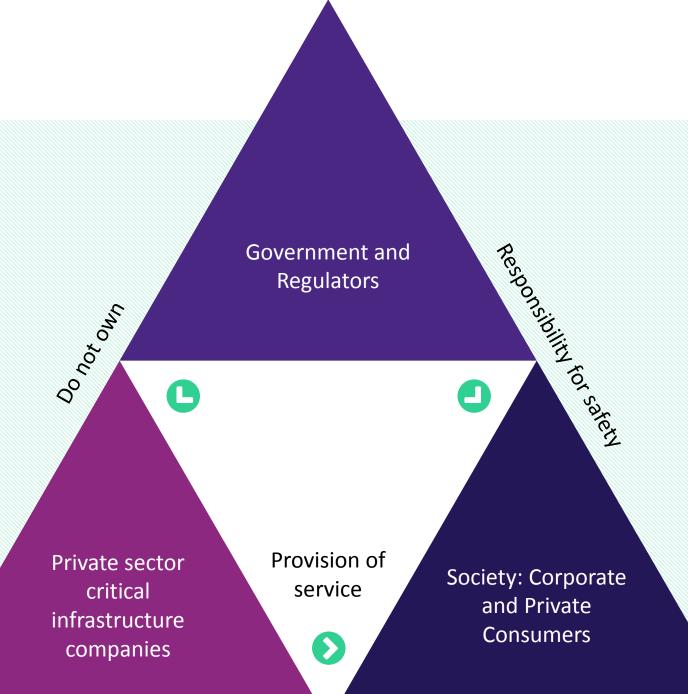

# Integrated Infrastructure: Cyber Resiliency in Society

Centre for **Risk Studies** 

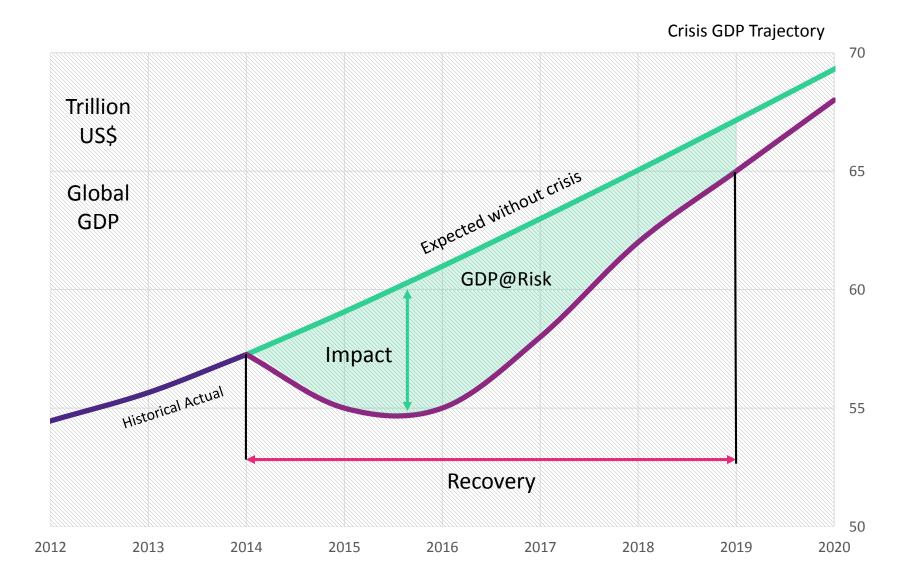





### The Knowledge Economy

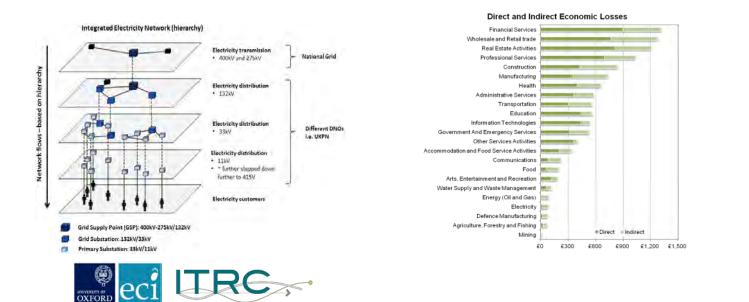


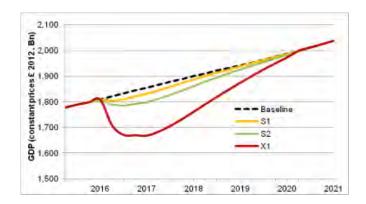
Triangle of Pain


### Optimizing the Risk Equation: Who Bears the Risk?



### Catastronomics: GDP@Risk


GDP@Risk:


Cumulative first five year loss of global GDP, relative to expected, resulting from a catastrophe or crisis



### Methodology

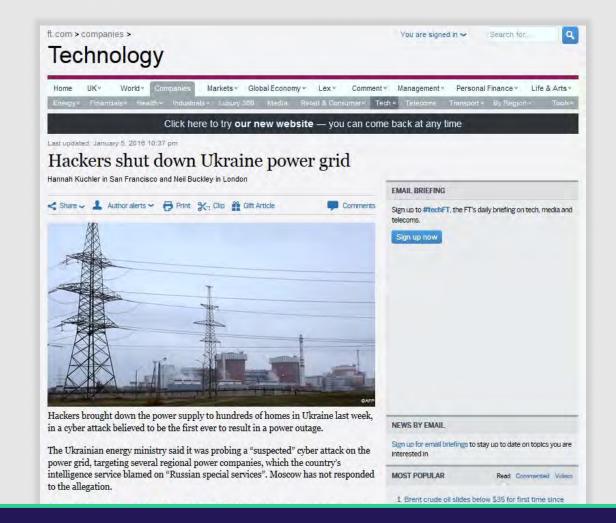
ec1





**Disruption to UK Society:** Through risk and vulnerability modelling, using a system-of-systems model

**Company & Supply Chain impact:** Through supply-side input-output modelling


Impact on the UK Economy: Through macroeconomic modelling

# The Cyber Scenario

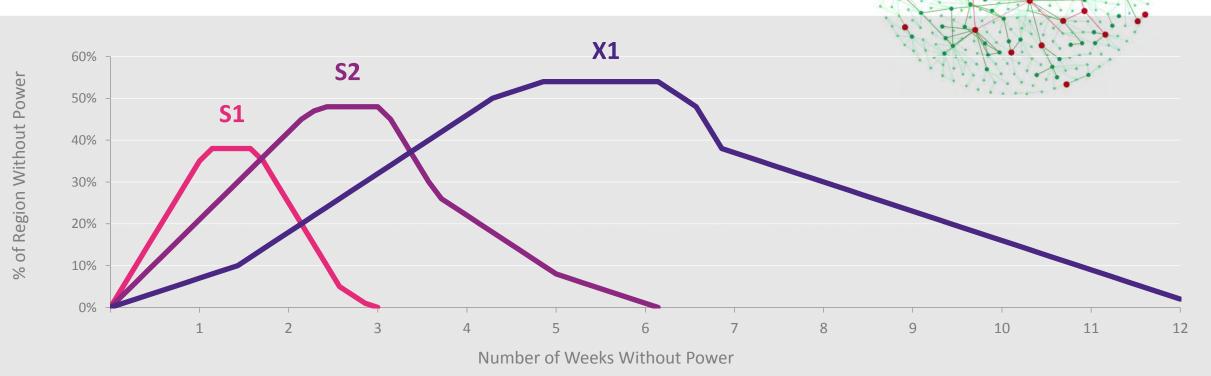
**Eireann Leverett** 

### Ukraine Cyber Attack

- Date of power outage: 23 December 2015
- Electricity outage affected region with over 200,000 people for several hours
- Malware (BlackEnergy) in 3 distribution substations
- Still investigating if switching came from hackers
  - The Ukrainian energy ministry probing a "suspected" cyber attack on the power grid
- Ukraine CERT confirms there was spear phishing at affected companies prior to outage



Kuchler Hannah and Neil Buckley. "Hackers shut down Ukraine power grid." Financial Times. 5 January 2016. http://www.ft.com/cms/s/0/0cfffe1e-b3cd-11e5-8358-9a82b43f6b2f.html#axzz3wTmkfdX9 [Accessed: 6 Jan 2016] Standard Disclaimer


### This scenario is not a prediction

It is not trying to highlight any specific vulnerability in the UK Power Grid

This is a stress test scenario for risk management purposes

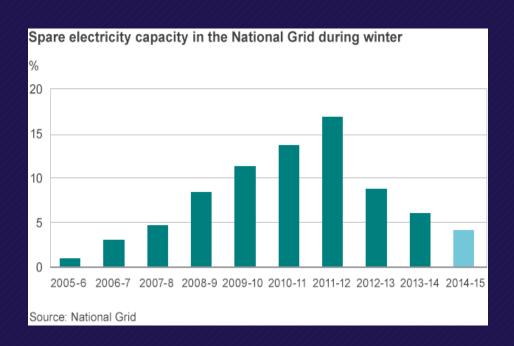
### The Scenario

- Attack on electricity distribution in South East England
- Key focus on 132kV distribution substations
- Insider + State Sponsored Cyber Team
- Rogue hardware attack platform installed inside substation
- Rolling blackouts





- Nation State + Insider
- Sub-contract Employee
- Installs rogue PLC Hardware
- 1-5 substations installed per week over 6 months
- Minimum 65 substations affected




.

# Phase 1 } Research and Development

### Target Location and Timing

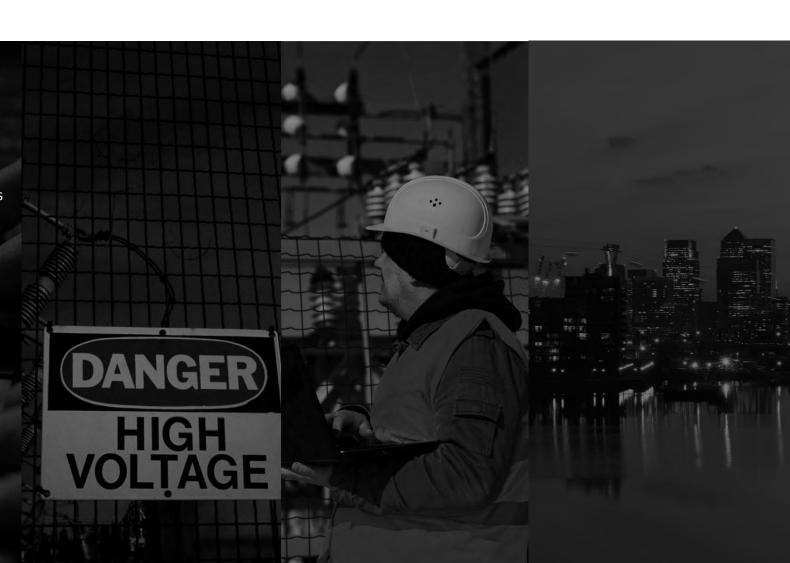
- With inside support, the nation is able to target critical substations
  - Heathrow (X1 only), Gatwick, Stansted and City Airports
  - London Financial District
  - Ports of London and Dover
  - Felixstowe Container Port
- The attack begins during a cold period during winter when electricity demand is at its highest
  - During the 2015/16 winter season it is predicted that on the highest demand day (i.e., the coldest day) there will only be a 5.1% capacity margin, meaning that there is little room for error



BBC. "National Grid warns of lower winter power capacity". 28 October 2014.



### Rogue Hardware Attack Platforms: PLC PWN




{ **Phase 1** } Research and Development



- Nation State + Insider
- Sub-contract Employee
- Installs rogue PLC Hardware
- 1-5 substations installed per week over 6 months
- Minimum 65 substations affected

- Rogue Hardware Communication via 3/4G
- Attacks require physical presence to fix
- Attackers spend time mapping substation networks
- Supported by a set of 'cover attacks'



{ **Phase 1** } Research and Development





#### Nation State + Insider

- Sub-contract Employee
- Installs rogue PLC Hardware
- 1-5 substations installed per week over 6 months
- Minimum 65 substations affected

- Rogue Hardware Communication via 3/4G
- Attacks require physical presence to fix
- Attackers spend time mapping substation networks
- Supported by a set of 'cover attacks'

- 10 substations attacked every 12 hours
- Days 1-2:
  - Control signals spoofed
  - DNO unaware until customers report

.

- Once cyber attack suspected, control centre investigation starts
- Defence response occurs on 2<sup>nd</sup> or 3<sup>rd</sup> outage
- Days 1-2:
  - Engineer electrocuted
  - Rogue hardware still unidentified
  - Investigation moves to substations

Phase 1 }
Research and
Development





Activation



#### Nation State + Insider

- Sub-contract Employee
- Installs rogue PLC Hardware
- 1-5 substations installed per week over 6 months
- Minimum 65 substations affected

- Rogue Hardware Communication via 3/4G
- Attacks require physical presence to fix
- Attackers spend time mapping substation networks
- Supported by a set of 'cover attacks'

10 substations attacked every 12 hours

Days 1-2:

- Control signals spoofed
- DNO unaware until customers report
- Once cyber attack suspected, control centre investigation starts

HIGH

Rogue hardware stage

Investigation moves to

substations

or 3<sup>rd</sup> outage

se occurs on 2nd

#### <u>Days 7- 14:</u>

Continued rolling blackouts

- Cabinet Office & CPNI confirm cyber attack
- Intelligence & security services involved
- Cover attacks confuse response
- Rogue PLC discovered after 1 week

#### <u> Days 14 – 21</u>

- Rogue device removal in progress
- Outages continue
- Physical damage to transformers



### Physical Damage to Transformers

- In the X1 scenario variant, physical damage occurs via to the cyber attack to the transformers
- Transformers are naturally prone to overheating and thus have built-in cooling systems and di-electric mediums to prevent arcing
- Additionally, each transformer that fails increases the load on the power grid causing instability and, potentially, a cascading power failure

Literature on transformer damage includes

- Fire and Explosions in Substations (Allan, Fellow, IEEE, 2002),
- Using Hybrid Attack Graphs to Model Cyber Physical Attacks in the Smart Grid (Hawrylak et al, IEEE, 2012),
- A Coordinated Multi-Switch Attack for Cascading Failures in Smart Grid (Liu et al, IEEE, 2014),
- The Potential For Malicious Control In A Competitive Power Systems Environment (DeMarco et al, IEEE, 1996),
- Modelling Cyber-Physical Vulnerability of the Smart Grid With Incomplete Information (Srivastava et al, 2013)



**Phase 1** } Research and Development



{ **Phase 3** }

Activation

{ Phase 4 } The Response

{ Phase 5 } The Aftermath

#### Nation State + Insider

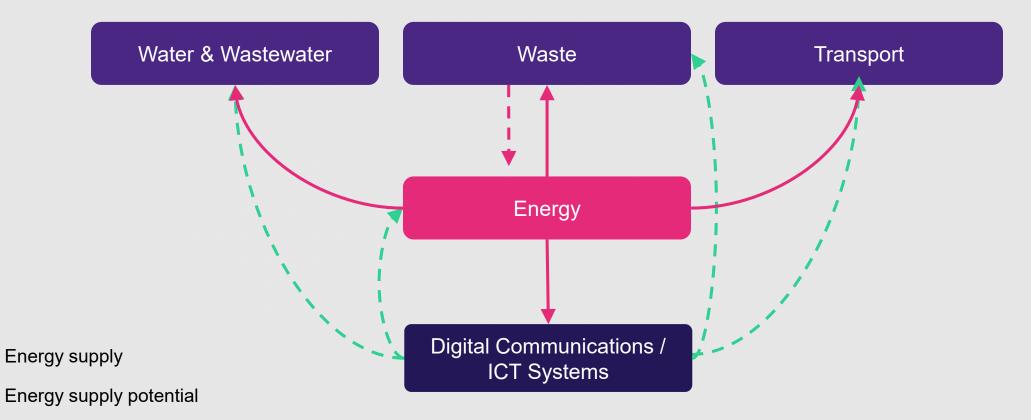
- Sub-contract Employee
- Installs rogue PLC Hardware
- 1-5 substations installed per week over 6 months
- Minimum 65 substations affected

- Rogue Hardware Communication via 3/4G
- Attacks require physical presence to fix
- Attackers spend time mapping substation networks
- Supported by a set of 'cover attacks'

- 10 substations attacked every 12 hours
- <u>Days 1-2:</u>
  - Control signals spoofed
    - DNO unaware until customersreport
  - Once cyber attack suspected, control centre investigation starts
  - or 3rd outage
  - Enginee Felet in Cuted HIGH Rogue handware still AGE unidentified
  - Investigation moves to substations

- <u>Days 7- 14:</u>
  - Continued rolling blackouts
  - Cabinet Office & CPNI confirm cyber attack
  - Intelligence & securit services involved
- Cover attacks confuse
   response
  - Rogue PLC discovered after 1 week

#### <u>Days 14 – 21</u>


- Rogue device removal in progress
  - Outages continue
- Physical damage to transformers

- Vulnerabilities addressed and repairs complete within 1 year
- Perpetrators never positively identified
- Series of independent commissions investigate
- Public confidence weakened
- UK critical infrastructure impacted overtaken by nearby competitors
- Cyber security budgets increase
- Potential increase in energy costs with increased physical & cyber security spend

# Economic Impact

Dr. Edward Oughton

### Growing Interdependency: How to Quantify?



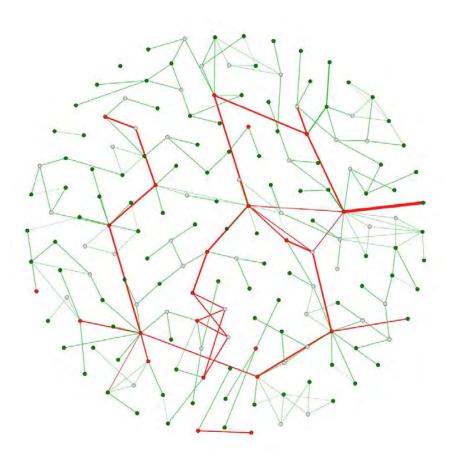

--- Energy demand management

### Summary of Scenario Variants

| Scenario<br>Variant | Description of Outage                                                                         | Number of<br>substations<br>compromised<br>with rogue<br>hardware | Length of cyber<br>attack campaign<br>(weeks) | Effective total<br>length of power<br>outage (weeks) | Time to identify<br>first rogue<br>device in one<br>substation<br>(weeks) | Period for<br>reverse<br>engineering and<br>planning the<br>clean-up (weeks) | Clean-up and<br>power recovery<br>period (weeks) | DNO region(s) | Physical<br>Damage |
|---------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|---------------|--------------------|
| <b>S1</b>           | Optimistic/Rapid Response                                                                     | 65                                                                | 3                                             | 1.5                                                  | 1                                                                         | 1                                                                            | 1                                                | 1 region      | No                 |
| S2                  | Conservative/Average Response                                                                 | 95                                                                | 6                                             | 3                                                    | 1                                                                         | 2                                                                            | 3                                                | 1 region      | No                 |
| X1                  | Extreme/Average response<br>+ physical transformer damage<br>+ 2 rogue devices<br>+ 2 regions | 125                                                               | 12                                            | 6                                                    | 2                                                                         | 4                                                                            | 6                                                | >1 region     | Yes                |

### Modelled Results

| Scenario<br>Variants | Lost power<br>(TWh) | Production<br>(1 year direct)<br>Sector Losses<br>£ billion | Supply Chain<br>(1 year indirect)<br>Sector Losses<br>£ billion | GDP@Risk<br>(5 Yr) impact on<br>overall UK<br>economy<br>£ billion |
|----------------------|---------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| <b>S1</b>            | 10.3                | 7.2                                                         | 4.4                                                             | 49                                                                 |
| S2                   | 19.8                | 18.0                                                        | 10.9                                                            | 129                                                                |
| X1                   | 39.6                | 53.6                                                        | 31.8                                                            | 442                                                                |




Domestic UK GDP@Risk under each scenario variant £ billion

### Highlights

| (m)                | 9 m    | <ul> <li>Electricity customers disrupted</li> <li>Similar levels of disruption experienced across other critical infrastructure sectors</li> </ul> |
|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | £7 BN  | <ul> <li>Direct industrial production losses</li> </ul>                                                                                            |
|                    | £4 BN  | <ul> <li>Indirect supply chain losses</li> </ul>                                                                                                   |
| all pay ly say the |        | <ul> <li>Worst affected critical infrastructure sector: Financial services</li> </ul>                                                              |
|                    |        | <ul> <li>Worst affected economic sector: Wholesale and Retail Trade</li> </ul>                                                                     |
| (5)                | £49 BN | <ul> <li>5-year GDP@Risk</li> </ul>                                                                                                                |

### Conclusions



- Cooperation and transparency needed across sectors:
  - This isn't a power generation/distribution problem
  - No-one talking about how it all fits together don't think in silos
- OT and IT to share experience and knowledge OT to improve resilience, ensure separation/protection of respective infrastructures
- People still don't believe these scenarios can happen, evidence shows otherwise
- As a largely service & knowledge based economy the impacts for the UK immediate in key sectors
- Government has a key role in coordination and prioritisation

# Panel Q&A Session

Centre for **Risk Studies** 





# Integrated Infrastructure: Cyber Resiliency in Society

For more, visit lockheedmartin.com/blackout

Centre for **Risk Studies** 



