Journal of Network Theory in Finance is an interdisciplinary journal publishing rigorous and practitioner-focused research on the application of network theory in finance. The journal connects academia, regulators and practitioners in solving important issues around financial risk.
Editorial Board

Franklin Allen - Brevan Howard Centre & Imperial College Business School
Ignazio Angeloni - European Central Bank
Stefano Battiston - University of Zurich
Andrew Coburn - RMS, Inc & University of Cambridge
Rama Cont - Imperial College London & CNRS (France)
Ben Craig - Deutsche Bundesbank
Rodney Garratt - Federal Reserve Bank of New York
Co-Pierre Georg - Deutsche Bundesbank
Andrew Haldane - Bank of England
Sergey Ivliev - Prognoz
Dror Kenett - Boston University
Iman van Lelyveld - De Nederlandsche Bank & BIS
Thomas Lux - University of Kiel & University Jaume I
Rosario Nunzio Mantegna - Central European University & Palermo University
Tiziana di Matteo - King’s College London
Peter Sarlin - Hanken School of Economics
Didier Sornette - ETH Zurich
Murat Unal - SONEAN GmbH & Funds at Work
Program

I, II. Perspectives from Academia, Industry and Regulators

III. Systemic Risk

IV. Interbank Networks

V. SNA in Finance

VI. Correlation Networks

VII. Networks in Banking

VIII. Macro Networks
Last minute updates

Session II: “Macro Networks” by Olli Castren is replaced by “Adaptive Stress Testing: Amplifying Network intelligence by Integrating Outlier Information” by Alan Laubsch

Session VIII: “Competitive & Mutualistic relationships in Financial Ecosystems” by Daniel Fricke is replaced by “Transmission of Shocks in the Integrated Accounting Framework” by Ilja Kavonius

Session VIII: Correct title for Peter Sarlin’s paper & presentation is “Interconnectedness of the banking sector as a vulnerability to crises”
Deadline for submission to inaugural issue is:
30 September

December 2014
First issue out

Volume 1 Number 1
Spring 2014

The Journal of Network Theory in Finances

Portfolio selection with marginal risk control
Shushang Zhu, Duan Li and Xiaoling Sun

The singular points binominal method for pricing American path-dependent options
Marcellino Gaudenzi, Antonino Zanette and Maria Antonietta Lepellere

A behavioural finance-based tick-by-tick model for price and volume
Garud Iyengar and Alfred Ka Chun Ma

Correlation matrix with block structure and efficient sampling methods
Jinggang Huang and Liming Yang

FORUM
Double-t copula pricing of structured credit products: practical aspects of a trustworthy implementation
Frédéric D. Vrins

Lessons from the Credit Crisis
Guest Editor: Arthur M. Berd

Network Theory in Finance
APPLICATIONS IN NETWORK THEORY IN FINANCE

Financial Risk and Network Theory
23 September 2014

Dr. Kimmo Soramaki
Founder and CEO, FNA Ltd.
Why?

Taking into account the network aspect makes many risk models better.

Network visualizations (or maps) are intuitive. Financial data is currently not presented efficiently for decision makers (traders, regulators, senior management).

Network models are the basis of new dynamic/predictive models that take place within the network.
Financial Risk and Network Theory

For example:

<table>
<thead>
<tr>
<th>Risk</th>
<th>Nodes / Links</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidity & Operational Risk</td>
<td>Banks / Payment or trade flows</td>
<td>Oversight of payment systems, System design</td>
</tr>
<tr>
<td>Counterparty & Systemic Risk</td>
<td>Banks / Counterparty exposures</td>
<td>Financial stability analysis</td>
</tr>
<tr>
<td>Market Risk</td>
<td>Assets / Correlations</td>
<td>Portfolio & risk management</td>
</tr>
<tr>
<td>Macroeconomic Risk</td>
<td>Economic states / Transitions</td>
<td>Macroeconomic analysis</td>
</tr>
<tr>
<td>Casualty Risk</td>
<td>Industries / Trade flows</td>
<td>Developing risk scenarios, modeling losses</td>
</tr>
</tbody>
</table>
Application: Oversight of FMI's
Identifying Important Banks in BoK-Wire+

Key issue in payment system is that each bank is dependent on incoming funds to make their own payments.

Bank of Korea’s BoK-Wire+ network. Each node is a bank. Links are payment flows.

Node color reflects bank type:
- Blue=Domestic banks
- Green=Financial Intermediaries
- Red=Foreign Banks
- Orange=Other

Baek, Soramäki and Yoon (2014).
Identifying Important Banks in BoK-Wire+

Banks are divided into core (inner circle) and periphery (outer circle) based on Craig and von Peter (2013).

The fit with the model is good.

The layout has two rings. Banks are placed on
- inner ring in fixed places, and on the
- outer ring based close to the banks in the inner ring with whom they have strong relationships

For layout we use algorithm by Bachmaier, Buchner, Forster and Hong (2009)
Identifying Important Banks in BoK-Wire+

We identify important banks with SinkRank algorithm (Soramaki and Cook, 2014).

More important banks are shown with a larger node size in the visualization.
Application: Oversight of FMI’s
Application: Portfolio Management
Time series of asset returns

Example: Daily returns of asset prices (ETFs)

Difficult to understand large-scale correlation or other dependence structures of financial assets.

How to put the correlations and their changes in context with changes/returns and volatility?

Objective is to efficiently represent a complex system moving in time
Correlation Networks

A sparse matrix is often well represented as a network.

We encode correlations as links between the correlated nodes/assets.

Red link = negative correlation
Black link = positive correlation

Absence of link marks that asset is not significantly correlated.
Next, we identify the Minimum Spanning Tree (MST) and filter out other correlations.

This shows us the backbone correlation structure where each asset is connected with the asset with which its correlation is strongest.
Coordinate System

We use a radial tree layout algorithm by

Bachmaier & Brandes 2005

that places the assets so that:

- Shorter links in the tree indicate higher correlations
- Longer links indicate lower correlations

As a result, we also see how the assets cluster (analogous to single linkage clustering).
Encoding non-spatial data

Node color indicates last daily return

Green = positive

Red = negative

Node size indicates magnitude of return
“Here be Dragons”

Didier Sornette (2009)
Dragon King: “Extreme events can be predicted”

Benoit B. Mandelbrot (1963)
Volatility Clustering: “Large changes tend to be followed by large changes”

-> Identify VaR exceptions (return outside 95% VaR bounds)

-> Map them as bright green or red nodes

Highlight outliers in their context

Track the number of outliers each day
Application: Portfolio Management
Application: Macroeconomic Analysis
Application: Casualty Analytics
Wrap-up

Many risk models can be improved by taking into account links in the data, interconnections, covariances, flows, …

Major challenges that we face are related to filtering signal from noise in large networks and presenting the information efficiently

Much of the work can be summed up as: Creating a Map - Placing you on map - Providing directions