The systemic implications of bail-in:
A multi-layered network approach

Anne-Caroline Hüser * ‡ Grzegorz Hałaj ‡ Christoffer Kok ‡ Cristian Perales ‡ Anton van der Kraaij ‡

*Goethe University, Frankfurt
‡European Central Bank

September 8th, 2016
New resolution framework in the EU

EU Bank Recovery and Resolution Directive (BRRD) and the Single Resolution Mechanism (SRM) Regulation came into force on 1 January 2016.
New resolution framework in the EU

EU Bank Recovery and Resolution Directive (BRRD) and the Single Resolution Mechanism (SRM) Regulation came into force on 1 January 2016.

Important element: the **bail-in tool**.
New resolution framework in the EU

EU Bank Recovery and Resolution Directive (BRRD) and the Single Resolution Mechanism (SRM) Regulation came into force on 1 January 2016.

Important element: the **bail-in tool**.

Provides the resolution authority with the statutory power to **write down** and/or **convert into equity** the **claims** of a broad scope of **creditors**.
New resolution framework in the EU

EU Bank Recovery and Resolution Directive (BRRD) and the Single Resolution Mechanism (SRM) Regulation came into force on 1 January 2016.

Important element: the **bail-in tool**.

Provides the resolution authority with the statutory power to **write down** and/or **convert into equity** the **claims** of a broad scope of **creditors**.

→ Financial institutions which hold securities of the bank being resolved could face losses that may in turn impair their own viability.
New resolution framework in the EU

EU Bank Recovery and Resolution Directive (BRRD) and the Single Resolution Mechanism (SRM) Regulation came into force on 1 January 2016.

Important element: the **bail-in tool**.

Provides the resolution authority with the statutory power to **write down** and/or **convert into equity** the **claims** of a broad scope of **creditors**.

→ Financial institutions which hold securities of the bank being resolved could face losses that may in turn impair their own viability.

→ Is bail-in possible without the **risk of contagion**?
Assessing the systemic implications of bail-in

Multi-layered network model of the 26 largest euro area banking groups.
Assessing the systemic implications of bail-in

Multi-layered network model of the 26 largest euro area banking groups.

Account for 59 percent of total euro area banking sector assets.
Assessing the systemic implications of bail-in

Multi-layered network model of the 26 largest euro area banking groups.

Account for 59 percent of total euro area banking sector assets.

Each network layer represents the securities cross-holdings of a specific seniority among these 26 banking groups.
Assessing the systemic implications of bail-in

Multi-layered network model of the 26 largest euro area banking groups.

Account for 59 percent of total euro area banking sector assets.

Each network layer represents the securities cross-holdings of a specific seniority among these 26 banking groups.

Four layers: Equity, Subordinated debt, Senior unsecured debt, Secured debt.
Assessing the systemic implications of bail-in

Multi-layered network model of the 26 largest euro area banking groups.

Account for 59 percent of total euro area banking sector assets.

Each network layer represents the securities cross-holdings of a specific seniority among these 26 banking groups.

Four layers: Equity, Subordinated debt, Senior unsecured debt, Secured debt.

Beyond the network of 26 banks, also able to capture the impact of a bail-in at one of these banks on individual euro area banking sectors.
Potential contagion channels from bank 1 to its counterparties

Note: Block sizes are not to scale.
Preview of simulation results

Simulate **bail-in** at each of the 26 banks in turn.
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.
Preview of simulation results

Simulate **bail-in** at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.

Direct contagion effect to creditors
Identify the *impact of the bail-in on other banks* in the network.
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5\% shock to total assets and a recapitalization to 10.5\% CET1.

Direct contagion effect to creditors
Identify the impact of the bail-in on other banks in the network.
→ No direct contagion due to low securities cross-holdings
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.

Direct contagion effect to creditors
Identify the impact of the bail-in on other banks in the network.
→ No direct contagion due to low securities cross-holdings

Balance sheet effect
Quantify up to which seniority layer banks require bail-in in order to fulfill prudential requirements.
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.

Direct contagion effect to creditors
Identify the impact of the bail-in on other banks in the network.
→ No direct contagion due to low securities cross-holdings

Balance sheet effect
Quantify up to which seniority layer banks require bail-in in order to fulfill prudential requirements.
→ Subordinated creditors are always affected, senior unsecured creditors in 75% of the cases.
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.

Direct contagion effect to creditors
Identify the impact of the bail-in on other banks in the network.
→ No direct contagion due to low securities cross-holdings

Balance sheet effect
Quantify up to which seniority layer banks require bail-in in order to fulfill prudential requirements.
→ Subordinated creditors are always affected, senior unsecured creditors in 75% of the cases.

Effect on network topology
How the bail-in at one bank leads to the rewiring of links within the banking sector.
Preview of simulation results

Simulate bail-in at each of the 26 banks in turn.

Baseline scenario: 5% shock to total assets and a recapitalization to 10.5% CET1.

Direct contagion effect to creditors
Identify the **impact of the bail-in on other banks** in the network.
→ No direct contagion due to low securities cross-holdings

Balance sheet effect
Quantify up to which seniority layer **banks require bail-in** in order to fulfill prudential requirements.
→ Subordinated creditors are always affected, senior unsecured creditors in 75% of the cases.

Effect on network topology
How the bail-in at one bank leads to the **rewiring of links** within the banking sector.
→ The bank under resolution becomes more central within the equity network layer after the bail-in.
Literature contribution

Financial networks literature

- **Contagion model that respects the creditor hierarchy**: Elsingher (2009).
- **Empirical studies of multi-layer networks**: Aldasoro and Alves (2015); Bargigli et al. (2014); Langfield et al. (2014); Molina-Borboa et al. (2015); Montagna and Kok (2013).
- **Policy simulations in interbank networks**: Aldasoro et al. (2015); Gai et al. (2011); Hałaj and Kok (2015); Nier et al. (2007).
Literature contribution

Financial networks literature

- **Contagion model that respects the creditor hierarchy**: Elsinger (2009).
- **Empirical studies of multi-layer networks**: Aldasoro and Alves (2015); Bargigli et al. (2014); Langfield et al. (2014); Molina-Borboab et al. (2015); Montagna and Kok (2013).
- **Policy simulations in interbank networks**: Aldasoro et al. (2015); Gai et al. (2011); Hałaj and Kok (2015); Nier et al. (2007).

Literature on resolution regimes and bail-in

- **ABM**: Klimek et al. (2015).
- **Theory**: Faia and di Mauro (2015).
- **Empirical**: Schäfer et al. (2016); Conlon and Cotter (2014).
Data

ECB Securities Holdings Statistics by Group (SHSG)

- Quarterly data on security-by-security holdings of debt securities and listed equity shares covering the largest 26 euro area banking groups by total assets.
Data

1. **ECB Securities Holdings Statistics by Group (SHSG)**
 - Quarterly data on security-by-security holdings of debt securities and listed equity shares covering the largest 26 euro area banking groups by total assets.

2. **ECB Securities Holdings Statistics by Sectors (SHSS)**
 - Sector-level information about the size of the total banking sector holdings of securities issued by the 26 banks, by euro area country.
Data

1. **ECB Securities Holdings Statistics by Group (SHSG)**
 - Quarterly data on security-by-security holdings of debt securities and listed equity shares covering the largest 26 euro area banking groups by total assets.

2. **ECB Securities Holdings Statistics by Sectors (SHSS)**
 - Sector-level information about the size of the total banking sector holdings of securities issued by the 26 banks, by euro area country.

3. **ECB Centralised Securities Database (CSDB)**
 - Individual security reference database having detailed information at a monthly frequency on the issuer and the issuance characteristics.
Data

1. **ECB Securities Holdings Statistics by Group (SHSG)**
 - Quarterly data on security-by-security holdings of debt securities and listed equity shares covering the largest 26 euro area banking groups by total assets.

2. **ECB Securities Holdings Statistics by Sectors (SHSS)**
 - Sector-level information about the size of the total banking sector holdings of securities issued by the 26 banks, by euro area country.

3. **ECB Centralised Securities Database (CSDB)**
 - Individual security reference database having detailed information at a monthly frequency on the issuer and the issuance characteristics.

4. **ECB Supervisory Statistics**
 - Quarterly balance sheet data (COREP and FINREP).
Data

1. **ECB Securities Holdings Statistics by Group (SHSG)**
 - Quarterly data on security-by-security holdings of debt securities and listed equity shares covering the largest 26 euro area banking groups by total assets.

2. **ECB Securities Holdings Statistics by Sectors (SHSS)**
 - Sector-level information about the size of the total banking sector holdings of securities issued by the 26 banks, by euro area country.

3. **ECB Centralised Securities Database (CSDB)**
 - Individual security reference database having detailed information at a monthly frequency on the issuer and the issuance characteristics.

4. **ECB Supervisory Statistics**
 - Quarterly balance sheet data (COREP and FINREP).

For all the results displayed below we use data for Q1 2015.
Descriptive statistics of banks’ balance sheets

Table: Average funding structure of the banks in the sample in percent of total funding for Q1 2015 (in%)

<table>
<thead>
<tr>
<th></th>
<th>Average bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secured debt</td>
<td>24.33</td>
</tr>
<tr>
<td>Deposits</td>
<td>57.18</td>
</tr>
<tr>
<td>Senior unsecured debt</td>
<td>11.1</td>
</tr>
<tr>
<td>Subordinated unsecured debt</td>
<td>1.68</td>
</tr>
<tr>
<td>T2</td>
<td>1.07</td>
</tr>
<tr>
<td>AT1</td>
<td>0.22</td>
</tr>
<tr>
<td>CET1</td>
<td>4.42</td>
</tr>
</tbody>
</table>
Topology

Table: Network measures for the individual layers for Q1 2015

<table>
<thead>
<tr>
<th></th>
<th>Mean Geodesic</th>
<th>Av. Degree</th>
<th>Density</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>Inf</td>
<td>16.38</td>
<td>0.33</td>
<td>Inf</td>
</tr>
<tr>
<td>Subordinated unsecured debt</td>
<td>Inf</td>
<td>15.15</td>
<td>0.3</td>
<td>Inf</td>
</tr>
<tr>
<td>Senior unsecured debt</td>
<td>1.4</td>
<td>30.92</td>
<td>0.62</td>
<td>3</td>
</tr>
<tr>
<td>Secured debt</td>
<td>1.34</td>
<td>34.69</td>
<td>0.69</td>
<td>3</td>
</tr>
<tr>
<td>Total cross-holdings</td>
<td>1.2</td>
<td>40</td>
<td>0.8</td>
<td>2</td>
</tr>
</tbody>
</table>
Loss exposure of the holding bank

Potential loss a holder j faces if an issuer i’s equity or debt is written down relative to j’s total assets.

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>mean</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior unsecured debt</td>
<td>0</td>
<td>0.02</td>
<td>1.15</td>
</tr>
<tr>
<td>Subordinated unsecured debt</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>Equity held</td>
<td>0</td>
<td>0.0029458</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: This is index I_6 in the paper.
Baseline scenario: Stylized example

Step 1: 5% shock to total assets.

Note: Block sizes are not to scale. For ease of exposition, AT1 and T2 capital have been omitted.
Baseline scenario: Stylized example

Step 2: All equity and some sub. debt written down. Bank needs recapitalization.

Note: Block sizes are not to scale. For ease of exposition, AT1 and T2 capital have been omitted.
Baseline scenario: Stylized example

Step 3: The bank is recapitalized to 10.5% CET1 via a debt-to-equity conversion.

Note: Block sizes are not to scale. For ease of exposition, AT1 and T2 capital have been omitted.
Baseline scenario: Stylized example

Step 4: Bank fulfills the prudential requirements again.

Note: Block sizes are not to scale. For ease of exposition, AT1 and T2 capital have been omitted.
Caveats

Our simulation results are likely to underestimate the contagion risk because...
Caveats

Our simulation results are likely to underestimate the contagion risk because...

1. ...the simulation exercise is isolated to the direct network effects.
Caveats

Our simulation results are likely to underestimate the contagion risk because...

1. ...the simulation exercise is isolated to the **direct network effects**.
2. ...we face data limitations regarding the exact **structure of the 26 banking groups**, we might not be able to identify all subsidiaries and hence might miss some cross-holdings.
Caveats

Our simulation results are likely to underestimate the contagion risk because...

1. ...the simulation exercise is isolated to the **direct network effects**.

2. ...we face data limitations regarding the exact **structure of the 26 banking groups**, we might not be able to identify all subsidiaries and hence might miss some cross-holdings.

3. ... of the **lack of data on risk weights**.
 - RWAs are updated using a rule-of-thumb.
 - Resulting equity ratios are likely to underestimate their true decrease following asset losses at a bank.
Baseline results: Effect on network topology

Figure: Distribution of the density of network layers after bail-in (blue stars) for the 26 simulations (red line represents initial density)
Baseline results: Balance sheet effect

Figure: Percentage loss in the most senior layer affected at the bank under resolution after bail-in
Baseline results: Contagion effects

Figure: Decrease in CET1 ratios at the counterparties of the bank under resolution in the baseline scenario

Note: Boxplots display 10th and 90th percentiles, interquartile distribution and median.
Baseline results: Contagion effects

Figure: Decrease in CET1 ratios in euro area banking sectors after the bail-in of a bank in the baseline scenario

Note: Boxplots display 10th and 90th percentiles, interquartile distribution and median. RWAs (denominator of the equity ratio) are kept constant.
Adverse scenario

Common shock

- Shock distribution calibrated to match the two first moments of the CET1 capital loss of SSM banks in the adverse scenario in the October 2014 Comprehensive Assessment.
- Common shock hits banks at the same time, but with different magnitudes.
Adverse scenario

Common shock

- Shock distribution calibrated to match the two first moments of the CET1 capital loss of SSM banks in the adverse scenario in the October 2014 Comprehensive Assessment.
- Common shock hits banks at the same time, but with different magnitudes.

Weakened system then subjected to baseline scenario.

- One bank at a time is hit by a five percent shock and is bailed in.
Adverse scenario

Common shock

- Shock distribution calibrated to match the two first moments of the CET1 capital loss of SSM banks in the adverse scenario in the October 2014 Comprehensive Assessment.
- Common shock hits banks at the same time, but with different magnitudes.

Weakened system then subjected to baseline scenario.

- One bank at a time is hit by a five percent shock and is bailed in.

The procedure is repeated a 1000 times for each of the 26 banks.
Adverse scenario: Results

Figure: Percentage point decrease in CET1 ratios at counterparties in the adverse scenario (averaged across the 1000 simulations)

Note: Boxplots display 10th and 90th percentiles, interquartile distribution and median. Blue line represents the average impact of the common shock.
Adverse scenario: Results

Figure: Percentage point *decrease in CET1 ratios in euro banking sectors* in the 5th percentile after the bail-in of bank i in the adverse scenario.
Direct contagion effects within the network are small due to low cross-holdings of bank bail-inable debt within the network.
Summary and policy implications

1. **Direct contagion effects within the network are small** due to low **cross-holdings** of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC,MREL,...).
Summary and policy implications

1. **Direct contagion effects within the network are small** due to low cross-holdings of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC, MREL,...).

2. **At least subordinated creditors are affected in all cases.** For senior unsecured creditors losses range from zero to up to 40% (100% in one case).
Summary and policy implications

1. **Direct contagion effects within the network are small** due to low cross-holdings of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC, MREL,...).

2. **At least subordinated creditors are affected in all cases.** For senior unsecured creditors losses range from zero to up to 40% (100% in one case).
 - Composition and level of loss-absorbing capacity should be set for each bank on a case-by-case basis.
Summary and policy implications

1. **Direct contagion effects within the network are small** due to **low cross-holdings** of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC, MREL,...).

2. **At least subordinated creditors are affected in all cases.** For senior unsecured creditors losses range from zero to up to 40% (100% in one case).
 - Composition and level of loss-absorbing capacity should be set for each bank on a case-by-case basis.

3. **Loss-absorption capacity is mostly** held by holders of bail-inable bank debt outside the network.
Summary and policy implications

1. **Direct contagion effects within the network are small** due to low cross-holdings of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC, MREL, ...).

2. **At least subordinated creditors are affected in all cases.** For senior unsecured creditors losses range from zero to up to 40% (100% in one case).
 - Composition and level of loss-absorbing capacity should be set for each bank on a case-by-case basis.

3. **Loss-absorption capacity is mostly** held by holders of bail-inable bank debt outside the network.
 - Loss-absorption capacity should be spread out evenly across banking and non-banking sectors.
Summary and policy implications

1. **Direct contagion effects within the network are small** due to low cross-holdings of bank bail-inable debt within the network.
 - Effectiveness of low interbank cross-holdings of bail-inable debt in limiting contagion (TLAC,MREL,...).

2. **At least subordinated creditors are affected in all cases.** For senior unsecured creditors losses range from zero to up to 40% (100% in one case).
 - Composition and level of loss-absorbing capacity should be set for each bank on a case-by-case basis.

3. **Loss-absorption capacity is mostly** held by holders of bail-inable bank debt outside the network.
 - Loss-absorption capacity should be spread out evenly across banking and non-banking sectors.
 - Underpins the BCBS considerations to limit smaller international banks’ holdings of GSIB TLAC instruments.
References I

