Fire sales, price-mediated contagion and systemic risk.

Eric Schaanninga,b

Joint work with Rama Conta

Imperial College Londona, Norges Bankb

This project is supported by the Fonds National de la Recherche Luxembourg.
Disclaimer

This presentation should not be reported as representing the views of Norges Bank. The views expressed are mine only and do not necessarily reflect those of Norges Bank (or my co-authors).
Overview

1 Introduction: Price-mediated contagion and endogenous risk

2 Modelling fire sales

3 Empirical application: European Banking Network

4 Conclusion
Introduction: Price-mediated contagion and endogenous risk

Stress testing 3.0

- Stress testing 1.0: individual bank analysis

- Stress testing 2.0: macro stress test (same scenario for all banks)

- Stress testing 3.0: inclusion of endogenous feedback mechanisms and contagion dynamics.

→ Our focus: fire sales & price-mediated contagion

Goal: Develop models for macro stress testing that can quantify such second round effects in a realistic and robust way.
Stress testing 3.0

- Stress testing 1.0: individual bank analysis
- Stress testing 2.0: macro stress test (same scenario for all banks)

Goal:
Develop models for macro stress testing that can quantify such second round effects in a realistic and robust way.
Introduction: Price-mediated contagion and endogenous risk

Stress testing 3.0

- Stress testing 1.0: individual bank analysis
- Stress testing 2.0: macro stress test (same scenario for all banks)
- Stress testing 3.0: inclusion of endogenous feedback mechanisms and contagion dynamics.

→ Our focus: fire sales & price-mediated contagion
Stress testing 3.0

- Stress testing 1.0: individual bank analysis
- Stress testing 2.0: macro stress test (same scenario for all banks)
- Stress testing 3.0: inclusion of endogenous feedback mechanisms and contagion dynamics.

→ Our focus: fire sales & price-mediated contagion

Goal: Develop models for macro stress testing that can quantify such second round effects in a realistic and robust way.
Questions

- How can we quantify the system-wide exposure to fire sales?
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
 2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
- What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
 1. The agents’ response function (Adrian & Shin, 2009), Greenwood, Thesmar & Landier (2015))
 2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
 3. The number of iterations of the fire sales cascade (Duarte & Eisenbach (2015))
- What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
How can we quantify the system-wide exposure to fire sales?

How sensitive are these results to underlying modelling choices on:

2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
3. The number of iterations of the fire sales cascade (Duarte & Eisenbach (2015))
4. The asset class granularity (Greenwood et al (2015), Brunnermeier & Pedersen (2005))

What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
 2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
 3. The number of iterations of the fire sales cascade (Duarte & Eisenbach (2015))
 4. The asset class granularity (Greenwood et al (2015), Brunnermeier & Pedersen (2005))
 5. The price impact function and liquidity models (Klye & Obizhaeva (2011 - 2016), BoE: RAMSI)

What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
 2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
 3. The number of iterations of the fire sales cascade (Duarte & Eisenbach (2015))
 4. The asset class granularity (Greenwood et al (2015), Brunnermeier & Pedersen (2005))
 5. The price impact function and liquidity models (Klye & Obizhaeva (2011 - 2016), BoE: RAMSI)
- What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
Questions

- How can we quantify the system-wide exposure to fire sales?
- How sensitive are these results to underlying modelling choices on:
 2. Heterogeneity in asset liquidity levels (Greenwood et al (2015), Kyle and Obizhaeva (2016))
 3. The number of iterations of the fire sales cascade (Duarte & Eisenbach (2015))
 4. The asset class granularity (Greenwood et al (2015), Brunnermeier & Pedersen (2005))
 5. The price impact function and liquidity models (Kye & Obizhaeva (2011 - 2016), BoE: RAMSI)
- What can regulators do to monitor and mitigate this channel of contagion? (Acharya et al (2014), ECB (2013))
1. Introduction: Price-mediated contagion and endogenous risk

2. Modelling fire sales

3. Empirical application: European Banking Network

4. Conclusion
Systemic stress testing

System:

- N banks, K illiquid asset classes, M marketable asset classes
Systemic stress testing

System:

- N banks, K illiquid asset classes, M marketable asset classes
- $\rightarrow N \times K$ illiquid assets portfolio matrix (network): exposure to common shock
Systemic stress testing

System:

- N banks, K *illiquid* asset classes, M *marketable* asset classes
- $\rightarrow N \times K$ *illiquid assets* portfolio matrix (network): exposure to common shock
- $\rightarrow N \times M$ *marketable assets* portfolio matrix (network): exposure to price-mediated contagion
Systemic stress testing

System:
- N banks, K illiquid asset classes, M marketable asset classes
- $\rightarrow N \times K$ illiquid assets portfolio matrix (network): exposure to common shock
- $\rightarrow N \times M$ marketable assets portfolio matrix (network): exposure to price-mediated contagion

Mechanism:
- **Shock** to illiquid assets
Systemic stress testing

System:

- N banks, K illiquid asset classes, M marketable asset classes
- $\rightarrow N \times K$ illiquid assets portfolio matrix (network): exposure to common shock
- $\rightarrow N \times M$ marketable assets portfolio matrix (network): exposure to price-mediated contagion

Mechanism:

1. **Shock** to illiquid assets
2. **Deleveraging** of marketable assets by some institutions
Systemic stress testing

System:
- N banks, K illiquid asset classes, M marketable asset classes
- $\rightarrow N \times K$ illiquid assets portfolio matrix (network): exposure to common shock
- $\rightarrow N \times M$ marketable assets portfolio matrix (network): exposure to price-mediated contagion

Mechanism:
1. **Shock** to illiquid assets
2. **Deleveraging** of marketable assets by some institutions
3. **Feedback effects** via price-mediated contagion
 \rightarrow potentially triggers more deleveraging (cascade).
Model balancesheet

<table>
<thead>
<tr>
<th>Illiquid assets</th>
<th>Marketable assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential mortgage exposures</td>
<td>Corporate bonds</td>
</tr>
<tr>
<td>Commercial real estate exposure</td>
<td>Sovereign debt</td>
</tr>
<tr>
<td>Retail exposures: Revolving credits, SME, Other</td>
<td>Direct sovereign exposures in derivatives</td>
</tr>
<tr>
<td>Indirect sovereign exposures in the trading book</td>
<td>Institutional client exposures: interbank, CCPs,…</td>
</tr>
<tr>
<td>Defaulted exposures</td>
<td></td>
</tr>
<tr>
<td>Residual exposures</td>
<td></td>
</tr>
</tbody>
</table>

Table: Stylized representation of asset classes in bank balance sheets.
A stress scenario is defined by a vector $\epsilon \in [0, 1]^K$ whose components ϵ_μ are the percentage shocks to asset class μ.

Gradual increase of the shock from 0% to 20%.

Four scenarios:

1. Spanish residential and commercial real estate losses
2. Northern Europe residential losses
3. Southern Europe commercial real estate losses
4. Eastern Europe commercial real estate losses
Figure: Leverage targeting response function (dashed) and two variants of the threshold (full and circles) response functions.
Price impact

The price of an asset undergoing a forced liquidation at t:

$$S_{t+1}^\mu = S_t^\mu \exp \left(-\delta_\mu^{-1} \sum_{j=1}^{M} \Pi_t^j \Gamma^j_{t+1} \right)$$ \hspace{1cm} (1)
Modelling fire sales

Price impact

The price of an asset undergoing a forced liquidation at t:

$$S_{t+1} = S_t \exp \left(-\delta^{-1}_\mu \sum_{j=1}^{M} \prod_{t}^{j} \Gamma_{t+1} \right)$$

(1)

Figure: Large variation in estimated liquidity of different assets.
Introduction: Price-mediated contagion and endogenous risk

Modelling fire sales

Empirical application: European Banking Network

Conclusion
Empirical application: European Banking Network

Fire sales losses and market depth

![Graph showing fire sales losses and market depth](image)
Empirical application: European Banking Network

Indirect exposures and stress test outcomes
Our model shows that losses are proportional to the liquidity weighted overlap

\[\omega_{ij} := \sum_{\mu=1}^{M} \frac{\Pi_{i\mu} \Pi_{j\mu}}{\delta_{\mu}} \]

(2)

This leads to a network of portfolio overlaps:

\[\Omega := \Pi D^{-1} \Pi^\top, \]

(3)

which can be studied with network analysis tools.
Figure: European banking system: liquidity weighted overlap network
Empirical application: European Banking Network

Figure: European banking system: Liquidity weighted overlaps
Empirical application: European Banking Network

Figure: European banking system: Nominal overlaps
Figure: $\log_{10}(\text{fire sales loss})$ for different scenarios and different model combinations.
Sensitivity to initial stress scenario

<table>
<thead>
<tr>
<th>Scenario combination</th>
<th>Sample correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>0.0840</td>
</tr>
<tr>
<td>1 & 3</td>
<td>0.2130</td>
</tr>
<tr>
<td>1 & 4</td>
<td>-0.1449</td>
</tr>
<tr>
<td>2 & 3</td>
<td>-0.0509</td>
</tr>
<tr>
<td>2 & 4</td>
<td>0.0394</td>
</tr>
<tr>
<td>3 & 4</td>
<td>-0.0149</td>
</tr>
</tbody>
</table>

Table: Sample correlations between the initial loss vectors from the stress scenarios. The four stress scenarios are very different in terms of which banks are hit by the corresponding shock.
Figure: The pairwise sample correlation between the fire sales loss vectors of different scenarios as a function of the initial shock. Threshold model full lines - leverage targeting dashed lines.
Sensitivity to initial stress scenario

Figure: The evolution of the pairwise sample correlation during the fire sales cascade for a given scenario. Threshold full - leverage targeting dashed.
Risk management for whales (Cont and Wagalath 2016)

Figure 6: 95% 5-month VaR for positions in CDX IG9 (size in Bn $).
1 Introduction: Price-mediated contagion and endogenous risk

2 Modelling fire sales

3 Empirical application: European Banking Network

4 Conclusion
The risk of fire sales generates indirect exposures. These can be quantified but depend on the entire network of portfolio holdings.
Conclusions

- The risk of fire sales generates indirect exposures. These can be quantified but depend on the entire network of portfolio holdings.

- Including fire sales and endogenous mechanisms (with realistic parameter estimates) can change the outcome of stress tests: Next generation stress testing models must include such feedback effects.
The risk of fire sales generates indirect exposures. These can be quantified but depend on the entire network of portfolio holdings.

Including fire sales and endogenous mechanisms (with realistic parameter estimates) can change the outcome of stress tests: Next generation stress testing models must include such feedback effects.

Seemingly innocent modelling choices on response functions and liquidity estimates have a significant effect on results!
Conclusions for modelling

- Important to account for heterogeneity in agent resilience and asset liquidity. Any meaningful fire sales stress test needs to include a sensitivity analysis on the market depth parameter.
Conclusions for modelling

- Important to account for heterogeneity in agent resilience and asset liquidity. Any meaningful fire sales stress test needs to include a sensitivity analysis on the market depth parameter.
- The threshold model generates more realistic short term dynamics under stress. Leverage targeting models seem better suited to capture long term dynamics.
Conclusions for modelling

- Important to account for heterogeneity in agent resilience and asset liquidity. Any meaningful fire sales stress test needs to include a sensitivity analysis on the market depth parameter.
- The threshold model generates more realistic short term dynamics under stress. Leverage targeting models seem better suited to capture long term dynamics.
- Leverage targeting models produce counter-intuitive short term dynamics.
Conclusion

Conclusions for modelling

- Important to account for heterogeneity in agent resilience and asset liquidity. Any meaningful fire sales stress test needs to include a sensitivity analysis on the market depth parameter.
- The threshold model generates more realistic short term dynamics under stress. Leverage targeting models seem better suited to capture long term dynamics.
- Leverage targeting models produce counter-intuitive short term dynamics.
- Singular value decompositions of liquidity weighted overlap matrices can provide valuable information for monitoring purposes and policy responses.
Thank you!

Conclusion

Stability analysis of financial contagion due to overlapping portfolios.

Asset-based contagion models for systemic risk.
Working Paper.

Modeling financial systemic risk - the network effect and the market liquidity effect.
Working Paper.

Running for the exit: Distressed selling and endogenous correlation in financial markets.
Mathematical Finance.
Conclusion

