bubble. Since ICOs do not fit neatly into existing securities or consumer-protection laws, regulators are concerned that ICOs may present new opportunities for exploitation or fraud.2 Indeed, many ICOs are difficult to justify either as products or investments.3

One potential regulatory response is to ban ICOs completely. Indeed, some jurisdictions are cracking down: Chinese authorities banned all ICOs in early September 2017, followed by South Korea later that month. While this reaction is understandable given regulators’ concerns over market integrity and financial stability, a one-size-fits-all approach also comes at a cost. Stifling a financial innovation, if it ultimately turns out to be valuable, may put one jurisdiction at a competitive disadvantage against those that permit or even promote it.

Other regulators have followed a case-by-case approach. For example, in its July 25, 2017 Investor Bulletin, the SEC states that “depending on the facts and circumstances of each individual ICO, the virtual coins or tokens that are offered or sold may be securities”.4

1See here.
2For example, the SEC has prosecuted Maksim Zaslavskiy for alleged fraud in REcoin and DRC ICOs.
3A widely-cited example is Synthorn (http://synthorn.com/), which proposes to sell a synthetic rhinoceros horn aphrodisiac using the Ethereum blockchain. The Synthorn white paper is only three pages long, with only twelve words on market risk.
4See here.
In Canada, the Ontario Securities Commission (OSC) approved the ICO of TokenFunder, even after issuing warnings against ICOs earlier in the year. But a case-by-case approach has its own problems: A lack of clear rules ex ante adds another source of risk for startups, investors, and other stakeholders in the already risky early stage financing world. Table 1 provides a summary of global regulatory responses to ICOs.

In sum, regulators and practitioners are in need of an effective rule-based framework for regulating ICOs, which would preempt fraudulent activity while permitting if not promoting issuances that create economic value, if any. The first step towards such a framework is to have a clear understanding of the fundamental economic value an ICO creates. Yet despite the widespread media attention paid to ICOs, there has been little analysis on just what that value might be.

This paper attempts to fill this gap. We address the fundamental question of when, and by what economic mechanism, the ICO structure may create value for entrepreneurs and users – and, just as importantly, when it does not. Our model builds on the observation that many well-received ICOs have helped to build a platform. Examples include Ethereum, which is building a decentralized virtual machine as infrastructure for smart contract execution; Filecoin, which is setting up a network to allow peer-to-peer storage space sharing; and Unikrn, which is creating a platform for e-sports betting. We focus our analysis on the value of ICOs for launching such platforms.

A salient feature of a platform is that its value is largely driven by the interactions among its users who benefit from each others’ participation. We highlight two related channels based on this insight that both lend value to an ICO. First, platform users’ directly benefiting from each others’ participation generates a strategic complementarity, known as a “network effect” (or a “network externality”): a user’s gain from joining a platform increases with

5See here and here.
6In a subsample of 253 campaigns, Adhami, Giudici and Martinazzi (2017) documents higher returns when tokens allow contributors to access a specific service.
the number of other users. Second, information about the platform quality dispersed within the user base incentivizes each user to learn the “wisdom of the crowd” so as to make more informed participation decisions.

The presence of a network effect creates a strategic complementarity among users of a platform: if the platform does not attract a sufficient number of users, the surplus it can bring to new users will be too low to justify their participation. This creates a chicken-and-egg problem: how can the platform attract users in the first place, if they do not believe that others will join? We argue that an ICO helps to overcome this strategic complementarity.

The intuition behind how the ICO helps the platform overcome a strategic complementarity can be illustrated by a simple two-player game. Suppose there are two prospective users of a platform. Each user can spend 1 to get access to the platform, and enjoy a surplus of 2 if and only if the other user also joins. Hence the payoff matrix is:

<table>
<thead>
<tr>
<th></th>
<th>join</th>
<th>quit</th>
</tr>
</thead>
<tbody>
<tr>
<td>join</td>
<td>(1, 1)</td>
<td>(-1, 0)</td>
</tr>
<tr>
<td>quit</td>
<td>(0, -1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Clearly there are two Nash equilibria in this coordination game: either both users join the platform, or neither joins. An entrepreneur launching the platform would like to avoid the second inefficient equilibrium in which she gets zero payoff.

One simple way to avoid the self-fulfilling bad equilibrium is to simply designate one user to be a first-mover and make the first move perfectly observable to the follower. By breaking a simultaneous game into two stages, the entrepreneur effectively converts multiple Nash equilibria into a unique perfect equilibrium, in which the efficient outcome will be selected. Furthermore, we prove that even if there is no designation, i.e. both users can self-select to move first or second, the mere existence of two stages motivates both users to join the platform immediately. Section 2 leverages this insight to explain several empirical observations about the ICO structure, including the relationship between private pre-ICO
rounds, public rounds of ICOs, and formal platform launches. Our analysis also explains the escalating price schedules often observed in public token sales.

The “wisdom of the crowd” aspect of a platform kicks in when prospective users are heterogeneously informed. In a static game without ICOs, only users with relatively high signals will join, even if full participation in the platform is efficient. In such cases, the entrepreneur may be able to induce more participation by setting a low price, but full participation is never obtainable. Furthermore, the loss of profits due to price cutting may prevent some positive NPV platforms with large fixed costs from being launched at all, creating a social welfare loss. An ICO addresses this problem by creating an earlier stage for users to join the platform. Those with high signals join at the earlier stage; then their decisions, in conjunction with the token price, will be informative about the value of the platform. For a valuable platform, participation increases at the second stage, creating a social surplus, some or all of which can be appropriated by the entrepreneur.

Our results provide several implications for policymakers and practitioners. First, we provide a rationale to argue against universal bans adopted by China and Korea. A universal ban of ICO for fear of its (real) problems may risk throwing the baby out with the bathwater. Second, a proposed ICO should explain why a platform-like feature is an essential feature of the project’s business model. While we do not necessarily rule out other channels by which ICOs could create value, we do note that any such benefit should be subject to a similarly rigorous analysis as pursued in this paper. Third, we endorse the SEC’s warnings against potential abuse by celebrity-endorsed ICO deals, by rigorously modeling its possibility and the underlying incentives. We emphasize the regulatory role of disclosure requirement of off-chain activities related to ICO issuances. Finally, we provide support for the SEC’s “substance” principle, by showing that in contrast to how they are often described, many tokens serve as devices to facilitate a successful platform launch without necessarily serving as a *financing* method. These tokens should not be simply viewed as securities for financing
purposes that naturally fall under the jurisdiction of existing securities laws; but rather as part of the operation process of a platform-like project, which fuel the build-up of network effects and spur the growth of socially valuable enterprises.7

Our results also give one explicit characterization of the rationales behind the function of “utility tokens”, which separates from “security tokens”.

Related literature Several contemporaneous papers analyze various aspects of the ICO structure and process. Sockin and Xiong (2018) also highlight the potential for multiple equilibria in launching a token-based platform with network effects, but they do not discuss how the ICO process can select the efficient equilibrium, which is a major focus of our discussion. Cong, Li and Wang (2018) embed strategic complementarity of the user base into an asset-pricing framework. Catalini and Gans (2018) focus on the ability of dynamic ICO pricing to elicit consumers’ willingness to pay; Chod and Lyandres (2018) on how the ICO process can facilitate risk-sharing without dilution of control rights; and Canidio (2018) on the tension between ex-ante financing and ex-post incentives, in that entrepreneurs may not actually develop services after selling tokens to fund them.

Empirically, Kostovetsky and Benedetti (2018) document high ICO returns. Amsden and Schweizer (2018) analyze 1,009 ICOs and look for success determinants of ICOS. Lee, Li and Shin (2018) confirm wisdom of the crowd in the ICO setting. With restricted sample, Hu, Parlour and Rajan (2018) provide some investment characteristics of 64 ICOs. Adhami, Giudici and Martinazzi (2017) analyzes 253 ICO campaigns and find that “the probability of an ICOs success is higher if the code source is available when a token presale is organized, and when tokens allow contributors to access a specific service (or to share profits).”

Our analysis also touches upon multiple other fronts of the literature:

The first related area is the vast literature on network effects. Evans and Schmalensee

7A recent statement by Singapore’s de facto central bank echoes our stance. See here.
analyze how the initial critical mass hurdle faced by a news business depends on the nature of network effects, the dynamics of customer behavior, and the distribution of customer tastes. Katz and Shapiro (1985) consider Cournot competition among firms with network effects, and show that various expectations of other consumers’ choices can lead to multiple rational-expectations equilibria. A related literature studies the coordination problems in adopting new technologies: Farrell and Saloner (1985) show that all firms adopt a new technology when the adoption decisions are made publicly and sequentially, and Dybvig and Spatt (1983) argue that the government can shift the equilibrium to universal adoption by insuring adopters against the risk of inadequate aggregate adoption.

Also related is the literature on the two-sided markets, as reviewed for example in Spulber (2010), Rochet and Tirole (2006), Armstrong (2006), and recently Weyl (2010). Papers in this literature generally focus on static models, and separate user participation decisions from the strategic complementarities in user values. By doing so, they avoid the multiple equilibria/coordination failures in the building of a platform, and focus instead on the platform’s optimal tariff. In contrast, we study a dynamic setting that illustrates the role of tokens, and we focus on the strategic participation/usage decisions of platform users, instead of on the platform’s tariff.

Because the ICO is a pre-sale of tokens, our results are closely related to the crowdfunding literature. Strausz (forthcoming) and Ellman and Hurkens (2015) study the optimal reward-based crowdfunding design with a focus on a trade-off between improved screening/adaption and worsening entrepreneur moral hazard/rent extraction, respectively. Chemla and Tinn (2016) theoretically demonstrates how crowdfunding could help entrepreneurs take informed investment choices through learning from users’ crowd wisdom. Alternative theoretical mechanisms are studied by Belleflamme, Lambert and Schwienbacher (2014), Grüner and Siemroth (2015), Kumar, Langberg and Zvilichovsky (2015), and Hakenes and Schlegel (2014). Xu (2016) and Li (2015) provide empirical evidence that in crowdfunding entrepreneurs and
follow-up investors do respectively learn from the crowd wisdom. We also compare some aspects of our model with all-or-nothing or keep-it-all clauses that have been studied in the context of reward-based crowdfunding, where there is some debate as to their merits in both a relative and an absolute sense (e.g. Cimon, 2017; Brown and Davies (2017); Li (2017); Kumar, Langberg and Zvilichovsky, 2015; Cumming, Leboeuf and Schwienbacher, 2015; and Chang, 2015.) The wisdom of the crowd discussion relates to a growing literature, see e.g. Surowiecki (2005), Da and Huang (2015), Dindo and Massari (2017), Kremer, Mansour and Perry (2014), Kovbasyuk (2011).

The role of a token within a platform is also reminiscent of the role of money in a general economy, as studied for example in Kocherlakota (1998), where money serves as “memory” (also see Kiyotaki and Wright, 1989). Our results are also of technical interest along several other dimensions. We describe ICOs as a new mechanism to overcome coordination problems, in addition to classic approaches of introducing deposit insurance against inefficient bank-runs (Diamond and Dybvig, 1983) or new advances of voluntary disclosure (Shen and Zou, 2017). The technical tools used in the second half of our paper are also inspired by the global-games literature (e.g. Carlsson and Van Damme, 1993; Morris and Shin, 1998; and Goldstein and Pauzner, 2005). Finally, the ICO demonstrates the value created by dynamic interactions in the presence of static frictions, as explored generally in papers such as Daley and Green (2012), although our mechanism is different from theirs.

1 Network effects on platforms conducting ICOs

A network effect (or network externality), describes a “the more the merrier” phenomenon in which a user’s surplus from transacting within a platform increases with the total number of transactions on the platform. Network effects are prevalent across many industries and business models, especially among those seeing many ICOs. In this section, we demonstrate
how network effects show up in various different business models, in either direct (own-side) or indirect (cross-side) forms, and illustrate with notable ICO deals. We also in the process highlight several stylized facts about ICOs to be captured by our model in Section 2. Readers only interested in theory can skip this section entirely and move on to Section 2 directly.

Sharing economy Network effects play a crucial role in developing a sharing economy, as often discussed in the literature on two-sided markets. As an illustration, note that the presence of more riders on Uber incentivizes more drivers to participate, as they would expect higher and more steady traffic; similarly, more drivers providing ride-sharing incentivizes more riders to use Uber, due to its increased convenience and reliability. Hence we expect sharing-economy platforms to take advantage of ICOs in order to attract the necessary critical mass so that cross-side network effect would work toward the efficient equilibrium.

Indeed, on August 10, 2017 decentralized data storage network Filecoin launched an ICO via CoinList, a joint project between Filecoin developer Protocol Labs and startup investment platform AngelList, and raised approximately $205.8 million over the next month. This added to the $52 million collected in a private pre-ICO catered to notable VC firms including Sequoia Capital, Andreessen Horowitz, and Union Square Ventures, etc.\(^8\) Filecoin operates like an “Uber for file storage,” which aims to provide a decentralized network for digital storage through which users can effectively rent out their spare capacity. In return, those users receive Filecoins as payment.

The Filecoin ICO, like many others, adopted a sales model in which the minimum price buyers must pay rises as more investors join in. This *escalating price schedule* will emerge endogenously in our model as a way to subsidize first movers and overcome network effects.

\(^8\)That launch day “was notable both for the large influx of purchases of Simple Agreements for Future Tokens, or SAFTs (effectively claims on tokens once the Filecoin network goes live), as well as the technology issues that quickly sprouted as accredited investors swamped the CoinList website.” See https://www.coindesk.com/257-million-filecoin-breaks-time-record-ico-funding/.
Social networks Social networks are also quintessential examples of how platform success largely hinges on network effects. Intuitively, e.g. as fewer friends are active on MySpace anymore, the value for one being active on MySpace also decreases; On the other hand, as more friends begin to share contents on Facebook, the value for one being engaged also increases. Due to direct network effect, social media companies are likely to hail ICOs.

Consistently, on Sept. 12, 2017 social media platform Kik launched a crowdsale that offered buyers the chance to purchase Ethereum-based tokens known as Kin that will serve as a tradable internal currency within Kik’s social media universe and power future apps on its platform. 9 10,026 individuals from 117 countries contributed 168,732 ETH (about $48 million dollars) to the public ICO, which adds to the $50 million raised in an earlier round of private pre-ICO. 10 According the firm’s press release, a $98 million ICO proceeds makes Kin “one of the most widely held cryptocurrencies in the world”.

A notable feature of Kik’s ICO is a cap imposed on how many Kin a buyer can purchase. This does not seem reasonable if the company’s goal is solely to maximize revenue, but it does help address network effects. Further in that respect, Kik explicitly chose an ICO instead of traditional VC financing in order to foster a community. 11

Blockchain infrastructure A blockchain as a decentralized database is itself an example of cross-side network effect. More users maintaining a blockchain (or mining in the case of Bitcoin and many major cryptocurrencies) enhances its security (e.g. by alleviating concerns over single-point-of-failures or censorships) and gives each user a higher utility from using the blockchain. On the other hand, more uses of the blockchain tend to increase payoffs to miners (either through higher transaction fees or crytocurrency price appreciation). Hence not surprisingly token sales are widely adopted by entrepreneurs to jump-start new blockchains.

9Kik currently has up to 15 million monthly active users.
11See explanation here.
A salient example comes from Ethereum’s large-scale crowdsale. As a decentralized computing platform featuring smart contract functionality, Ethereum extends Bitcoin’s Turing-incomplete Script language and develops a new blockchain to support the Turing-complete Ethereum Virtual Machine (EVM), executing smart contracts with an international network of public nodes. The project was funded during July-August 2014 by a crowdsale of “ether,” an internal cryptocurrency within Ethereum, with an *escalating price schedule*. The system went live on 30 July 2015, with 11.9 million coins “pre-mined” for the crowdsale. Today, Ethereum has also been used as platform for most other coin offerings.

Marketplaces The finance literature has long recognized the development of a well-functioning market as a coordination game. For example, Barclay and Hendershott (2004) test the theory of “liquidity externality” by studying the after-hours stock market. New markets often strive for a critical mass of active participants to build up network effects, while even for mature markets such as many stock exchanges, from a two-sided market perspective, also hold policies to subsidize a subset of “liquidity makers” to balance with “liquidity takers” (e.g. historically offering privileges to designated market makers, or recently offering rebates to liquidity providers). We hence expect ICOs to be effective tools for startups launching exchanges or other marketplace-like platforms.

Prediction markets offer other examples of marketplaces featuring network effect, as placing bets requires a counterparty and a larger market improves risk management for market makers. Not surprisingly prediction and online gambling markets have been quick adopters of ICOs. A prominent example is Unikrn, whose underlying token UnikoinGold – developed to serve as decentralized token for e-sports and gaming – fetched $15 million in pre-sale from private backers including Mark Cuban, and 110,000 ethers in public token sale. Another example is Augur, which attempts to build a decentralized network for accurate forecasting, and which was funded via an online crowdsale during August and October of
2015. In addition to featuring network effects, decentralized platforms such as Augur also build on the notion of “wisdom of the crowd”.

Another example of marketplace comes from crowdsourcing computation resources for machine learning/artificial intelligence. Ensemble machine learning algorithms such as AdaBoost or Random Forest require a large volume of parallel training to produce an accurate outcome. A coordination problem arises again: Only if a critical mass of data scientists have committed to contribute will the learning outcome be attractive enough to new participants; but how can one attract such a critical mass in the first place? An ICO solution is seen from a crypto-token known as Numeraire. On February 21, 2017, 12,000 data scientists were issued 1 million Numeraires as incentives for constructing the artificial intelligence hedge fund Numerai. As Founder Richard Craib states, “the most valuable hedge fund in the 21st century will be the first hedge fund to bring network effects to capital allocation.” 12

2 Model: ICO coordinates the efficient equilibrium

In this section, we build a discrete-time, infinite-horizon model to describe the operation of a platform. An entrepreneur can pay a fixed cost K to launch a platform, and once launched, it enables $2N$ potential users to create surplus by providing a service to each other. Our goal is to illustrate the role of internal tokens and the corresponding ICO process in preventing coordination failures in the launching and operation of such a platform. For ease of exposition, we first describe the sub-game of the platform’s operation once it has already been launched, illustrating how trade can be sustained with specialized tokens. We then move backward to analyze a larger game that includes a prior date at which tokens are distributed, to explain how an ICO can aid in launching the platform in the first place.

2.1 Operation of the platform after launch

There are infinite number of periods, each divided into two sub-periods, denoted as morning and night. $2N$ potential users of the platform are also divided into two types, denoted as A and B, with each having N users. In the morning, each type A user derives utility from a service that can be purchased on the platform, and in the night, each type A user can provide the same service but no longer derives utility from it. Type B users have the opposite timing: They each can provide the service in the morning, and derive utility from it at night. This setup naturally creates gains from trade between the two types without any fundamental asymmetry between them. It also creates a coincidence-of-wants problem, in that the two types of agent never have a mutually-beneficial transaction at any single moment in time, but rather must interact dynamically to realize the gains from trade.

Within each sub-period (morning or night), it costs u either to purchase or to provide the service on the platform. Any user can instead choose not to participate, in which case she receives zero payoff. A transaction only happens when users of both types participate, upon which the service buyer gets a surplus of s, and the service provider incurs a cost of c. All these quantities are measured in utility terms, and transactions are mutually beneficial, i.e. $s - c - 2u > 0$. The platform specifies the form of payment for transactions: either an external currency (fiat money such as dollars or major cryptocurrencies such as Bitcoin or Ether), or internal tokens specifically minted for exclusive use on the platform. Everyone applies a common discount rate r between sub-periods (for conciseness we also define $\rho \equiv \frac{1}{1+r}$).

Due to the utility cost u on each side, there exists a cross-side network effect by which buyers at each date care about the participation decisions of the sellers, and vice versa. In sections 2.1.1 through 2.2, we use this network effect to illustrate the role of tokens and ICO in resolving coordination failures in platform operation, taking the surplus s as a constant. In section 2.3, we additionally consider a direct network effect where s depends on the number of transactions taking place on the platform. This additional feature helps explain many
commonly-observed features in ICO structuring.

We proceed by first laying out some intuition before summarizing our results formally in Theorem 2.3. The first issue we address is the choice of payment method on the platform. We compare the platform launch and operation with or without platform-specific tokens.

2.1.1 A platform without internal tokens

When the platform uses an external currency as medium of exchange, coordination failures may arise in every sub-period, leading to an inefficient equilibrium. Intuitively, a user who believes that the other side will not participate will rationally choose not to participate either, leading to a self-fulling equilibrium in which valuable gains of trade are forfeited. The source of this coordination problem is a cross-side network effect in which each side of the market cares about the actions of the other side. We formalize this intuition below.

Lemma 2.1 (Coordination problems on a generic currency platform). When an external currency is accepted as the medium of exchange on a platform, there exists an inefficient equilibrium in which no trade ever takes place.

Proof. We only need to show that there is no profitable unilateral deviation by either the buyer or the seller from an equilibrium in which no users participate in the platform. To see this, observe that the payoff to either user changes from 0 to \(-u\) if she deviates.

The possibility of a coordination failure renders generic currencies undesirable for platform operation. In the next two sections we will show that this coordination failure can be eliminated if platform-specific tokens are used as the medium of exchange, and if those tokens are distributed through an ICO.

2.1.2 Introducing internal tokens to a platform

We first formally lay out the key characteristics of a platform-specific token.
Definition 2.1 (Token). A (utility) token for a platform is a transferable digital record with the following properties:

1. No intrinsic value: while tokens are designated as the medium of exchange on the platform, they are of no use outside of the platform: they cannot be used to purchase other goods or services.\(^{13}\)

2. Transparency: Users can perfectly observe the aggregate amount of tokens issued by checking the ICO smart contract, which is not possible for generic-currency platforms.

We proceed with describing the platform operation assuming all type A users have already purchased one token prior to the first period. (In Section 2.2 we will prove that this is indeed an equilibrium outcome.) Figure 1 then illustrates the sequence of moves within each period when the platform operates, assuming all potential trades happen.

![Sequence of moves within each period](image)

We focus on symmetric, pure strategy, Markovian equilibria, in which all users on the same side follow the same strategy. We hence only need to consider a representative user for either side. With slight abuse of notion, we denote the two representative users for each side as A and B. Then the platform’s operation can be described recursively as follows:

Definition 2.2. The platform’s operation is a game with symmetric, Markovian, pure strategies, characterized by

\(^{13}\)Tokens may, over time, endogenously obtain value outside of the platform. Our analysis only requires them to have no use when they are first introduced.
1. 2 representative users, with one for each type (A and B).

2. 4 states: (B, A), (A, A), (B, B), and (A, B), where the first argument represents which side demands the service, and the second represents which side holds the tokens. For example, (B, A) represents a night time (meaning that type B users demand the service) in which all tokens are held in the hands of type A users.

3. 64 strategy profile pairs, which are products of each side’s 8 strategies: type A has

\[\{(yyyn), (yynn), (ynyn), (ynnn), (nyyn), (nynn), (nnyn), (nnnn)\}\],

and type B has

\[\{(nyyy), (nyny), (nyny), (nynn), (nnyy), (nnyn), (nnny), (nnnn)\}\].

The strategies are interpreted as follows: for example, (yyyn) for type A means that A chooses a strategy profile to sell service in state (B, A), buy service in state (A, A), sell service in state (B, B), and not buy service in state (A, B).

4. 512 value functions \(V_{ij}^s\) (one for each of the 64 strategy pairs, 2 types, and 4 states). For a specific strategy profile pair \(s\), \((i, j) \in \{(B, A), (A, A), (B, B), (A, B)\}\) stands for the states, and \(k \in \{A, B\}\) stands for the user type. In other words, \(V_{ij}^s\) captures the present value of future life-time payoffs for the representative user for type \(k\) at state \(ij\) when both users play the strategy pair \(s\). These value functions are uniquely determined by a set of linear equations (8 for each strategy pair) that are consistent with Markovian state transitions. Appendix B illustrates a subsample of all the \(8 \times 64\) equations.

Assuming all type A users have purchased tokens in an ICO prior to the platform launch, the subgame starts from state \((A, A)\). Hence, a strategy profile pair constitutes an equilib-
rium of the platform’s operation if and only if no representative user of either side could attain a higher value function through a unilateral deviation at state \((A, A)\).

Definition 2.3. A symmetric, Markovian, pure strategy equilibrium of the platform’s operation is a pair of type A’s and B’s strategy profiles so that at state \((A, A)\), neither type of user has a profitable deviation.

Effectively, the equilibrium is an element in the set of the 64 strategy profile pairs that survives iterated elimination of strictly dominated strategies by comparing \(V_{AAA}\) and \(V_{AAB}\) across unilateral deviations by A and B, respectively.

Lemma 2.2 characterizes all equilibrium outcomes for a platform operating with tokens.

Lemma 2.2. Under the assumptions that

\[
\frac{s - c\rho}{1 - \rho^2} - \frac{u}{1 - \rho} > 0, \quad \text{and} \quad \frac{\rho s - c}{1 - \rho^2} - \frac{u}{1 - \rho} > 0,
\]

there exist only two possible equilibrium outcomes: An efficient outcome in which type A and B users trade and realize the gains from trade at each point in time, and an inefficient outcome in which trade never happens at any point in time.\(^{14}\)

Based solely on the above two lemmas, one may conclude that outcomes are the same regardless of whether trade is specified to happen in external currencies or tokens. However, we have not yet discussed the mechanism by which the tokens were distributed to users in the first place. In the next section, we add this mechanism, consider the full game, and demonstrate our first key result: the inefficient equilibrium is ruled out when tokens are initially distributed via an ICO.

\(^{14}\)There are in total 12 equilibria with these properties: \((y, y, y, n)\) and \((n, y, y, y)\); \((y, y, y, n)\) and \((n, y, y, y)\); \((n, y, y, y)\) and \((n, y, y, n)\); \((n, y, y, n)\) and \((n, y, y, n)\); \((n, n, y, n)\) and \((n, n, y, n)\); \((n, n, y, n)\) and \((n, n, y, n)\); \((n, n, y, n)\) and \((n, n, n, n)\); \((n, n, n, n)\) and \((n, n, y, n)\); \((n, n, n, n)\) and \((n, n, n, y)\); \((n, n, n, n)\) and \((n, n, n, y)\); \((n, n, n, n)\) and \((n, n, n, n)\).
2.2 ICO selects the efficient equilibrium

Having explained how tokens sustain trade in the operation of the platform, we can now precisely clarify the role of the initial coin offering (ICO).

As described in the previous section, there are only two possible equilibrium outcomes once the platform begins operation: An efficient equilibrium in which all possible transactions occur (all tokens are spent) in every period; and an inefficient equilibrium in which no transactions ever occur. We now consider the decision of a type A user whether or not to purchase the token at an initial date before the first date of platform operation.

Before the platform begins operating, the representative type A user can choose whether to purchase the tokens for a price $P > 0$ offered by the entrepreneur. If he chooses not to purchase the token, the game ends and all users receive payoffs of zero. If instead the type A user chooses to purchase the token, then the game proceeds to the subgame analyzed in the previous section, beginning at state (A, A) in which type A both demands the service and possesses the token. We define this additional period prior to platform launch, during which the tokens are sold, as an ICO:

Definition 2.4 (ICO). An ICO is the sale of tokens prior to the first date of the platform’s operation. After the ICO ends, the model of the previous section operates as a subgame of this extended game, starting at state (A, A).

Tokens issued during the ICO will be used exclusively as internal currencies once the platform is launched.

Our main result is that, thanks to the existence of the token, the type A user has the power to select the efficient equilibrium outcome and prevent the inefficient one. To obtain this result, we apply the forward induction equilibrium refinement (Govindan and Wilson, 2009). Intuitively, forward induction requires all players in a game to believe that the observed past actions chosen by other players were rational given their knowledge of their
future actions. In our specific game, when one platform user owns the token, other users infer that she obtained it in the past at a cost (either by purchasing the token during the ICO for a positive price, or later by providing the service at a utility cost), and therefore can confidently conclude that she intends to spend it. This information is a powerful mechanism to select the efficient equilibrium.

This result is presented in Theorem 2.3:

Theorem 2.3 (ICO selects the efficient equilibrium). *When the entrepreneur conducts an ICO prior to platform launch, the only equilibrium outcome that survives forward induction is the efficient outcome.*

Proof. Consider the decision of the type B user at the first period of platform operation. This user’s decision depends on beliefs about the strategy profile of user A, who just bought the token. Forward induction requires type B’s belief to put zero probabilities on any strategy profiles in which type A does not attempt to spend the token at (A,A). The reason is that at state (A,A) type A has just taken a costly action—paying a positive price for the tokens—which would lead to a negative lifetime utility unless she spends the token in this state.

Type B therefore can be confident that, if he also plays Y, he will receive the token. This will incur a utility cost to type B of $u + c$, for participating in the platform and providing the service, and will also transition the game to state (B,B). To determine whether this decision by type B is rational, we next reason one step ahead:

Type B, like type A, prefers the equilibrium in which the two users trade the token forever. At this point, he knows that type A will play Y at state (A,A), but what will type A do in state (B,B)? If type A is confident that type B will play Y at state (B,B), it will be rational for type A to do the same, in order to return the game to the state in which type A receives the surplus from the service. And type A is indeed confident about this outcome,
thanks to forward induction: Otherwise, type B would not have accepted the token (and incurred the utility cost) at state (A,A).

Thus, once the game has transitioned to state (B,B), type B is confident that type A will play Y, making it rational for type B to also play Y at that state. This knowledge of how the game is expected to evolve makes it rational for type B to play Y at state (A,A).

Altogether, thanks to the observable, costly token purchase by user A before the platform launch, the unique equilibrium outcome of the game is refined to the efficient one. Observing token purchases, type B infers an efficient equilibrium, and plays accordingly, self-fulfilling the efficient outcome. Our theory thus rationalizes the use of platform-specific tokens in peer-to-peer transactions.

Multiple key insights can be drawn from this analysis. The most important is that tokens are useful to the platform precisely because they are useless outside of it. This fact makes the token purchase a credible way to communicate future play and rule out the inefficient equilibrium outcome. The transparency of the blockchain and smart contract also helps in this regard. These results rationalize the practice of creating a new cryptocurrency for the launching of a new enterprise, even when there is no credible case for that currency becoming widely adopted like Bitcoin or dollars.

2.3 Launching the platform: overcoming the critical mass hurdle

The previous section explained that an initial coin offering (ICO) can overcome a coordination problem in the presence of cross-side network effects. Many platforms additionally feature an own-side network effect, by which users care directly about the total volume of activity on the platform. In this section, we incorporate this direct network effect, which leads to a second coordination problem: the need to attract enough initial users during the ICO. We show that ICOs could be structured to address this concern, which also explains
many commonly-observed features of ICOs in practice.

To see how the second coordination problem arises, consider the same platform operation process as described in the previous section, except that the flow utility \(s \) to the buyer from a successful transaction is no longer a constant but is an increasing function \(s(n) \), where \(n \) is the number of transactions on the platform each period, or equivalently the number of tokens sold during the ICO when there is full participation each period. This specification for \(s(n) \) captures the own-side network effect in reduced form. For simplicity, we further specify this function as stepping up at a critical mass of users:

\[
s(n) \equiv s_0 + s_1 \times 1\{n \geq M\},
\]

where \(M \) is the exogenous critical mass requirement. We assume that \(s_0 - c - 2u > 0 \), i.e. there exists price levels so that all users will purchase tokens, and full participation will be the unique equilibrium outcome.

Under full participation, a user’s willingness to pay is equal to

\[
V(n) \equiv \frac{1}{\rho(\rho + 2)} \left(s(n) - \frac{c}{1 + \rho} \right)
\]

Given our specification of \(s(n) \), there are only two possible values of \(V \), which we label

\[
V_H \equiv V(n) \forall n < M \text{ and } V_L \equiv V(n) \forall n \geq M.
\]

We now consider an extended game in which the entrepreneur must decide whether to spend a fixed cost of \(K > 0 \) to launch the platform in the first place. We assume that \(s_0, s_1, \) and \(K \) are such that \(N \times V_H > K > N \times V_L \). In words, the first inequality means that the platform launch is efficient if it achieves full participation and if all possible trades occur between users at every date thereafter. The second inequality means that the platform launch will not be privately optimal for the entrepreneur, even with full participation, unless she can charge a price greater than \(V_L \) to each user.

To launch the platform using tokens, the entrepreneur must distribute those tokens to users via an ICO. The entrepreneur has at least two options of how to conduct this ICO.
First, she can sell all the tokens at once immediately before platform launch, in an ICO that lasts for only one period, and charge each user a cost $P > 0$ per token. Under this option, the multiple possible values of V create the second coordination problem mentioned above: The total surplus of the platform with full participation is $N \times V_H$, but the entrepreneur can only guarantee full participation by charging a price of V_L or less, in which case the platform launch will not be privately optimal from her perspective.

To see this formally, suppose the entrepreneur sets a price $P > K/N > V_L$ in the hopes of achieving a positive ex-post payoff from having launched the platform. The lifetime payoff to a user of type A, as a function of both his own and others’ actions during the ICO, is

$$\begin{cases}
0, & \text{if he does not buy the token} \\
V_L - P < 0, & \text{if he buys the token but fewer than } M \text{ users do} \\
V_H - P > 0, & \text{if he buys the token and at least } M \text{ users do}
\end{cases}$$

Clearly, there are multiple symmetric, self-fulfilling equilibria given this payoff function: One in which all users join and the entrepreneur recovers an ex-post surplus of $P \times N - K > 0$; and another in which no users join and the entrepreneur bears a utility loss of K. The possibility of this negative outcome due to coordination failure may cause some valuable platforms not to be launched.

The entrepreneur’s second option to distribute the tokens is to sell the tokens during an ICO that lasts multiple periods $T \geq 1$ with the token price following a schedule P_t, where t indexes the time periods during the ICO.¹⁵ The number of tokens that have been sold is public knowledge at all times, thanks to the transparency afforded by the blockchain.

The key result in this section is that the entrepreneur’s choice of T, or how many periods to run the ICO, affects whether or not the platform launch is privately optimal. When

¹⁵In practice, speculators may purchase tokens without intending to use them, but there is no role for speculation in the model without introducing uncertainty and private signals. We analyze speculation when we introduce these features into the model later in the paper.
when \(T = 1 \), then prospective users make simultaneous decisions on whether to subscribe to the platform, as in the simultaneous-move payoff function described above. The critical mass requirement generates multiple equilibria, including one in which no users join. Anticipating this inefficient outcome, the entrepreneur may choose not to launch a potentially valuable platform. The same logic holds whenever \(1 \leq T < M \): There exist multiple equilibria, in some of which the platform is unsuccessful due to coordination failure.

However, when \(T \geq M \), coordination failures are eliminated in any subgame perfect equilibrium in pure strategies. This is summarized in the following theorem.

Theorem 2.4. Suppose the entrepreneur announces an ICO that consists of a number of periods \(T \geq M \) during which tokens will be sold, and a price schedule \(P_t \) that the tokens will follow during \(t = 1, \ldots, T \). Whenever \(M \) tokens have been sold, the platform will be launched, and users who purchased tokens can trade as described in previous sections. Suppose the price schedule satisfies \(P_t = \frac{P}{(1+r)^{T-t}} \), where \(r \) is the common discount rate applied to the future service provided by the platform, and \(P < V_H \). Then in any subgame perfect equilibrium in pure strategies, all users purchase tokens and join the platform by time \(t = T - M + 1 \).

Proof. By induction: First, suppose \(T = M = 1 \). Then there is effectively no coordination problem. The entrepreneur offers one period for consumers to join the platform at a price of (close to) \(V_H \). In the unique Nash equilibrium, all users will join immediately.

Next, suppose \(T > M = 1 \). In the first \(T - M \) periods, there can be multiple equilibria and potentially any number of users will join. However, regardless of users’ decisions during these first periods, by time \(T \) the problem will reduce to the case analyzed in the previous paragraph, and all users will join at that date if they have not already.

Now suppose that \(T = M > 1 \), and the entrepreneur announces an ICO as described in the statement of the theorem above. Suppose further (the induction hypothesis) that for all \(m < M \), the theorem holds: that is, if the critical mass on the platform were \(m \), and the
ICO lasted $T \geq m$ periods with the price following $P_t = \frac{P}{(1+r)^{m-t}}$, then all users would join immediately and the platform would launch.

Consider in this case the decision of an individual user at $t = 1$. In making her decision whether to join the platform, she must consider her payoff as a function of other users’ decisions. If this user joins the platform today, then regardless of how many other users (if any) join at the same time, the subgame in the next period will be an ICO with $T - 1$ periods and (at most) $M - 1$ users remaining who must join to reach the critical threshold. This subgame will satisfy the induction hypothesis, guaranteeing that all users will join and the critical threshold will be reached.

On the other hand, if the user in question does not join the platform immediately, then it is possible (if no other users join at the same time) that the subgame in the next period will be an ICO in which M additional users are required to reach the critical threshold, but there are only $T - 1$ periods remain in which for them to join. This game would not satisfy the induction hypothesis, and there will be no guarantee of avoiding the coordination failure.

If the price of tokens is expected to decline in real terms during the ICO, then it may still be rational for the user to delay joining the platform, balancing the probability of platform failure against the time value lost by buying in early. However, if $P_2 \geq P_1 \times (1 + r)$, then there is no reason to wait. Regardless of the perceived probabilities of other users’ actions, the individual user will rationally join immediately to force the subgame with a positive outcome, and thereby guarantee that the critical threshold is reached and the platform is launched. Following the same logic, all users will join at $t = 1$.

Finally, consider $T > M > 1$. As in the case $M = 1$, there are multiple equilibria for the first $T - M$ periods, after which the unique outcome is for all users to join.

Although the theorem allows for the entrepreneur to set T strictly greater than M, note that the optimal decision is to set $T = M$, as this maximizes the price at which the tokens are sold. Thus, for simplicity, we consider only ICOs with $T = M$ in the following discussion.
Note that, on the equilibrium path, the entrepreneur can only charge a price per token of \(\frac{V_H}{(1+r)^M} \) at most. Thus, the ICO is beneficial if and only if \(N \times \frac{V_H}{(1+r)^M} > K > N \times V_L \). That is, given these inequalities, the platform launch is socially efficient, but is only guaranteed to be privately optimal for the entrepreneur if conducted through an ICO. Recall also that we have made no assumptions about the relative magnitudes of \(S_1 \) and \(S_0 \), so the above inequalities do not create any inconsistency in our analysis.

Theorem 2.4 explains many ICO stylized facts introduced in Section 1, as discussed below.

Importance of the potential ICO duration Even though an ICO with \(T = M \) will only last one period in equilibrium, and the platform will launch immediately afterward, the entrepreneur must still announce a possible (and credible) horizon for the ICO of \(M \) periods, and must also discount the initial price of the coins by \((1 + r)^M \). Both of these features are due to the off-equilibrium-path reasoning of the potential users: To guarantee their immediate participation, they must be assured that all other users will eventually join, and that there can be no strategic benefit to waiting to join, even if (off the equilibrium path) no other users join at \(t = 1 \).

On the other hand, the logic in the proof also assumes a definite end date to the ICO, so that it cannot last forever. This assumption is realistic because it is costly to maintain the ICO indefinitely. Aside from the direct costs of maintaining the website, there are the larger opportunity costs of keeping the entrepreneur and any other necessary employees committed to the potential platform launch. \(T \) will therefore be constrained by the capital available to the entrepreneur or team launching the platform.

Pre-ICO token discounts The requirement to discount the price of the tokens by \(T \) periods leads to an interesting tradeoff: It may be optimal to give away some coins up front, simply to move closer to the critical threshold, shortening the necessary length of the ICO, and thereby attaining a greater price for the remaining tokens that are sold. If the
entrepreneur gives away \(m \) tokens up front, then conducts an ICO lasting \(M - m \) periods, her total revenues will be given by \((N - m) \times \frac{P}{(1+r)^{M-m}} \). This expression is concave in \(m \) under certain conditions,\(^\text{16}\) yielding the revenue-maximizing decision (by first order condition with respect to \(m \)) \(N - m = \frac{1}{\ln(1+r)} \). As the discount rate increases, the entrepreneur optimally gives away more tokens up front and sells fewer tokens during the ICO. Such practices empirically resemble the frequently-observed private-round “pre-ICOs,” in which an exclusive group is invited by the entrepreneur to purchase tokens at a discount even before an ICO opens to the general public.

We note that, since the tokens are given out for free (or sold at a steep discount) during the pre-ICO, the pre-ICO must be rationed or otherwise everyone would participate and the entrepreneur would end up with nothing. Furthermore, the tokens should only be given to those whom the entrepreneur knows can commit to using the platform once launched, as otherwise such tokens may not add to the critical mass requirement.

ICO mega-deals From the proof of Theorem 2.4 we see that given the token pricing schedule, it is indeed a dominant strategy for any user to participate in the ICO immediately, not necessarily to increase payoff (as the user’s payoff does not differ from when he participates in the ICO or the actual platform launch conditional on a successful platform launch that attracts full participation), but to avoid a coordination failure. This explains why an ICO can often attract large amounts of capital very rapidly even when a company has not yet launched a product. Empirically, the ICO universe often features “mega-deals”, which are often described in media as “fetching millions in minutes”. Such a pattern may appear at first glance like irrational exuberance. While we do not rule out the possibility of bubbles in the current ICO market, Theorem 2.4 indicates that the large scale of some

\(^{16}\) More precisely, a sufficient condition for the problem to be concave is \(N < \frac{2}{\ln(1+r)} \). Thus, if the user base is very large or the discount rate is very small, there may not be an interior optimal number of tokens to give away. The entrepreneur would optimally either sell them all, or give them all away. (In the latter case the entrepreneur would choose not to pursue the platform in the first place, due to the fixed cost \(K \).)
ICO deals may also have rational foundations: while accelerating the build-up of network effects and resolving a coordination problem that is endemic to platform-based startups, ICOs effectively front-load future users.

ICO bootstrapping platform launch The result on ICO mega-deals that all users immediately jump on the ICO bandwagon depends on the assumption that all users share the same M. In ongoing work, we will allow M to be heterogeneous across users. When each user i has possibly heterogeneous critical mass requirements M_i, the entrepreneur often will only need to accommodate a subset of users’ M_i. This is because low M_i users can often “bootstrap” the process and motivate users with higher M_i to join as well.

Escalating price schedules Theorem 2.4 also explains the often observed escalating price schedules in ICO deals. Note that under the price schedule, the present value of the entrepreneur’s proceeds in an ICO does not really differ from that from a formal platform launch (conditional on the platform being successfully launched). Hence, while an ICO does superficially resemble financing methods like equity, it is not fundamentally a financing method, and it is only a convenient coincidence that the ICO raises large sum of funds at an early stage when they are likely valuable. The value of an ICO our framework is really about resolving a coordination failure, and it may be regarded as an organic element of a platform operation.

In Theorem 2.4, the token price grows at the discount rate r. Without any fundamental uncertainty, as we assume here, r should be equal to the risk-free rate. In practice, there is likely uncertainty about either the surplus S or the critical mass requirement M, and the rate r should adjust accordingly. We analyze fundamental uncertainty in Section 3.

Several other features of the setup in this section would also be straightforward to generalize. For example, it is not necessary to assume that the users live forever; in any sub-period in which they own the token, they could sell their token to a replacement user (and the price
of the tokens will remain stable at S). In ongoing work, with the introduction of private information, we can model speculation.

In summary, we demonstrate that for projects that need to quickly build up network effect, an ICO or pre-ICO helps overcome the critical-mass constraint. While ICOs do raise funds, they are more appropriately viewed as part of the operational process of project launches. In Section 3, we introduce uncertainty and provide an alternative channel for ICOs to create value, which will be compared with the network effect channel.

3 ICO harnesses the wisdom of the crowd

This section considers an extension to our baseline model. In the previous section, we demonstrate that by adding dynamics to a platform launch, an ICOs can overcome coordination failures inherent in many projects with network effects. We derive the result by assuming symmetric information among all players. In reality, however, when the user community is adequately dispersed, they often possess idiosyncratic private information about the platform, and introducing an ICO with multiple stages may also help harness their ”wisdom of the crowd” by aggregating dispersed signals about project quality. This is an alternative channel through which a well-structured ICO creates economic value.

For brevity, we delegate all analysis into the wisdom of the crowd channel to Appendix C, and only state the main result here.

Theorem 3.1. When users have idiosyncratic private information about project quality, the entrepreneur can obtain a higher expected payoff by conducting a multi-period ICO than a single-period one.

The core intuition behind this result is that with multiple stages, users with the highest private signals move first, and their actions in turn convey further information to motivate more follow-up users to participate.
By endowing users with idiosyncratic private signals, we also create an economic role for speculation, which is an empirically common phenomenon with ICOs. In the next section we analyze this behavior and its implications for price dynamics.

3.1 Allowing for speculation in the ICO

ICOs are often viewed as an investment opportunity for those who buy in early, not just as a way of joining a platform as a user. In this section, we analyze the gains to speculating in an ICO.

We introduce a unit mass of “speculators” who derive no utility from joining the platform, but can buy the platform’s tokens during the ICO and re-sell them later. They get their own signals about the platform quality separately from the users. The entrepreneur has no way to distinguish them from the other users, so they pay the same price as everyone else. We analyze the incentives of these speculators to buy tokens during the ICO and re-sell them later.

The main result of this analysis is that, while there may be a positive volume of speculative trade, this has no impact on the prices or allocations of the model, and speculators receive no economic rents. This is a standard no-trade result. (To be clear, speculators may expect a positive return to their investment, even unconditionally, but this is a fair return for the risk of platform failure and does not distort prices away from what was derived above.)

We assume the entrepreneur commits not to change the supply of coins ex post.17 This is a credible assumption because, if the entrepreneur finds it beneficial to make this commitment, blockchain technology provides a mechanism for him to do so. This assumption was not relevant before, as the entrepreneur was the only seller, but with opportunistic speculators also selling at time 1 there may be an incentive to create additional coins without this

17 More generally, we could allow the entrepreneur to commit to any deterministic function by which the supply of tokens expands over time, as long as this function is common knowledge.
First, we show that the prices derived in the previous section are still an equilibrium, although the volume of trade may change. At those prices, speculators with signals above \(x_0^* \) buy, anticipating that if \(V = 1 \) they can resell at time one for a price of 1. This means there is twice as much volume as without resale. However, at time one, the total supply of coins on the market is the same; the only difference is that relatively less of that supply comes from the entrepreneur. At a price of 1, none of the sellers want to keep their coins, and all of the buyers are willing to buy, so this price is still an equilibrium.

A separate question is whether any other prices might constitute an equilibrium as well. More precisely, it might seem natural that a price war could break out among sellers at \(t = 1 \), driving the price of tokens below 1. The equilibrium described in the previous paragraph implicitly has sellers at time 1 colluding not to do this, but it might seem that any one of them has an incentive to do so if they could.

However, note that the aggregate supply of coins sold at time 1 does not change. Each seller gets a mass of demand equal to the mass of coins that he sells; even if a different seller tried to undercut the entrepreneur with a lower price, this would not decrease the residual demand facing the entrepreneur after that seller exhausted his supply. Thus, regardless of what other agents do, the entrepreneur (and every seller in the model) can still charge a price of 1 to his buyers at the second date. That price therefore becomes the unique optimal price for every agent in the optimal.

Nevertheless, the presence of the speculators does force the entrepreneur to sell more coins at the first stage. Does this ultimately decrease his expected profit? Can he increase the price at time zero? Let \(F^s \) be the CDF of signals to the speculators. We simply change the entrepreneur’s problem to

\[
\max_{P_0} \quad P_0 \times \min(1, 1 - F(x_0^*) + 1 - F^s(x_0^*)) + p \times \max(0, F(x_0^*) - (1 - F^s(x_0^*))) \quad (1)
\]
First, consider the possibility that the speculators demand more the entire supply at time zero. This is inconsistent with equilibrium: In this case, the only market-clearing price at time 1 will be less than one, and all speculators know this and will not demand to buy any coins. Therefore, we can restrict attention to cases where the speculators’ demand is small enough to not exceed one at time zero.

With that observation, we can focus on the first-order condition as characterizing the solution to the problem. This condition is

\[
\frac{1 - F(x_0^*) + 1 - F^s(x_0^*)}{F'(x_0^*) + F^s'(x_0^*)} = (P_0 - p) \times \frac{dx_0^*}{dP_0} \tag{2}
\]

which is a straightforward generalization of (??).

We can rewrite the LHS of (2) as a weighted average:

\[
\frac{1 - F(x_0^*) + 1 - F^s(x_0^*)}{F'(x_0^*) + F^s'(x_0^*)} = \frac{F'(x_0^*)}{F'(x_0^*) + F^s'(x_0^*)} \times m(x_0^*) + \frac{F^s'(x_0^*)}{F'(x_0^*) + F^s'(x_0^*)} \times m^s(x_0^*)
\]

If the speculators and investors draw signals from the same distribution, then this analysis shows that there is ultimately no effect on the entrepreneur’s revenue compared to the no-resale case. The mass of speculators selling at time 1 is completely offset by their buying at time zero, since the coins are fairly priced at both dates.

3.2 Adding a critical-mass constraint

In this section we combine the network effect and wisdom of the crowd and show how the ICO can address both at once. We again model the critical mass requirement in a simple way, by assuming that the per-capita surplus \(V \) is realized if and only if at least a measure \(\alpha \) of users join the platform. Therefore an individual user’s payoff as a function of his action is:
0, if he does not participate
\[-P, \text{ if he participates but there are less than } \alpha \text{ total participants} \]
\[V - P, \text{ if he participates and there are more than } \alpha \text{ total participants} \]

The rest is as in the core model: We normalize $V \in \{0, 1\}$, depending on the state of nature. All agents share the common prior $\mathbb{P}(V = 1) = p$. Each user gets a noisy private signal X about the value of V, and this is the only difference among them. We assume that the signals X are distributed according to the conditional distribution functions $(X|V = 1) \sim F_H$ and $(X|V = 0) \sim F_L$. Conditional on the realization of V, the signals X are independent of each other. We continue to assume that $f'(X) > 0$ where $f(x) \equiv F'_H(x)/F'_L(x)$.

3.2.1 Entrepreneur’s problem in a one-stage game

We first analyze the case in which there is no ICO. The entrepreneur makes the entry decision, and conditional on entering the market, sets the cost P to maximize profit. While a high value of P clearly increases that profit, two forces discourage the entrepreneur from setting the value of P too high. First, as before, a high value of P increases the minimum private signal X that a user must have to find it profitable to join the platform. Second, conditional on an individual user’s private signal, the network effect further deters the user from joining, as she anticipates a smaller set of other users joining. The entrepreneur thus needs to to choose P to extract as much surplus from the users, while internalizing the effect of P on the critical mass α requirement.

Formally, user i joins the platform if and only if

$$\mathbb{P}(\text{at least } \alpha \text{ users join and } V = 1 | X_i) \geq C. \quad (3)$$
By Bayes’ rule, the probability in (3) is equal to

\[\mathbb{P}(\text{at least } \alpha \text{ users join }| V = 1, X_i) \times \mathbb{P}(V = 1|X_i). \]

Due to no correlation in the signals conditional on the fundamental, the first term

\[\mathbb{P}(\text{at least } \alpha \text{ investors join }| V = 1, X_i) = \mathbb{P}(\text{at least } \alpha \text{ investors join }| V = 1). \quad (4) \]

The second term \(\mathbb{P}(V = 1|X) \) can be expanded as

\[\frac{p \times f_H(X)}{p \times f_H(X) + (1 - p) \times f_L(X)} = \frac{p \times f(X)}{p \times f(X) + (1 - p)}. \]

Hence, (3) is equivalent to

\[\mathbb{P}(\text{at least } \alpha \text{ investors join }| V = 1) \times \frac{p \times f(X)}{p \times f(X) + (1 - p)} \geq C \quad (5) \]

In equilibrium each investor follows a cutoff strategy of participating in the platform if and only if his signal is higher than some \(x^* \), which is the same for all investors due to the symmetry of the setup. Depending on the realization of the underlying state \(V \in \{H, L\} \), a measure of \(1 - F_V(x^*) \) users (those with high enough signals) will participate. Given the structure of the economy and the entrepreneur’s choice of \(P \), users know with certainty whether this mass is greater than \(\alpha \).

The entrepreneur thus has two possible regions of price setting strategies: First, set \(P \) so low that \(1 - F_H(x^*) \geq \alpha \); second, set \(P \) so high that \(1 - F_H(x^*) < \alpha \). The second case is clearly ruled out in equilibrium, because in this case no user expects the critical mass requirement to be satisfied in any state of nature, so none of them will participate and the entrepreneur’s revenue would be zero. In the first case, \(\mathbb{P}(\text{at least } \alpha \text{ investors join }| V = 1) = 1 \), and so (5)
reduces to
\[
\frac{p \times f(X)}{p \times f(X) + (1 - p)} \geq C
\]
(6)

and for a given \(P \) chosen by the entrepreneur, \(x^* \) is defined by setting the above expression to equality:
\[
\frac{p \times f(x^*)}{p \times f(x^*) + (1 - p)} = C.
\]
(7)

Hence, we obtain the entrepreneur’s problem below:

The entrepreneur’s problem The entrepreneur chooses \(P \) to maximize her payoff

\[
pC \times (1 - F_H(x^*)) + (1 - p)C \times (1 - F_L(x^*)),
\]
(8)

subject to
\[
\frac{pf(x^*)}{pf(x^*) + (1 - p)} = C \quad \text{(user IC)}
\]
(9)
\[
1 - F_H(x^*) = \alpha \quad \text{(critical mass)}
\]
(10)

Attaching multiplier \(\lambda \) to constraint (10), the first-order condition for this constrained problem is thus
\[
m_F(x^*) = \left(C + \lambda \frac{F'_L(x^*)}{F''(x^*)} \right) \times \frac{dx^*}{dC}
\]
(11)

Comparing condition (11) with condition (???) in Section 3, the difference is the new term inside parentheses. Because this term is always positive, we see that the platform is priced lower than it was without the critical-mass feature. This is intuitive: The lower price is the mechanism by which the entrepreneur induces participation by the critical mass \(\alpha \).

3.2.2 Introducing ICO

Again ICO is interpreted as a pre-sale of tokens that give access to the platform once it is launched in the second stage. Without re-sale, the entrepreneur enjoys a profit of (before
the fixed cost K)

$$pP_0 \times (1 - F_H(x_1^*)) + (1 - p)P_0 \times (1 - F_L(x_1^*)) + pV \times [1 - (1 - F_H(x_1^*))],$$ \hspace{1cm} (12)

where x_1^* denote the cutoff of signals above which the user will participate in the ICO. The first term represents revenues from the ICO, while the second term denotes revenues from the actual launch of the platform.

A user will participate in the ICO if and only if

$$\mathbb{P}(V = 1|X) \geq P_0,$$

(i.e. participating in ICO is not expected to result in a loss, and (for a continuum of users) is no worse than waiting). For the marginal user at the signal cutoff

$$\frac{p \times f(x_1^*)}{p \times f(x_1^*) + (1 - p)} = P_0$$

Hence with the introduction of ICO, the entrepreneur’s problem becomes the following

The entrepreneur’s problem with ICO The entrepreneur sets P_0 to maximize

$$pP_0 \times (1 - F_H(x_1^*)) + (1 - p)P_0 \times (1 - F_L(x_1^*)) + pV \times [1 - (1 - F_H(x_1^*))],$$ \hspace{1cm} (13)

subject to

$$\frac{p \times f(x_1^*)}{p \times f(x_1^*) + (1 - p)} = P_0 \text{ (user IC)}$$ \hspace{1cm} (14)

We note that with ICO the entrepreneur’s problems is exactly the same as the one without the critical mass requirement. Without ICO, however, the entrepreneur faces an additional
critical mass constraint. Hence, an ICO adds additional value by eliminating this constraint whenever it is binding.

Comparing the entrepreneur’s problem with and without the ICO illustrates two important implications of the ICO: First, with the ICO, the entrepreneur only needs to subsidize a smaller set of ICO participants: those with particularly high private signals about the social value of the platform. She can charge the full user surplus created by the platform to the remaining mass of users (the second term in (22)). ICO effectively serves as a screening device in front of investors with different level of asymmetric information, and helps reduce the “lemon” discount. Second, thanks to the coordinating effect of the ICO participants, the entrepreneur no longer needs to take into account the α critical mass, hence relaxing constraint (10) when optimizing.

3.3 ICO expands social surplus

The discussion on how ICO harnesses the wisdom of the crowd illustrates the social value of an ICO. Simply put, when there is a fixed cost to socially-valuable entrepreneurship and the entrepreneur is allowed to obtain greater rents, then social surplus may be expanded. We make this logic explicit below.

The role of the ICO in our framework is to incentive participation in cases where this would create social surplus. In this section, we show formally that the ICO therefore expands social surplus. To our knowledge, this is the first formal demonstration of a valuable economic role for ICOs, in contrast to most commentary which has focused on their facilitation of fraud and skirting of securities regulations.

Note that, in all cases, expected social surplus is equal to the mass of users who join the platform in the good state, times the probability p of that state occurring. Consider first the model without the critical-mass constraint. Without an ICO, the mass of users who participate in the positive state is $1 - F_H(x^*)$. With the ICO, that mass is 1, as all users
end up joining sooner or later. The same intuition holds with the critical-mass constraint: Without the ICO, some agents will fail to participate in the positive state, whereas with the ICO they all will at one of the two dates.

In any of these cases of our model, users receive none of the surplus created by the platform. This is because we assume that the platform provider can act as a monopolist and appropriate all surplus. However, this assumption could be relaxed. The important observation is that the increased profit to the monopolist arises due to the creation of surplus. In this sense, ICOs in our model serve a socially-valuable purpose.

We could also formalize the intuitions with several theorems. First, without ICO certain positive NPV projects may be forgone.

Theorem 3.2. There exist values of p, α, and K for which projects are positive NPV yet not funded in equilibrium.

Proof. First define $\overline{K} \equiv pV$. Clearly a project has positive NPV if and only if $K < \overline{K}$.

Next define \underline{K} as the entrepreneur’s revenue from optimally pricing the platform. Hence

$$\underline{K} \equiv \max_x \frac{pf(X)}{pf(X) + (1 - p)[1 - F_H(X)]}$$

if $1 - F_H(X) \geq \alpha$ at the optimal X, or otherwise $\underline{K} \equiv \alpha \tilde{C}$, where \tilde{C} satisfies

$$\tilde{C} = \frac{pf(\tilde{X})}{pf(\tilde{X}) + (1 - p)},$$ \hspace{1cm} (15)

in which

$$1 - F_H(\tilde{X}) = \alpha.$$ \hspace{1cm} (16)

It is easy to see that if and only if $K > \overline{K}$, the entrepreneur would suffer an expected loss if she incurred K to launch the platform. In equilibrium such projects will be unfunded.
Hence inefficient coordination could happen for \(p \) and \(\alpha \) if as defined \(\underline{K} < \bar{K} \), which is (after some simplifying algebra) if

\[
(\alpha - p)f(\tilde{X}) < 1 - p,
\]

where \(\tilde{X} \) is defined as \(1 - F_H(\tilde{X}) = \alpha \).

\[\square\]

Theorem 3.3 redoes the analysis for the ICO case.

Theorem 3.3. For some \(p \) and \(\alpha \) there exists \(\underline{K} \) and \(\bar{K} \) such that projects with \(\underline{K} < K \leq \bar{K} \) are positive NPV yet unfunded in equilibrium.

Proof. Similar to the case without ICO, define \(\bar{K} \equiv pV \). Clearly a project has positive NPV if and only if \(K < \bar{K} \). Define \(\underline{K} \) as

\[
\max_x \frac{p \times f(x)}{p \times f(x) + (1 - p)} \times (1 - F_H(x)) + \times [1 - \times (1 - F_H(x))] \times [1 - \times (1 - F_H(x))].
\]

(18)

If and only if \(K > \underline{K} \), the entrepreneur would suffer an expected loss if she incurred \(K \) to launch the platform. In equilibrium such projects will be unfunded. \[\square\]

Theorem 3.4. For all \(\alpha, p, f_H, \) and \(f \), we have \(\underline{K} \geq \bar{K} \). Hence the parameter regions in which coordination failure happens is smaller when we introduce ICO.

Proof.

\[
\underline{K} = \max_x \frac{p \times f(x)}{p \times f(x) + (1 - p)} \times (1 - F_H(x)) + \times [1 - \times (1 - F_H(x))]
\]

\[
\geq \frac{p \times f(\tilde{X})}{p \times f(\tilde{X}) + (1 - p)} \times (1 - F_H(\tilde{X})) + [1 - \times (1 - F_H(\tilde{X}))]
\]

\[
\geq \frac{p \times f(\tilde{X})}{p \times f(\tilde{X}) + (1 - p)} \times (1 - F_H(\tilde{X}))
\]

\[= \bar{C} \times \alpha \]

\[= K \]
3.4 Manipulation and fraud

We caution that unlike the network effect channel, the wisdom of the crowd channel may be subject to abuse and manipulation. Appendix 3.4 will give further discussion.

We caution that unlike the network effect channel, the wisdom of the crowd channel may be subject to abuse and manipulation. Because follow-up users learn about the project type \((H \text{ or } L)\) from both the price charged and the number of participants in ICO, one fraud the entrepreneur can commit is to offer private off-chain side payments to some individuals to induce higher ICO participation. The combination of higher ICO participation and the public on-chain price may create a false impression upon follow-up users that the project is high quality. As long as the increase in proceeds the entrepreneur collects is higher than the side payment required, there is room for manipulation. We derive the parameter ranges in which such fraud can happen below.

The model framework is similar as before. A risk-neutral fraudulent entrepreneur incurs a fixed cost \(K\) to launch a platform, after which the entrepreneur charges a monopolistic per-capita cost \(P\) to a unit continuum of users for access to the platform. An individual user’s payoff is:

\[
\begin{align*}
 0, & \text{if he does not participate} \\
 V - C, & \text{if he participates}
\end{align*}
\]

where \(V \in \{0, 1\}\) with common prior \(\mathbb{P}(V = 1) = p\). users are identical except for their private signals \(X\), where \(X|V = 1 \sim F_H\) and \(X|V = 0 \sim F_L\), and conditionally independent across individuals. The signals satisfy MLRP: \(f(x) \equiv \frac{F'_{H}(x)}{F'_{L}(x)} \Rightarrow f''(x) > 0\). The additional assumption we make in the fraud case is that the entrepreneur has perfect private knowledge that the underlying state is low (i.e. \(V = 0\)), but this ugly truth is not known to the users.
No ICO When the platform launches in one period without ICO, the entrepreneur’s problem is mimic the innocent users and choose P to maximize her payoff

$$C \times [p(1 - F_H(x^*)) + (1 - p)(1 - F_L(x^*))],$$ (19)

subject to

$$\mathbb{P}(V = 1|x^*) = \frac{pf(x^*)}{pf(x^*) + (1 - p)} = C \text{ (user IC)}$$ (20)

Denote P^* as the solution to the maximization problem, then the entrepreneur’s payoff is

$$P^* \times (1 - F_L(x^*)),
(21)$$

Introducing ICO With ICO, the fraudulent entrepreneur could mislead the public by mimicking the innocent ones who sets P_0 and P_1 to maximize

$$P_0 \times [p(1 - F_H(x_0^*)) + (1 - p)(1 - F_L(x_0^*))] + pP_1 \times [1 - (1 - F_H(x_0^*))],$$ (22)

subject to

$$\frac{p \times f(x_0^*)}{p \times f(x_0^*) + (1 - p)} = P_0 \text{ (user IC)}$$ (23)

$$P_1 = 1$$ (24)

To create the illusion that the project is of high type, the entrepreneur could offer side payments of at least P_0 to $F_L(x_0^*) - F_H(x_0^*)$ users (e.g. high influence early movers or celebrities) and lure them to join in the first stage. In this case, the entrepreneur’s payoff
would be

\[P_0 \times (1 - F_L(x_0^*)) + P_1 \times [1 - (1 - F_H(x_0^*))], \] \hspace{1cm} (25)

Note that if the entrepreneur does not bribe early movers his payoff would be

\[P_0 \times (1 - F_L(x_0^*)), \] \hspace{1cm} (26)

which is strictly lower. Hence the fraudulent entrepreneur always has strict incentives to conduct compensated endorsement. If such compensation is not observed by follow-up users, these followers will be misled into a scam. This observation highlights the importance of disclosure requirement for ICO.

Note that the fraud problem is most severe when the user demography is not decentralized, because the manipulation can target only a small set of individual and prevents leakage (for example, celebrity endorsement).

4 Implications for policymakers as well as practitioners

Our model generates a mechanism by which an initial coin offering can play a valuable economic role for an early stage project. Here, we discuss implications of our findings for the recent debate over optimal regulatory treatment of ICOs.

First, the current debate over ICOs has been focused on how existing securities laws should apply to regulating the new innovation. Our analysis instead inquires after the economic value creation of ICOs. We use social welfare as the criteria for assessing when ICOs should be restricted, and when they should be allowed. By distilling the multistage platform launch feature of many ICOs deals, our baseline model also provides a framework to help analyze other related regulatory issues in further development of the paper.

Second, we discuss the narrow question of whether coins sold in an ICO are securities like
traditional debt or equity claims. In a strictly legal sense, this question is outside the scope of this paper, but in economic terms, our model suggests that for platform-based ventures the answer may be no. An ICO leads to cash inflows, likely at a time when the firm needs funds, yet that financing is not necessarily the purpose of the ICO. Rather, the structure can be an integrated part of the operational process of the platform, which leads to an efficient users participation outcome. Although the price of coins may increase endogenously over time, the ICO does not have to overcome any financial constraint that would prevent the issuance of a traditional equity security. To borrow words from Ryan Zurrer, Principal & Venture Partner of Polychain Capital, ICO is about fostering a community and “tokens act like rocket fuel for network effects.”

The implications of this observation are twofold:

On the one hand, a token-issuing project should be very clear on how the newly minted tokens serve as an integrated element in the project. While qualified investors are free to speculate on the price path of an ICO, the fundamental purpose of an ICO is to induce efficient participation, not necessarily to provide a return on capital. Companies that ignore or muddy this distinction should be viewed skeptically by both investors and regulators.

On the other hand, companies that justify a proposed ICO in terms of the benefits described in this paper should be given leeway to execute them. This may require carving out a special regulatory exemption if ICO tokens do indeed fall under the existing legal definition of a security; our model justifies why such an exemption could have economic value, and why the resulting ICOs represent a valuable innovation. Of course, such exemptions should not exempt oversight of other dimensions of project risks. For example, the requirement to disclose compensations for celebrity endorsement should be enforced to prevent manipulation. Governance measures should be erected to enforce any repurchase obligations offered by the entrepreneur.

In contrast, ICO structure that do not explicitly appeal to any challenge should be
discouraged or scrutinized: In our model, the specific challenge is a coordination failure arising from the network effect. While there is no way to prove that network effect is the only mechanism justifying an ICO, we view it as likely the primary benefit from analyzing existing deals. We also note that any other proposed benefit of ICOs should be subject to a similar scrutiny as conducted in this paper before being accepted as a justification for a proposed offering. An ICO that fails this test is at higher risk of being the kind of pump-and-dump scheme that damages the integrity of financial markets and motivates securities regulation in the first place.

We can also use our model to consider optimal governance provisions in an ICO. In principle, the contract underlying the purchase of a token should include investor protections analogous to those in other product markets or financial markets. This topic has received relatively little attention in the press, but it is a potentially rich area for legal research, and a few high profile examples illustrate the stakes and the challenges involved:

One important and unique governance challenge in an ICO is the possibility of devaluation: After selling coins to ICO participants, a company has every incentive to expropriate the value of those coins. A prominent and extreme example was Storjcoin, which simply began accepting forms of payment other than tokens for its platform.\(^{18}\) Our analysis then suggests that token sales should include contractual protection against this possibility. This conclusion is an important caution for potential token purchasers. It also provides another dimension along which regulators can judge proposed offerings, and along which high-quality offerings can separate themselves.

A more subtle way to accomplish this devaluation would be through dilution: If the company creates and sells more coins after the ICO, it effectively realizes seignorage revenue and expropriates some of the value of coins held by the ICO participants. This creates

a difficult tradeoff, as new coin issuance may also be necessary to expand the network, which benefits existing participants via the network effect. ICO tokens should then include governance mechanisms controlling the expansion of the coin base via seasoned coin offerings, to allow for valuable network expansion while preventing opportunistic dilution.19

Interestingly, blockchain technology provides a mechanism to address this issue via “smart contracts.” The technology allows the ICO seller to credibly pre-commit to an algorithm by which future coins will (or will not) be added to the current stock. This is interesting because it provides a clear justification for implementing ICOs as crowdfunding on a blockchain, rather than simply being a form of store credit. Nevertheless, even after making use of this technology, it is likely that the ICO seller cannot fully specify the contract governing optimal coin issuance. Or the issuer may simply deploy a new smart contract as minting different but related tokens. In this case, regulators and investors should be aware of how residual control rights regarding the expansion of the coin base are allocated in the contract underlying the token sale.

A second set of governance problems arise from the moral hazard inherent in providing funds for any purpose to an early-stage company. Since risk is always inherent in pre-purchasing a product that does not yet exist, many commentators have highlighted the importance of “capped” ICOs to provide proper incentives for sellers to develop their products post-sale. An ICO cap is a limit on the volume of tokens that can be sold in the ICO, which is simply a requirement that the seller retain a minimum stake in the company post-ICO. This incentive mechanism works exactly like the retention of an equity stake in a public offering, and the straightforward implication is that sellers in an ICO should retain a stake in the tokens they sell, to align their incentives with coin purchasers in addition to equity owners of the firm. Again, investors regulators both can make use of this implication

19Note that the dilution problem for coins is worse than for equity, where the funds flowing into the firm’s balance sheet compensate old investors and offset the dilution effect.
in their decisions about proposed ICOs.

Finally, our analysis illustrates one fundamental challenge for which there is no easy answer: A growing concern in the ICO community is that the increasing number of pre-sale rounds create opportunities for Ponzi-scheme ICOs, with each round paying off the previous round’s investors by pumping up the coin price long enough for the previous investors to exit.20 While this is a real concern, our analysis highlights that a dynamic sequencing of sale rounds is in fact essential to the mechanism by which the ICO overcomes the coordination problem inherent in a network setting. Thus, dynamic sales should not be prevented out of hand, but rather should be an area of close study for regulators and academics seeking to separate valuable from wasteful ICOs. In ongoing work we develop an analysis of the tradeoff balancing the benefit of network effects and information aggregation, against the costs of potential fraudulent manipulation.

5 Conclusion

In this paper, we develop a framework to discuss optimal regulation toward initial coin offerings. Instead of following the conventional wisdom by focusing on whether tokens should be regarded as utility, security, or other legal categorizations, we take a economic perspective, and ask if and when token sales are value-creating or value-destroying from a social welfare perspective. We highlight two specific settings in which an ICO can create value: First, when projects feature network effects – that is, the surplus realized by any user increases in the size of the total user base. Second, when projects feature the “wisdom of the crowd” – that is, private signals about project value that are dispersed among its potential users.

Both of these settings characterize recent tech startups, especially those that use ICOs. In either scenario, the ICO creates value by increasing the expected profit for the entrepreneur

20The SEC has specifically warned that celebrity ICO endorsements could be illegal, see https://www.coindesk.com/sec-celebrity-ico-endorsements-illegal/.
launching the project. Since these profits are necessary to overcome fixed costs, the ICO allows a greater range of socially-valuable projects to proceed.

Our findings have implications for securities regulators concerned with the growing popularity of initial coin offerings. Because financial innovations are often accompanied by fraud that exploits holes in existing legal frameworks, a natural reaction is to ban the innovation completely. Indeed, many proposed ICOs likely do not serve important economic functions. But some do, and an ideal regulatory response would be to separate the wheat from the chaff by allowing them to proceed. Our model provides guidance in allowing that to happen. In ongoing work, we explicitly analyze traditional governance mechanisms in the setting of our model to provide further insights in these directions.
References

Amsden, Ryan, and Denis Schweizer. 2018. “Are Blockchain Crowdsales the New’Gold Rush’? Success Determinants of Initial Coin Offerings.” 6

Cumming, Douglas J., Gaël Leboeuf, and Armin Schwienbacher. 2015. “Crowdfunding models: Keep-it-all vs. all-or-nothing.” Discussion Paper. 8

Da, Zhi, and Xing Huang. 2015. “Harnessing the Wisdom of Crowds.” *Available at SSRN 2731884.* 8

Ellman, Matthew, and Sjaak Hurkens. 2015. “Optimal crowdfunding design.” *Available at SSRN 2709617.* 7

Grüner, Hans Peter, and Christoph Siemroth. 2015. “Cutting out the Middleman: Crowdinvesting, Efficiency, and Inequality.” 7

Hakenes, Hendrik, and Friederike Schlegel. 2014. “Exploiting the Financial Wisdom of the Crowd–Crowdfunding as a Tool to Aggregate Vague Information.” *Available at SSRN 2475025.* 7

Kumar, Praveen, Nisan Langberg, and David Zvilichovsky. 2015. “(Crowd) Funding Innovation.” Available at SSRN 2600923. 7, 8

Surowiecki, James. 2005. The wisdom of crowds. Anchor. 8

Xu, Ting. 2016. “The Informational Role of Crowdfunding.” Available at SSRN 2637699. 7
Appendix

A Summary of International Regulatory Responses

Table 1: International regulatory responses to ICOs

<table>
<thead>
<tr>
<th>Jurisdiction & Regulator</th>
<th>Date</th>
<th>Regulatory Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Securities & Investments Commission (ASIC)</td>
<td>09/2017</td>
<td>state that the legality of an ICO depends upon its detailed circumstances, and “in some cases, the ICO will only be subject to the general law and the Australian user laws”. [Link]</td>
</tr>
<tr>
<td>(Canada) Quebec Autorite des marches financiers</td>
<td>09/06/2017</td>
<td>Exploring and sandbox certain deals. [Link]</td>
</tr>
<tr>
<td>(Canada) Ontario Securities Commission</td>
<td>10/25/2017</td>
<td>approve the ICO of TokenFunder, even after issuing warnings against ICOs earlier in the year. [Link] and [Link]</td>
</tr>
<tr>
<td>(China) PBOC & other six regulators</td>
<td>09/04/2017</td>
<td>ban all ICOs within the People’s Republic of China. [Link]</td>
</tr>
<tr>
<td>(China) National Internet Finance Association (NIFA)</td>
<td>01/26/2017</td>
<td>warn citizens against participating in overseas initial coin offerings (ICOs) and cryptocurrency trading. [Link] and [Link]</td>
</tr>
<tr>
<td>(France) Autorite des marchés financiers</td>
<td>by 10/2017</td>
<td>working on regulations. [Link]</td>
</tr>
<tr>
<td>German Financial Supervisory Authority (BaFin)</td>
<td>11/15/2017</td>
<td>discuss ICO risks to consumers. [Link]</td>
</tr>
<tr>
<td>HM Government of Gibraltar</td>
<td>10/12/2017</td>
<td>publish the Financial Services (Distributed Ledger Technology Providers) Regulations 2017 together with a Bill for an Act to amend the Financial Services (Investment and Fiduciary Services) Act. [Link]</td>
</tr>
<tr>
<td>Gibraltar government and Gibraltar Financial Services Commission (GFSC)</td>
<td>02/09/2018</td>
<td>announce plan to present the first ICO regulations in the world, which will introduce the concept of regulating authorized sponsors responsible for assuring compliance with disclosure and financial crime rules. [Link]</td>
</tr>
<tr>
<td>(Hong Kong) Securities and Futures Commission</td>
<td>09/05/2017</td>
<td>state that depending on the facts and circumstances, digital tokens may be subject to securities laws. [Link]</td>
</tr>
<tr>
<td></td>
<td>01/29/2018</td>
<td>launch a campaign to educate the public on the risks associated with ICO and cryptocurrency investment. [Link]</td>
</tr>
<tr>
<td>(Japan) Financial Services Agency</td>
<td>10/30/2017</td>
<td>clarify that Payment Services Act or Financial Instruments & Exchange Act may apply based on ICO structure. [Link]</td>
</tr>
<tr>
<td>(Isle of Man) Deptment of Economic Development</td>
<td>by 09/06/2017</td>
<td>has created a friendly regulatory framework [Link]</td>
</tr>
<tr>
<td>Israel Securities Authority</td>
<td>09/01/2017</td>
<td>announce plans to form a panel to regulate ICOs. [Link]</td>
</tr>
<tr>
<td>(Malaysia) Securities Commission (SC)</td>
<td>01/09/2018</td>
<td>issue a cease-and-desist to the CopyCash Foundation ahead of its planned ICO. [Link]</td>
</tr>
<tr>
<td>Malta’s Financial Services Authority (MFSA)</td>
<td>10/23/2018</td>
<td>propose rule for investment funds that focus on cryptocurrencies [Link]; publish feedback on 01/22/2018 [Link]</td>
</tr>
<tr>
<td>Jurisdiction & Regulator</td>
<td>Date</td>
<td>Regulatory Responses</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>(New Zealand) Financial Markets Authority</td>
<td>10/2017</td>
<td>release guidelines on the current regulatory environment in regards to ICOs.</td>
</tr>
<tr>
<td>Philippines Securities and Exchange Commission</td>
<td>01/09/2018</td>
<td>issue cease-and-desist order against KropCoins. [Link]</td>
</tr>
<tr>
<td></td>
<td>01/10/2018</td>
<td>issue warnings to ICOs. [Link]</td>
</tr>
<tr>
<td></td>
<td>01/29/2018</td>
<td>crafting rules: likely no ban but registration required. [Link]</td>
</tr>
<tr>
<td>(Russia) Vladimir Putin</td>
<td>10/2017</td>
<td>mandate new regulations including the application of securities laws to initial coin offerings (ICOs). [Link]</td>
</tr>
<tr>
<td>(Russia) Finance Ministry</td>
<td>01/26/2018</td>
<td>introduce a draft federal law on the regulation of digital assets and initial coin offerings. [Link] and [Link]</td>
</tr>
<tr>
<td>Monetary Authority of Singapore</td>
<td>08/01/2017</td>
<td>suggest potential case-by-case regulation. [Link]</td>
</tr>
<tr>
<td></td>
<td>11/14/2017</td>
<td>outline when ICOs are and aren’t securities. [Link]</td>
</tr>
<tr>
<td>(South Korea) Financial Services Commission</td>
<td>09/28/2017</td>
<td>ban all ICOs. [Link]</td>
</tr>
<tr>
<td>Swiss Financial Market Supervisory Authority</td>
<td>09/29/2017</td>
<td>clarify ICOs not regulated under Swiss law, but “due to the underlying purpose and specific characteristics of ICOs, various links to current regulatory law may exist”. Also announce investigations of an unspecified number of coin offerings. [Link]</td>
</tr>
<tr>
<td>(UAE) Abu Dhabi Global Market Financial Services Regulatory Authority</td>
<td>10/09/2017</td>
<td>describe ICOs as a “novel and potentially more cost-effective way of raising funds for companies and projects, argue against a “one size fits all” approach, and indicate regulations on a case-by-case basis. [Link]</td>
</tr>
<tr>
<td>(U.K.) Financial Conduct Authority</td>
<td>09/12/2017</td>
<td>issue user warning. [Link]</td>
</tr>
<tr>
<td></td>
<td>12/15/2017</td>
<td>propose a “deeper examination” to “determine whether or not there is need for further regulatory action”. [Link]</td>
</tr>
<tr>
<td>U.S. Securities and Exchange Commission (SEC)</td>
<td>07/2017</td>
<td>indicate potential application of federal securities laws, determined on a case-by-case basis. [Link]</td>
</tr>
<tr>
<td></td>
<td>09/2017</td>
<td>charged Maksim Zaslavskiy for fraud in connection with the ICOs for RECoin and DRC World. [Link]</td>
</tr>
<tr>
<td></td>
<td>10/2017</td>
<td>rule that celebrity ICO endorsements must disclose the amount of any compensation. [Link]</td>
</tr>
<tr>
<td></td>
<td>12/11/2017</td>
<td>Chairman Jay Clayton issue “Statement on Cryptocurrencies and Initial Coin Offerings”. [Link]</td>
</tr>
<tr>
<td></td>
<td>12/11/2017</td>
<td>institute cease-and-desist against Munchee Inc. [Link]</td>
</tr>
<tr>
<td></td>
<td>01/30/2018</td>
<td>halt the self-claimed $600M coin offering by AriseBank. [Link]</td>
</tr>
<tr>
<td></td>
<td>06/14/2018</td>
<td>William Hinman, the SEC’s director of corporate finance, said the agency did not view bitcoin or ether as securities</td>
</tr>
<tr>
<td>U.S. Commodity Futures Exchange Commission (CFTC)</td>
<td>01/24/2018</td>
<td>charged Randall Crater, Mark Gillespie, as well as My Big Coin Pay, Inc. in connection with a cryptocurrency scam. [Link]</td>
</tr>
<tr>
<td>(U.S.) Office of the Secretary of the Commonwealth of Massachusetts Securities Division</td>
<td>01/19/2018</td>
<td>charge resident Kirill Bensonoff and his company, Caviar with violating securities and business laws through an ICO. [Link]</td>
</tr>
<tr>
<td>Jurisdiction & Regulator</td>
<td>Date</td>
<td>Regulatory Responses</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>(U.S.) Wyoming lawmakers</td>
<td>01/25/2018</td>
<td>file a bill to grant exemptions to ICO Utility Tokens. [Link]</td>
</tr>
<tr>
<td>(U.S.) Texas State Securities</td>
<td>01/24/2018</td>
<td>put an cease-and-desist order on an overseas ICO of R2B Coin [Link]</td>
</tr>
<tr>
<td>Board (TSSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Organization of</td>
<td>01/19/2018</td>
<td>issue notice alerting investors to the perceived risks associated with ICOs. [Link]</td>
</tr>
<tr>
<td>Securities Commissions (IOSCO)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Links to global regulator statements.

B Markovian transition equation sets

The 64 strategy pairs each has 8 Markovian transition equations defining value functions (all 512 equations available upon request). For brevity we list 8 strategy pairs (8 \times 8 equations).

1.1: A’s and B’s strategies: \((y, y, n)\) and \((n, y, y)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = s - u_1 + \rho V_{BBB}, V_{AAB} = -c - u_2 + \rho V_{BBB} \\
V_{BBA} = -c - u_1 + \rho V_{AAA}, V_{BBB} = s - u_2 + \rho V_{AAB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.2: A’s and B’s strategies: \((y, y, n)\) and \((n, y, n)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = s - u_1 + \rho V_{BBB}, V_{AAB} = -c - u_2 + \rho V_{BBB} \\
V_{BBA} = -u_1 + \rho V_{ABA}, V_{BBB} = 0 + \rho V_{ABB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.3: A’s and B’s strategies: \((y, y, n)\) and \((n, y, n)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = s - u_1 + \rho V_{BBB}, V_{AAB} = -c - u_2 + \rho V_{BBB} \\
V_{BBA} = -u_1 + \rho V_{ABA}, V_{BBB} = 0 + \rho V_{ABB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.4: A’s and B’s strategies: \((y, y, n)\) and \((n, y, n)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = s - u_1 + \rho V_{BBB}, V_{AAB} = -c - u_2 + \rho V_{BBB} \\
V_{BBA} = -u_1 + \rho V_{ABA}, V_{BBB} = 0 + \rho V_{ABB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.5: A’s and B’s strategies: \((y, y, n)\) and \((n, n, y)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = -u_1 + \rho V_{BBB}, V_{AAB} = 0 + \rho V_{BBB} \\
V_{BBA} = -c - u_1 + \rho V_{AAA}, V_{BBB} = s - u_2 + \rho V_{AAB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.6: A’s and B’s strategies: \((y, y, n)\) and \((n, n, y)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = -u_1 + \rho V_{BBB}, V_{AAB} = 0 + \rho V_{BBB} \\
V_{BBA} = -c - u_1 + \rho V_{AAA}, V_{BBB} = s - u_2 + \rho V_{AAB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.7: A’s and B’s strategies: \((y, y, n)\) and \((n, n, y)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = -u_1 + \rho V_{BBB}, V_{AAB} = 0 + \rho V_{BBB} \\
V_{BBA} = -u_1 + \rho V_{ABA}, V_{BBB} = 0 + \rho V_{ABB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = -u_2 + \rho V_{BBB}
\]

1.8: A’s and B’s strategies: \((y, y, n)\) and \((n, n, n)\)

\[
V_{BAA} = -u_1 + \rho V_{AAA}, V_{BAB} = 0 + \rho V_{AAB}, V_{AAA} = -u_1 + \rho V_{BBB}, V_{AAB} = 0 + \rho V_{BBB} \\
V_{BBA} = -u_1 + \rho V_{ABA}, V_{BBB} = 0 + \rho V_{ABB}, V_{ABA} = 0 + \rho V_{BBB}, V_{ABB} = 0 + \rho V_{BBB}
\]
C ICO and wisdom of the crowd

While the wisdom-of-the-crowd channel adds additional values to addressing network effect, it could also work independently. In the following analysis, we start from assuming away network effect to focus on the ‘wisdom of the crowd’ channel.

Again the risk-neutral entrepreneur can incur a fixed cost K to launch a platform whose operation is identical to what is described in Section 2.1, and the entrepreneur can charge a per-capita price P to each users for access to the platform. If we assume away any network effect for the moment, an individual user’s payoff as a function of his action is then given by:

\[
\begin{cases}
0, & \text{if he does not participate} \\
V - P, & \text{if he participates}
\end{cases}
\]

where V represents the present value of each user’s surplus from using the platform.

A major deviation here from the analysis in Section 2 is the assumption of a fundamental uncertainty about the surplus V: for simplicity possible values of V are normalized to $V \in \{0, 1\}$, and the realization of V depends on the state of nature. All users share the common prior $\mathbb{P}(V = 1) = p$, and each user gets a noisy private signal X about the value of V, which is the only difference among them. We assume that the signals X are distributed according to the conditional distribution functions $(X|V = 1) \sim F_H$ and $(X|V = 0) \sim F_L$. Conditional on the realization of V, the signals X are independent of each other.

As shorthand notations, we denote $F(x) \equiv pF_H(x)+(1-p)F_L(x)$ and $f(x) \equiv F_H'(x)/F_L'(x)$. We assume that $f(\cdot)$ satisfies the monotone likelihood ratio property (MLRP), i.e. $f'(x) > 0$, which implies that $F_H(x) < F_L(x)$ for all x. In other words, for any given x, knowing $F_V(x), V \in \{H, L\}$ is perfectly revealing of the underlying state V.

C.1 The entrepreneur’s problem with a single-stage ICO

Given a token price P, each user i participates in an ICO if and only if $\mathbb{P}(V = 1|X_i) \geq P$. Thus, a cutoff x^* is defined by setting this expression to equality,

\[
\mathbb{P}(V = 1|x^*) \equiv P
\]

Let M represent the number of users who participates in the ICO (i.e. those with signals higher than x^*). Then for $m \in \{0, 1, 2, ..., N\}$,

\[
\mathbb{P}(M = m) = \binom{N}{m} (1 - F_V(x^*))^m F_V^{N-m}(x^*)
\]

Hence, we obtain the entrepreneur’s problem below:
The entrepreneur’s problem The entrepreneur chooses P to maximize expected payoff

$$p \sum_{m=0}^{N} P_m \binom{N}{m} (1 - F_H(x^*))^m F_H^{N-m}(x^*) + (1-p) \sum_{m=0}^{N} P_m \binom{N}{m} (1 - F_L(x^*))^m F_L^{N-m}(x^*),$$ \hspace{1cm} (29)

subject to

$$\frac{pf(x^*)}{pf(x^*) + (1-p)} = P \text{ (user IC)}$$ \hspace{1cm} (30)

C.2 The entrepreneur’s problem with an ICO

Denote m as the number of users who participate in ICO (that is, join at time zero) and n as the number who participate in the actual platform launch (that is, join at time one). Because m is indicative of the underlying state $V \in \{H, L\}$, at the second stage when the platform is actually launched, all players will make decisions with the additional signal m. A user will participate if and only if

$$\mathbb{P}(V = 1|X, m) \geq P_1,$$ \hspace{1cm} (31)

where

$$\mathbb{P}(V = 1|X, m) = \frac{p \mathbb{P}(X, m|V = 1)}{p \mathbb{P}(X, m|V = 1) + (1-p) \mathbb{P}(X, m|V = 0)} = \frac{p \mathbb{P}(X|V = 1) \mathbb{P}(m|X, V = 1)}{p \mathbb{P}(X|V = 1) \mathbb{P}(m|X, V = 1) + (1-p) \mathbb{P}(X|V = 0) \mathbb{P}(m|X, V = 0)} = \frac{pf(X) \mathbb{P}(m|X, V = 1)}{pf(X) \mathbb{P}(m|X, V = 1) + (1-p) \mathbb{P}(m|X, V = 0)}$$ \hspace{1cm} (32)

Denote x_0^* as the signal cutoff above which the user will participate in the ICO, then when $X < x_0^*$ (i.e. if he has not participated in the ICO), we have (32)=

$$\frac{pf(X) \binom{N-1}{m}(1 - F_H(x_0^*))^m (1 - F_H(x_0^*))^{N-m-1}}{pf(X) \binom{N-1}{m}(1 - F_H(x_0^*))^m (1 - F_H(x_0^*))^{N-m-1} + (1-p) \binom{N-1}{m}(1 - F_L(x_0^*))^m (1 - F_L(x_0^*))^{N-m-1}}$$

$$= \frac{pf(X)(1 - F_H(x_0^*))^m (1 - F_H(x_0^*))^{N-m-1} + (1-p)(1 - F_H(x_0^*))^m (1 - F_H(x_0^*))^{N-m-1}}{pf(X)(1 - F_H(x_0^*))^m (1 - F_H(x_0^*))^{N-m-1} + (1-p)(1 - F_L(x_0^*))^m (1 - F_L(x_0^*))^{N-m-1}}$$ \hspace{1cm} (33)

Hence a user who has not participated in the ICO (i.e. $X < x_0^*$) will participate in the second stage if and only if his signal is higher than the cutoff x_1^* given by

$$\frac{pf(x_1^*(m))(1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*)}{pf(x_1^*(m))(1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1-p)(1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)} = P_1(m)$$ \hspace{1cm} (34)

Notice that for any given x_0^* and m the entrepreneur always set $P_1(m)$ low enough to ensure
of ICO, the entrepreneur’s problem becomes the following:

Hence we do not need to consider (37) as it is absorbed by (38). In sum, with the introduction hence the left hand side of (38) ≤

\[\mathbb{P}(V = 1|X) \geq P_0 \]

i.e. she expects no loss from participating in the ICO, and

\[\mathbb{P}(V = 1|X) - P_0 \geq \mathbb{E}_m [\mathbb{P}(V = 1|X, m) - P_1(m)|X] , \]

i.e. she is better off participating in the ICO than waiting.

Since \[\mathbb{E}_m [\mathbb{P}(V = 1|X, m) - P_1(m)|X] = \]

\[\mathbb{P}(V = 1|X) - \sum_{m=0}^{N-1} P_1(m) \cdot \binom{N-1}{m} \frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0) + (1 - p)(1 - F_L(x^*_0))^m F_L^{N-m-1}(x^*_0)}{pf(x^*_0) + (1 - p)} \]

the two conditions (35) and (36) are expanded to

\[\frac{pf(x^*_0)}{pf(x^*_0) + (1 - p)} \geq P_0 \]

\[\sum_{m=0}^{N-1} P_1(m) \cdot \binom{N-1}{m} \frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0) + (1 - p)(1 - F_L(x^*_0))^m F_L^{N-m-1}(x^*_0)}{pf(x^*_0) + (1 - p)} \geq P_0 \]

(37)

(38)

Since \(\forall m, x^*_1(m) \leq x^*_0 \), by (34)

\[P_1(m) \leq \frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0)}{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0) + (1 - p)(1 - F_L(x^*_0))^m F_L^{N-m-1}(x^*_0)} \]

(39)

hence the left hand side of (38) ≤

\[\sum_{m=0}^{N-1} \left[\frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0)}{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0) + (1 - p)(1 - F_L(x^*_0))^m F_L^{N-m-1}(x^*_0)} \cdot \binom{N-1}{m} \frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0) + (1 - p)(1 - F_L(x^*_0))^m F_L^{N-m-1}(x^*_0)}{pf(x^*_0) + (1 - p)} \right] \]

\[= \sum_{m=0}^{N-1} \left[\frac{pf(x^*_0)(1 - F_H(x^*_0))^m F_H^{N-m-1}(x^*_0)}{pf(x^*_0) + (1 - p)} \cdot \binom{N-1}{m} \right] = \frac{pf(x^*_0)}{pf(x^*_0) + (1 - p)}. \]

(40)

Hence we do not need to consider (37) as it is absorbed by (38). In sum, with the introduction of ICO, the entrepreneur’s problem becomes the following:
The entrepreneur’s problem with ICO The entrepreneur sets P_0 and $P_1(m)$, $m \in \{0, 1, 2, ..., N - 1\}$ to maximize his profit (before the fixed cost K)

$$
N p \sum_{m=0}^{N-1} P_1(m) \left(F_H(x_0^*) - F_H(x_1^*(m)) \right) \binom{N-1}{m} (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*)
$$

$$
+ \ N(1-p) \sum_{m=0}^{N-1} P_1(m) \left(F_L(x_0^*) - F_L(x_1^*(m)) \right) \binom{N-1}{m} (1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)
$$

$$
+ \ NP_0 \times [p(1 - F_H(x_0^*)) + (1 - p)(1 - F_L(x_0^*))]
$$

subject to

1. conditional on x_0^*, $\forall m \in \{0, 1, 2, ..., N - 1\}$ $x_1^*(m)$ is given by

$$
\frac{pf(x_1^*(m))(1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*)}{pf(x_0^*) (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1 - p)(1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)} = P_1(m)
$$

(42)

2. x_0^* is given by

$$
\sum_{m=0}^{N-1} \left[P_1(m) \left(\binom{N-1}{m} \frac{pf(x_0^*) (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1 - p)(1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)}{pf(x_0^*) + (1 - p)} \right) \right] = P_0
$$

(43)

Analysis of the entrepreneur’s problem The entrepreneur’s payoff with ICO is alternatively given by

$$
\arg\max_{\{x_0^*, x_1^*(m)\}}\ N \sum_{m=0}^{N-1} \left(\binom{N-1}{m} \frac{pf(x_1^*(m))(1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*)}{pf(x_0^*) (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1 - p)(1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)} \cdot \left\{ p \left(F_H(x_0^*) - F_H(x_1^*(m)) \right) (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1 - p) \left(F_L(x_0^*) - F_L(x_1^*(m)) \right) (1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)

+ \frac{pf(x_0^*) (1 - F_H(x_0^*))^m F_H^{N-m-1}(x_0^*) + (1 - p)(1 - F_L(x_0^*))^m F_L^{N-m-1}(x_0^*)}{pf(x_0^*) + (1 - p)} \right\} \right]\right]
$$

(44)

In comparison, the entrepreneur’s payoff without ICO is

$$
\sum_{m=0}^{N} \frac{pf(x^*)}{pf(x^*) + (1 - p)} m \left(\binom{N}{m} \left[p(1 - F_H(x^*))^m F_H^{N-m}(x^*) + (1 - p)(1 - F_L(x^*))^m F_L^{N-m}(x^*) \right] \right]
$$

$$
= \ N \frac{pf(x^*)}{pf(x^*) + (1 - p)} \left[p(1 - F_H(x^*)) + (1 - p)(1 - F_L(x^*)) \right],
$$

(45)

56
Comparing the entrepreneur’s payoff with or without ICO, we get Theorem 3.1.

Proof. (44) is no smaller than when \(x^*_0 \) is forcibly set to 1, which is equal to

\[
\argmax_{\{x^*_i(0)\}} N \frac{pf(x^*_1(0))}{pf(x^*_1(0)) + (1 - p)} \cdot [p (1 - F_H(x^*_1(0))) + (1 - p) (1 - F_L(x^*_1(0)))] = (45)
\]

Hence introducing ICO always improves the entrepreneur’s payoff. \(\square \)