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Abstract

In this paper we consider the problem of tracking the value of a `target' portfolio

of European options with a range of maturities within the one year planning horizon

using dynamic replicating strategies involving a small subset of the options. In de�ning a

dynamic replicating strategy we only allow rebalancing decision points for the replicating

portfolio at the payout dates of the options in the target, but for portfolio compression

we measure the tracking error between the value of the two portfolios daily. The target

portfolio value has a Bermudan path-dependency at these decision points and it is

likely that a carefully chosen dynamic strategy will out-perform simpler static or quasi-

static strategies. Here we construct trading strategies by solving appropriate stochastic

programming formulations for two principal tracking problems of interest: portfolio

compression for risk management calculations and dynamic replicating strategies for

simpli�ed replicating portfolios. We demonstrate the superior performance of dynamic

strategies relative to more static strategies in a number of numerical tests and in an

appendix describe brie
y a prototype implementation of the approach in RiskWatch.

�The authors thank Dave Saunders of Algorithmics and the other members of the Centre for Finan-

cial Research for their comments and suggestions, in particular, Darren Richards for assistance with the

RiskWatch dataset.
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1 Introduction

In this paper we construct periodically rebalanced dynamic trading strategies for a portfolio

containing a small number of tradable instruments which daily tracks the value of a large

`target' portfolio over a long period of time. A successful solution to this `tracking' problem

is practically useful in a number of �nancial applications. One such is the investment

problem of index-tracking, where the target portfolio consists of the constituent assets of

some equity or bond index such as the FTSE-100 or the EMBI+ (see e.g. Worzel, Vassiadou-

Zeniou & Zenios, 1994) but here we will address a more complex problem involving nonlinear

instruments from a risk management perspective. For risk managers the resolution of the

tracking problem can be seen as a way of reducing extensive and complex daily value at risk

(VaR) calculations for the target portfolio to the simpler task of evaluating the VaR of the

tracking portfolio|we refer to this application as portfolio compression. In an investment

bank the target portfolio would typically be very large. The approach can also be useful as

a hedging tool|which extends Black{Scholes delta hedging replication for a single option

to a typical large portfolio of options or other derivatives of various maturities by �nding a

dynamic replication strategy for the target portfolio. A practical application might involve

using a collection of liquid instruments to track the value of a much less liquid target.

Here we analyze instances of the daily tracking problem involving a speci�ed target

portfolio of 144 European options on the S&P 500 index of di�erent strikes and maturities

within a one year planning horizon, using the technique of dynamic stochastic programming

(DSP). Thus over the horizon considered in our experiments the values of both the target

and dynamic tracking portfolios will exhibit a Bermudan path-dependency at rebalance

points of the latter. Gondzio, Kouwenberg & Vorst (1998) have studied the use of DSP

techniques to implement the Black{Scholes dynamic hedging strategy for a single European

0ption|a simple special case of the tracking problem studied here. The present paper is

to our knowledge the �rst application of DSP to a realistically large portfolio containing

instruments which mature within the planning horizon.

Over the last few years leading edge risk management practice has evolved from current

mark-to-market to one period forward VaR and mark-to-future techniques (Jamshidian &

Zhu 1997, Chisti 1999). When such static methodologies are applied over long horizons to

target portfolios containing instruments with maturities within the horizon, they take no

account of changes in portfolio composition due to instruments maturing|for replication

of such portfolios dynamic trading strategies are required which may be found optimally
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using dynamic stochastic programming techniques. DSPs are a form of stochastic dynamic

programming problem|but solved by mathematical programming techniques|which allow

very large numbers of decisions and high dimensional data processes at a smaller number

of natural decision points or stages (such as option maturity dates) than the �ne timestep

typically considered in traditional dynamic programming problems. For practical purposes

these latter are restricted by the large number of timesteps to only a few state and decision

variables|Bellman's curse of dimensionality. DSPs are multi-stage stochastic programming

problems for which the term dynamic signi�es that the underlying uncertainties are being

modelled as evolving in continuous time and the corresponding scenarios approximating

the data process paths are to be simulated with a much �ner timestep (here daily) than

the (multi-day) interval between decision points. In this paper we demonstrate that the

full use of such an approach|which we term dynamic portfolio replication|provides a

better solution with respect to alternative de�nitions of tracking error to the daily tracking

problem than simpler approaches. We also con�rm in our context the general view in the

literature (cf. Dempster et al., 2000) regarding other DSP problems that the scenario trees

required for such an approach reduce tracking error when initial branching is high.

The paper is organized as follows. In Section 2 we describe the DSP approach more

fully and review the relevant recent literature. Section 3 discusses in detail the process of

constructing dynamic trading strategies using DSP. We describe our particular problem and

how the DSP approach is applied in this situation in Section 4. In Section 5 we report a

number of numerical tests to compare the daily tracking performance of our dynamic trading

strategies with simpler hedges including the portfolio delta hedge. Section 6 concludes and

discusses current research directions. A brief description of a prototype implementation of

the methods of this paper in Algorithmics software is given in an appendix.

2 The dynamic stochastic programming approach

Assuming underlying continuous time, the DSP approach to the optimization of a continu-

ous state vector stochastic system is as follows (see e.g. Dempster (1980), Birge & Louveaux

(1997) and Wets & Ziemba (1999)). First �x a sequence of times at which decisions will

be made (with the current moment the �rst decision time). Now replace the law of the

continuous time paths of the continuous state variables with a sampled `scenario tree'; this

has a single node representing the current moment from which a number of branches ex-

tend, representing possible discrete time transitions which the state variables may follow
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from the current moment to the second decision time. Each of these branches ends at a

node which itself has further branches, representing discrete time continuations of the paths

of the state variables from the second decision time to the third. This process is repeated

until every decision time is represented by a collection of nodes in a tree (see Figure 1).

Once this scenario tree is constructed, we re-phrase our stochastic optimization problem as

an equivalent deterministic optimization problem (typically a linear programming problem)

by associating a set of decision variables with each node in the tree, and by expressing

the objective and constraints of the problem in terms of these decision variables and the

values of the state variables on the nodes. The drawback of this approach|which extends

both classical decision tree analysis involving a �nite number of possible decisions at each

node and stochastic dynamic programming as noted above, is that the scenario tree (and

hence the size of the optimization problem) grows exponentially as the number of decision

times (stages) increases, often necessitating parallel computation and sequential sampling

schemes (Dempster & Thompson, 1999).

Day     0 30 90 180 360

Figure 1: A binary branching scenario tree whose paths are generated by a data process

simulator with daily timestep.
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Although dating from the 1950s, the practical use of SP in �nancial problems is still fairly

new since the associated optimization problems as noted above can become extremely large.

Most stochastic programming problems in the current �nancial literature are of two types:

portfolio insurance and asset liability management. A portfolio insurance problem also

speci�es a `target portfolio' and asks the analyst to �nd a dynamic portfolio which when

added to the target portfolio reduces the losses of the combined portfolio but retains as

much as possible of the pro�ts of the original. Asset liability management (ALM) problems

consider a sequence of liabilities (which may change over time stochastically) and try to

maximize some overall measure of pro�t after the liabilities have been paid by allocating

investment capital between a set of asset classes such as stocks, bonds and cash (see e.g.

Mulvey & Ziemba (1998)). In both cases the objective function does not usually penalize

over-performance, in contrast to our tracking problem where we penalize both under- and

over-performance relative to the target. This has subtle implications for the construction

of the scenario tree.

As in Figure 1, the simplest scenario trees have the same number of branches at each

node, and use random sampling to construct the state variable paths associated with each

branch. A more sophisticated approach is to try to �t moments of a theoretical conditional

distribution of the state variables at decision times (Kouwenberg 1998). In either case,

obviously the more scenarios used to construct the stochastic programming problem the

closer the approximation will be to the intractable stochastic optimization problem de�ned

by the continuous time and state (vector) data process assumed to underly the situation

being modelled. (In general weak convergence of the law de�ned by the scenario tree to

the law of the underlying stochastic data process observed only at decision points can be

established under reasonable conditions as the branching at each node tends to in�nity.)

A problem can arise if the scenario tree contains an arbitrage: a trading opportunity

within the deterministic equivalent of the DSP which can be seen to generate a positive

pro�t from zero capital. If the tree and constraints of the problem permit such opportunities,

it is likely that the optimization problem will be unbounded unless over-performance is

penalized. Even if in�nite pro�ts are prohibited by other constraints in the model such as

position limits (as is usually the case in ALM problems for example), it can be expected that

the solution of a problem allowing arbitrages will perform poorly, although in practice this is

intimately related to the methods used and to the number of scenarios generated. Klaassen

(1997) discusses these issues in the context of ALM, and Kouwenberg & Vorst (1998) in

portfolio insurance. A feature common to most of the scenario trees in the literature is that
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nodes in early time periods have a higher number of branches than in later time periods.

This is usually due to the way the solution of the DSP problem is expected to be used in

practice|initial decisions are implemented and the whole problem is rolled forward to the

next decision point.

A �nal aspect of the DSP approach on which we should comment is the `testing' of the

quality of the solution to the optimization problem in the context of the original continuous

time continuous state problem using simulated paths of the state variables. As noted above

it is frequently assumed that after the optimization problem is solved, the optimal decision

variables at the node representing the current moment will be implemented for some period

of time, after which a new scenario tree will be constructed, and a new optimization prob-

lem solved. This process is repeated for as long as is required. A suitable testing procedure

given this approach is to construct a large number of test scenarios involving the underly-

ing stochastic processes (interest rates, stock prices, etc.), and for each test scenario and

decision point, to construct a scenario tree and solve an optimization problem. Golub et al.

(1997) and Fleten, H�yland & Wallace (1998) perform this type of test. It has the drawback

that the scenario trees cannot be very large or the optimization problems involved will take

too long to solve. A typical problem using this scheme might thus have weekly decisions,

and generate scenario trees extending over three, four or �ve weeks. Gondzio & Kouwenberg

(1999) give an example of an ALM problem where the scenario tree has 6 decision times

and a branching of 13. Solving a single instance of this problem even with state-of-the-art

software and hardware takes over 3 hours and improvements to such times are only possible

by utilizing sophisticated parallel algorithms and hardware techniques. Another easier to

implement testing procedure is to use each test scenario to construct a path through the

scenario tree which, at each stage chooses the branch which is `closest' to the path of the

test scenario over the appropriate time interval and then uses the optimal decision variables

at the nodes in the scenario tree, together with the genuine statespace variables from the

test scenario (Dempster & Ireland, 1988). This is the approach we will adopt for the port-

folio compression application which needs fast computation. Gondzio, Kouwenberg & Vorst

(1998) use a similar approach, choosing test scenarios from a �ne-grained tree which was

previously `aggregated' to form the scenario tree used in the optimization problem. Another

approach is to generate test scenarios by picking a random path through a previously gen-

erated scenario tree or lattice, but this is likely to give rather optimistic answers, especially

for trees if later time periods have very few branches or in the case of arbitrage-free lattices,

since this property is destroyed by sampling. Gondzio et al. (1998) describe one way of
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constructing smaller arbitrage-free trees starting from an initial (but possibly very large)

arbitrage-free tree.

3 Constructing dynamic replicating strategies using DSP

In this section we describe in detail how we apply the DSP approach to tracking problems.

Recall that a tracking problem de�nes a target portfolio, whose value is to be `tracked'

and asks us to �nd a self-�nancing tracking strategy using a prescribed set of trading

instruments. We assume that the value of the target and tradables at time t are functions

of the path over [0; T ] of some observable state process fS(t) 2 S : 0 � t � Tg, where
boldface is used to denote random entities throughout.

Tracking problems

As mentioned above, we will assume a number of discrete decision points 0 = t(1) � t(2) �
� � � � t(T ) � T in time and consider the data of our problem to be observations of the

state process at these discrete time points which are for simplicity represented by integer

labels t = 1; 2; : : : ; T .

We consider a multistage version of a static stochastic optimization problem whose

deterministic equivalent was studied in Dembo & Rosen (1999). Given a discrete time

process f� t 2 R : t = 1; : : : ; Tg of values of a target portfolio the stochastic dynamic

tracking problem we study is given by

inf
x

1

T

TX

t=1

E
�
y+t + y�t

�
(1)

such that

p0
1
x1 � p0

1
x0 (2)

p0t[xt � xt�1] = 0 a.s. t = 2; : : : ; T (3)

p0txt � y+t + y�t = � t a.s. t = 1; : : : ; T (4)

xT � xT�1 = 0 a.s. (5)

y+t � 0; y�t � 0 a.s. t = 1; : : : ; T . (6)

Here the fundamental discrete time decision process x is a set of portfolio positions (long and

short) in the securities of the problem and the corresponding price process p is used to value
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these positions at each decision point. At time point 1, prices p1 and initial endowment p
0

1
x0

are known, and an initial position x1 must be taken. Subsequently all decisions are state

dependent and hence stochastic; so that the tracking portfolio will have an almost surely

(a.s.)|i.e. with probability one|upside (y+t � 0) or downside (y�t � 0) tracking error (6)

in value terms. The objective (1) is to minimize the average absolute (or L1 norm) tracking

error subject to budget (2), self-�nancing (3) and tracking error (4) constraints which must

hold a.s. The stochastic tracking portfolio xT�1 set at the penultimate decision point must

be held (5) over the period to the horizon at T . Here E denotes expectation and prime

denotes transpose. Many variations on the problem are possible and several will be used in

this paper.

First if (6) is replaced by

� � y+t � 0; � � y�t � 0 a.s. t = 1; : : : ; T (7)

and the objective (1) is replaced by

inf
x

� (8)

we obtain the problem (SPLINF) whose solution minimizes the worst case (or L1 norm)

tracking error a.s. over both decision points and scenarios.

For either (SPL1) or (SPLINF) applied to the portfolio compression problem|since all

positions in the tracking portfolio are virtual, i.e. for computational purposes only|we

ignore transaction costs and allow an arbitrarily large initial endowment p0
1
x0. In other

applications however an optimal dynamic replicating strategy must be implemented and

hence proportional transaction costs are incurred. This results in a slightly more complex

model involving a real budget constraint and buy and sell decisions x+

t and x�t respectively.

The L1 variant of this model becomes

(SPL10) inf
x;x+;x�

1

T

TX

t=1

E
�
y+t + y�t

�
(9)

such that

p0
1
x1 � p0

1
x0 (10)

xt�1 + x+

t � x�t = xt a.s. t = 1; : : : ; T (11)

p0t(xt � xt�1) + p0tK(x+

t + x�t ) = 0 a.s. t = 2; : : : ; T (12)

p0txt � y+t + y�t = � t a.s. t = 1; : : : ; T (13)

x+

t � 0; x�t � 0; y+t � 0; y�t � 0 a.s. t = 1; : : : ; T . (14)
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Here the new constraint (11) expresses position inventory balance over time, and the self-

�nancing constraint (12) now involves a diagonal matrix K = diag(�1; : : : ; �I) of (two-way)

proportional transaction costs.

To construct our dynamic replication strategy, we will approximate the law of the pro-

cess S with a tree, solve an appropriate optimization problem on this tree, and then interpret

the solution as a dynamic trading strategy for the tracking portfolio.

Scenario trees

To de�ne the optimization problem used to construct our dynamic replication strategy, we

�rst make precise the notion of a `scenario tree' and how it approximates the law of the

state process S.

A scenario tree is a tree with nodes in a set N , with one node, r 2 N designated the

root node. For n 2 N ; n 6= r we let P (n) denote the predecessor of n: the unique node

adjacent to n on the unique path from n to r, and refer to those nodes with a common

predecessor as the successors of their predecessor. We de�ne P (r) = r.

With each node n 2 N we assume that there is given a (decision) time t(n) and a

state s(n) 2 S satisfying: t(r) = 1 (or the current real time 0), s(r) is the observed cur-

rent state and t(P (n)) < t(n) for all n 6= r. We will also assume that if P (n) = P (n0)

then t(n) = t(n0). For each node n, we link s(P (n)) and s(n) with an arc representing

a path segment of a suitable discrete time approximation of S over the number of time

points between the decision times corresponding to P (n) and n respectively (see Figure 1).

Thus we can associate a path of arcs fs(u) : u = t(1); : : : ; t(T )g with each sequence of

nodes n1; n2; n3; : : : ; nT for which (with a slight abuse of notation) t(1) = t(n1) < t(n2) <

� � � < t(nT ) = T and P (ni+1) = ni for i = 1; 2; : : : ; T � 1. In order to implement hold-

ing tracking portfolios over the period between the last two decision points we must dis-

tinguish leaf nodes ` 2 L � N with t(`) = T . We assume that we are given a set of

strictly positive real numbers f�(n) : n 2 Ng such that �(r) = 1 and if n has successors,

then �(n) =
P

n0:n=P (n0) �(n
0) for all n 2 N . In this situation the conditional probability

of s(n0) being realized after s(n) is �(n0)=�(n).

To show how to interpret a scenario tree as a discrete time stochastic process approxi-

mating the law of S, it suÆces to show how to generate a single sample path. Starting at the

root node, select one of its successors n at random with conditional probability proportional

to �(n); then the arc from s(r) to s(n) represents a sample path for S over [t(r); t(n)]. Now
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move to node n and select one of its successors ~n with conditional probability proportional

to �(~n), and so on.

By identifying a node n with the path from the root node to n, and thence with a

path fs(u) : u = t(1); : : : ; t(T )g in S, we can speak of the value of the target and the price

of the tradable instruments at n. We denote these quantities �(n) and p(n) respectively,

where p(n) 2 R
I is a vector giving the prices of the I tradable instruments. We denote

by T the depth of the tree: the number of nodes on a path of maximal length starting at

the root node.

The optimization problem

We are now in a position to modify the deterministic equivalent of the static optimization

problem introduced in Dembo & Rosen (1999) to state a recursive version of the dynamic

deterministic equivalent of (1) applicable to our tree setting. Using the notation above, we

consider the problem:

(L1) minimize
x(n):n2N

1

T

X

n2N

�(n)[y+(n) + y�(n)] (15)

subject to, for all n 2 N , ` 2 L,

p(r)0x(r) �M

p(n)0[x(n)� x(P (n))] = 0

p(n)0x(n)� y+(n) + y�(n) = �(n)

x(`)� x(P (`)) = 0

y+(n) � 0; y�(n) � 0;

which is the problem of minimizing the expected total tracking error subject to an initial

budget of M , and also the worst-case version:

(LINF) minimize
x(n):n2N

� (16)
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subject to

p(r)0x(r) �M

p(n)0(x(n)� x(P (n))) = 0

p(n)0x(n)� y+(n) + y�(n) = �(n)

y+(n) � �; y�(n) � �

x(`)� x(P (`)) = 0

y+(n) � 0; y�(n) � 0:

In both cases, the variables x(n) 2 R
N are interpreted as the holdings in the N tradable

instruments to be used if the state process follows the path from the root node to n. The

second constraint is the self-�nancing constraint at node n and the third de�nes y�(n) as the

upside and downside tracking errors at n. Note that since P (r) = r, these constraints also

make sense when n = r. Observe that at leaf nodes without successors the variables x(`)

must be identical to those at their predecessors x(P (`)).

We impose additional constraints in both forms of the problem. First, we restrict the

holding in each tradable instrument to the interval [�100;000;000; 100;000;000] (to ensure

that the solution is �nite), and secondly if any tradable instrument has value within 5�10�5
of zero at node n, or at every successor of n, then we impose x(n) = 0. This second

condition stops the optimal strategy from holding large positions which appear to have

low or zero tracking error at the nodes of the tree on the paths corresponding to the law

of implied by the scenario tree, but which have very high daily tracking error under the

discrete time approximation to the true law in between decision points. We also impose

proportional transaction costs in the deterministic equivalent of (9), which we now state for

our particular problem.

The transaction cost model

The deterministic equivalent form of (9)-(14) to be used in our particular problem has ob-

jective the same as that of the previous problem (L1). Now however we must distinguish

between the di�erent components of the decision variables x: the vector x(n) has compo-

nents denominating the holdings in the underlying, cash and the options respectively. The

values of the tradable instruments at node n are given by the vector p(n). T denotes the

`depth' of the scenario tree. P (n) is the predecessor node of node n; r denotes the root
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node. There are two transaction costs: �snp is the cost associated with purchases/sales of

the index, while �opt applies to options transactions. The initial portfolio holdings are given

by the vector h. Thus we have

(L10) minimize
x(n):n2N

1

T

X

n2N

�(n)[y+(n) + y�(n)] (17)

subject to, for all n 2 N , n 6= r

h+ x+(r)� x�(r) = x(r)

x(P (n)) + x+(n)� x�(n) = x(n)

p(r)0(x(r)� h) = ��snpp0(r)(x+0 (r) + x�
0
(r))� �opt

5X

i=2

pi(r)(x
+

i (r) + x�i (r))

p(n)0(x(n)� x(P (n))) = ��snpp0(n)(x+0 (n) + x�
0
(n))� �opt

5X

i=2

pi(n)(x
+

i (n) + x�i (n))

p(n)0x(n)� y+(n) + y�(n) = �(n)

x+(n) � 0; x�(n) � 0; y+(n) � 0; y�(n) � 0:

We also impose the constraint that options cannot be held once they have expired.

Turning the solution into a trading strategy

Once one of the above optimization problems has been solved, the problem arises of in-

terpreting the solution as a replicating trading strategy for the tracking portfolio. We will

evaluate the tracking error of our replicating portfolio by simulating many independent re-

alizations of the underlying (daily) discrete time data process and then valuing both target

and tracking portfolios at each timestep. We can use the portfolio associated with the root

node of an optimal solution up to the �rst branch time, but then we must decide how to

re-balance. If the value of the state process at that time were exactly equal to the value

of this process at one of the successors of the root node, we would just use the optimal

portfolio associated with that node, but unfortunately this is unlikely to be the case.

In the context of dynamic portfolio replication, we will re-solve the stochastic program-

ming problem by sampling a new scenario tree with the actual value of the process at the

second decision point assigned to the root, and then take the calculated optimal portfolio
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at the new root node (see Figure 2). This would be far too time consuming in portfolio

compression applications.

Day     0 30 90 180 360

Figure 2: Graphical illustration of the full dynamic replication strategy showing part of the

initial tree and the tree used at the second decision point.

In this latter case we will use a simple procedure based on having a metric m( � ; � )
on S for measuring the distance from a simulated realization of S to the nearest node.

For example, if the state distribution of the process S at t were Gaussian with covariance

matrix V , then the choice of the Malanobis metric m(s; s0) = (s � s0)TV �1(s � s0) would

be very natural. Denoting the solution to the optimization problem by x�, the portfolio

compression trading strategy is de�ned as follows (see Figure 3): let n = r initially, let t0 be

the (common) time at the successors of node n, and use the portfolio x�(n) over [t(n); t0].

At time t0 consider each of the successors of n which themselves have successors and �nd

the successor ~n which minimizesm(S(t0); s(~n)) where S(t0) is the observed value of the state

process at time t0, and implement x�(~n). Then replace n with ~n and repeat from the start.

Once a node n is reached which has no successors, use the portfolio x�(n) for all future

time. If this strategy turns out to be non-self-�nancing at any times of decision points,
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any `slack' is to be absorbed by investing/borrowing using one of the tradables, chosen

arbitrarily (preferably one with a low volatility). Thus this method is based on constructing

a dynamic trading strategy from the solution of a single �xed DSP with suÆciently many

scenarios (and hence tree nodes) to give �nely resolved number of alternative portfolios at

each decision point.

Day     0 30 90 180 360

Figure 3: Graphical illustration of the compression trading strategy (black nodes).

Other methods are also worth exploring, such as interpolating between optimal port-

folios on paths through the scenario tree which are close to the observed path or �tting a

parameterized trading rule to the optimal solution, but we will not consider them here.

4 The options problem

We consider a portfolio of standard European options on a stock index I t with a wide

range of strikes and maturities|each of which is taken as a decision point|and try to

�nd a dynamic trading strategy which uses cash, the underlying index and possibly a small
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subset of the options. The index is assumed to follow the SDE de�ning Geometric Brownian

motion, viz.

dIt = I t(� dBt + �dt); (18)

where Bt is a standard Brownian motion, � � 20%, � � 10% and I0 = $1275. The risk-free

interest rate is taken to be 5%.

The target

The target consists of 0:299527 units of the underlying index, an initial �$8:74774 in cash,

and a large number (144) of call options (see Table 1).

The target was constructed by including, for each strike and maturity in Table 1, either

a put option or a call option (choosing one or the other at random with equal probability)

and then selecting the size of the position from a uniform distribution on [�1; 1]. The

inclusion of puts is accomplished using put-call parity and leads to the non-zero holdings

in the underlying index and the cash account.

Figure 4 shows the highly nonlinear payouts of this portfolio as its options mature.

The tradable instruments

We will assume that the set of tradable instruments consists of the underlying index, cash,

and perhaps also a single option for each of the four maturities. The strikes of these options

are chosen to be close to the expected price of the index at that maturity, and are given

in Table 2. We set the proportional cost for index transactions �snp to be 1% and the

corresponding cost for options �opt transactions to be 2:5%.

The scenario tree

To generate the scenario tree we will use either random sampling of the discretization of (18)

with daily timestep or the following simple discretization procedure at decision points: if ~n

is the kth successor of node n, k = 0; 1; : : : ;K � 1, set

I(~n) := I(n) exp
�
��1(1+2k

2K
)
p
�t � + (�� 1

2
�2)�t

�
; (19)

where �t := t(~n)� t(n) is the time di�erence between n and its successors, � is the normal

distribution function and I(n) denotes the value of the index at node n. The probability of

a particular successor ~n of n is taken to be 1=K. The aim here is to set up a uniform grid
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Maturity (days)

Strike 30 90 180 360

750 0:499804 0:15194 0:998693 0:113471

950 0:74093 �0:700248 0:391195 �0:24525

1150 0:571599 0:302505 0:972411 0:579243

1165 �0:262467 0:909999 0:309761 0:648487

1180 0:49019 0:571087 0:36354 0:456401

1195 �0:292544 0:142507 �0:336683 �0:475631

1210 �0:479556 0:925102 �0:681272 �0:0208652

1225 0:55358 �0:126283 0:205513 0:699144

1240 0:151576 0:846815 0:962714 �0:276082

1255 �0:833992 0:53772 �0:0719259 0:209064

1270 �0:780106 0:181939 0:689277 �0:118359

1285 �0:218627 0:284286 0:473013 �0:567698

1300 0:918133 �0:861963 �0:0463901 �0:387226

1315 �0:673621 0:548627 �0:00481466 �0:820417

1330 �0:479278 �0:757467 �0:111879 0:867178

1345 �0:128155 �0:850984 �0:336303 0:237092

1360 �0:744766 �0:270088 0:16514 �0:773939

1375 0:881284 �0:610828 0:349776 �0:85157

1390 �0:691578 �0:676415 �0:528584 �0:531592

1405 �0:690527 0:101874 0:916708 0:869105

1420 0:753697 0:0554727 �0:85114 0:148518

1435 �0:472188 �0:572643 �0:23437 �0:758292

1450 0:540183 �0:997261 0:433229 0:997215

1465 0:542085 �0:045124 �0:957911 0:727558

1480 �0:562721 0:524317 0:257921 0:459888

1495 �0:176574 �0:970444 0:0958814 �0:0225336

1510 0:859913 0:689543 �0:214078 �0:775679

1525 0:374881 �0:817983 �0:383831 0:398134

1540 0:216602 0:577868 0:222183 0:765986

1555 0:265243 �0:801022 �0:678699 �0:579844

1570 0:264488 0:494393 0:60596 0:37497

1585 0:921523 0:0242848 0:435875 �0:471075

1600 �0:106634 0:923895 �0:716491 �0:0146881

1800 0:905168 �0:0522193 �0:514874 �0:10789

2000 �0:203584 0:30069 0:742959 �0:406423

2200 0:910171 0:171869 0:508814 0:499529

Table 1: The static target portfolio's option holdings.
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Figure 4: Target payouts at the four maturities.

Maturity 30 90 180 360

Strike 1285 1300 1330 1405

Table 2: The options available to replicating portfolios.
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of 2K levels and use the inverse Gaussian distribution function to create the corresponding

grid for the logarithm of the index values. In both cases, the depth of the tree | i.e. the

number of decision points | is T .

5 Numerical Experiments

We consider two types of experiment illustrating our two intended applications: portfolio

compression, where we replicate the target with a trading strategy which can be simulated

very quickly, and dynamic portfolio replication, in which we model future trading decisions

and optimize the current trading decision taking the e�ects of future decisions into account.

In both cases we will consider the e�ects of allowing dynamic strategies to use just cash

and the underlying index as tradable instruments versus allowing additionally trading in

the four options described in Section 4.

As a `benchmark' we will compare our dynamic replication strategies to a static simple

strategy: which uses a simple scenario tree branching only after the �rst decision point and

optimizes a single trading decision which is used at every node of the tree (see Figure 5).

A second alternative to the full dynamic replication strategy is a strategy which is allowed

to rebalance at each decision point of a test scenario according to a static simple strategy,

but assumes at each such point that the implemented portfolio of the static simple solution

will not subsequently change. We term such a strategy quasi-static (see Figure 6).

A further natural benchmark is to construct on each test scenario the portfolio delta

hedge which trades only in cash and the underlying to rebalance at each decision point and

holds the new portfolio to the next decision point.

Portfolio compression

Our �rst experiments compress the target by solving the �rst two optimization problems

presented in Section 3, with either L1 or L1 objectives, and interpreting the solutions as

dynamic trading strategies using the nearest node technique described in Section 3. For this

purpose we ignore the budget constraint and could even ignore the self-�nancing constraint

except that we would like to know whether we can use the nearest node method of Section 3

to construct a dynamic trading strategy so we must impose it. We consider two alternative

scenario trees for the optimization problems: one with a branching of �ve at each node (625

scenarios), and one with a branching of ten (10,000 scenarios). To generate the value for the

18



Day     0 30 90 180 360

Figure 5: Graphical illustration of the static simple trading strategy in which a common

portfolio is used at all nodes of the scenario tree.
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Day    0 30 90 180 360

Figure 6: Graphical illustration of the quasi-static simple trading strategy which uses a

static simple trading strategy from the realized simulation path at the second and

subsequent decision points.
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index at nodes in the scenario tree we use the inverse distribution function discretization

procedure described in Section 4.

We also consider two static simple strategies obtained by minimizing the expected av-

erage absolute tracking error (the objective of (L1)), and by minimizing the worst absolute

tracking error (the objective of (LINF)) over a set of 1000 scenarios for the index path,

sampled at time 0 and the four maturity dates in the target.

Our experimental design with each strategy type is as noted above to solve the DSP

versions of the tracking problem for an appropriately generated scenario tree whose nodes

are at option maturity dates and then test the quality of these decisions with a large

number of randomly generated test scenarios simulating the index with a daily timestep

up to the last option payout date at 360 days (T = 5). The numerical results evaluating

the tracking performance of the various approaches were obtained by running 10,000 test

simulations of the path of the index and considering the tracking error between the portfolios

each day from the initial time 360 days. For the evaluation of the daily tracking error

between the two portfolios for of all alternative trading strategies for the tracking portfolio

at daily timesteps between option maturity dates we use the Black{Scholes formula for all

options in the portfolio with the true volatility utilised for the underlying index simulation.

The average absolute tracking error for a single index simulation path is taken to be the

average of the daily absolute tracking errors. The expected average absolute daily tracking

error is the average over the 10,000 simulated index paths of the individual path average

absolute tracking errors. We also record the worst (absolute) tracking error observed, and

the minimum and maximum values attained by the target, the compressed portfolios and

the simple strategies.

A summary of the numerical tracking error evaluation results for portfolio compression

is presented in Tables 3 to 6. The `objective' column shows the optimal value for the initial

optimization problem. This value is usually very di�erent from the expected average abso-

lute daily tracking error obtained when the solution is implemented as a trading strategy,

since the simulated paths of the index are highly unlikely to pass through the nodes in the

scenario tree. All optimization problem CPU total solution times shown are for an Athlon

650 Mhz PC with 256 MB memory.

Note that allowing options trading improves the simple strategies but is detrimental to

the dynamic strategies when the nearest node strategy is used. This suggests that using

the nearest node technique of Section 3 to interpret the solution of the initial optimization

problem as a trading strategy is questionable with non-linear instruments unless the scenario
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Method Objective
Expected average absolute

daily tracking error

Optimization

CPU time (s)

static simple, L1 209.8 301.0 (1.52) 13

static simple, LINF 1542.0 500.0 (2.60) 17

5-branch dynamic, L1 49.8 97.9 (0.96) 1

5-branch dynamic, LINF 218.4 112.0 (0.89) 1

10-branch dynamic, L1 57.4 90.5 (0.91) 73

10-branch dynamic, LINF 301.0 117.0 (0.72) 126

Table 3: Portfolio compression evaluation results: strategies using only cash and the index

as tradable instruments. One standard error in the estimate of the expected average

tracking error is indicated in brackets.

tree is very large (well in excess of the 10,000 scenarios used here to give a much more �nely

resolved strategy).

The dynamic strategies using just cash and the underlying index not suprisingly have

a signi�cantly lower expected average absolute daily tracking error than any of the other

strategies except the delta hedge, particularly for the versions minimizing the (L1) objective.

The frictionless delta hedge strategy has the next best performance to such a 10-branch

dynamic L1 strategy but takes over twice as long to evaluate on a test scenario due to Black{

Scholes option evaluations at decision points (Table 5). Thus for portfolio compression used

in Monte-Carlo VaR calculations it would be signi�cantly inferior.

Figures 7 and 8, showing respectively the density functions of the average absolute

daily tracking error and the worst tracking error for the 10-branch dynamic and simple

strategies with each objective, demonstrate that although the dynamic worst case (L1)

trading strategy better controls the upper tails of both the average and worst case absolute

daily tracking error distributions, the average (L1) trading strategy appears better overall

with respect to both criteria.

It is also of interest to see if the compressed portfolios still track the target in extreme

market conditions. Figure 9 shows the distribution functions of the minimum value of the

target and of the four tracking strategies as before, while Figure 10 shows the distribution

functions of the corresponding maxima. These �gures show that the dynamic strategies are

also better at estimating both the lower tail of the minimum value of the target and the
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Method Objective
Expected average absolute

daily tracking error

Optimization

CPU time (s)

static simple, L1 139.4 187.0 (1.5) 98

static simple, LINF 774.0 330.0 (1.0) 59

5-branch dynamic, L1 8.2 387.0 (22.2) 1

5-branch dynamic, LINF 62.3 441.0 (22.4) 2

10-branch dynamic, L1 16.1 209.0 (22.2) 117

10-branch dynamic, LINF 112.0 237.6 (22.4) 1729

Table 4: Portfolio compression evaluation results: using cash, the index and four options as

tradable instruments. One standard error in the estimate of the expected average

tracking error is indicated in brackets.

Method
Expected average absolute

daily tracking error

Expected worst

absolute daily

tracking error

Test scenario

CPU times (s)

Static simple, L1 187.0 494.0 0.0228

Static simple, LINF 330.0 496.6 0.0228

Dynamic L1 90.5 200.3 0.0004

Dynamic LINF 117.0 218.3 0.0004

Delta hedge 93.3 170.2 0.0009

Table 5: Portfolio compression results: A comparision of the best static and dynamic hedges

with delta hedging

Method Cash Underlying 30-day 60-day 180-day 360-day

static simple, L1 �3172.5 4.21 0.73 1.78 3.37 �3.51
static simple, LINF 518.1 1.00 1.36 1.65 3.36 �0.13

10-branch dynamic, L1 �5960.9 6.43 N/A N/A N/A N/A

10-branch dynamic, LINF �5193.8 5.78 N/A N/A N/A N/A

Table 6: Portfolio compression results: Optimal initial portfolio holdings using only cash

and the underlying in the dynamic strategies. Reported are the best static hedges

(i.e. those from Table 4) and the best dynamic hedges (i.e. those from Table 3).
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Figure 7: Density functions of the average absolute daily tracking error for two compression

techniques and two static simple strategies.
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upper tail of the target value's maximum.

Dynamic portfolio replication

The second set of experiments use dynamic stochastic programming iteratively to construct

a dynamic replication strategy for the target using a prescribed set of tradable instruments.

For each test scenario at each of the four maturity dates we construct a new scenario tree,

re-solve the stochastic programming problem and re-balance to the portfolio associated with

the initial node of this problem (cf. Figure 2).

For this dynamic replication strategy we assume a proportional transaction cost of 1%

on trades involving the underlying index and 2:5% on trades involving options, and impose

an initial budget constraint of 1:025 times the initial value of the target as discussed in

Section 4. (These transaction costs are higher than would be paid for hedging an S&P 500

options portfolio with S&P 500 futures contracts, but are used here for illustrative purposes.)

The tracking errors to be minimised in the objectives of the DSP problems are taken to

be the absolute di�erences between the mark-to-market values of the replicating strategy

and the target evaluated at times 0, the three successive rebalance dates and the horizon

(again using Black{Scholes valuation). Here we use 1,000 test simulations to estimate the

expected average absolute at these 5 dates.

We try a large number of di�erent scenario trees varying both in size and the extent to

which branching occurs near the root node. We found little advantage in using the inverse

distribution function discretization technique of Section 4 to generate the scenario tree and

instead use purely random index path sampling as described above. Again we will consider

the e�ect on the dynamic strategies of restricting the strategy to using just cash and the

underlying index. In all cases we will minimize the (L10) objective.

Benchmark results

Our benchmark replication strategies will be quasi-static simple strategies based on respec-

tively 100, 200 and 300 random scenarios for the path of the index from its initial value and

the delta hedge rebalanced at decision points with transactions costs. We allow the quasi-

static strategies to trade using cash, the underlying index and the four tradable options.

Note that the simple strategies are quasi-static in the sense that the optimization problem

solved at each step assumes no further re-balancing, but is in fact allowed to rebalance the

portfolio according to the root node solution of the static simple problem corresponding to
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No. Scenarios Objective
Expected average absolute

tracking error

Optimization

CPU time (s)

100 87.2 110.9 (8.03) 4

200 91.1 115.5 (0.97) 12

300 92.4 111.9 (0.95) 27

delta hedge N/A 115.9 (0.89) N/A

Table 7: Dynamic portfolio replication results: quasi-static simple and delta hedge bench-

marks. One standard error in the estimate of the expected average tracking error

is indicated in brackets.

the current timestep. As the problem is re-solved at each timestep, the positions in the

portfolio will generally change.

A summary of the numerical results for the benchmark strategies is given in Table 7.

As the number of scenarios increases, although the objective of the optimization problem

used in the quasi-static strategeies increases, the expected average absolute tracking error

of the resulting strategy decreases (as we would expect) and is comparable to that of the

delta hedge. Similar remarks apply to the expected worst absolute tracking error.

Experiments varying tree size

For dynamic portfolio replication we consider scenarios trees which have the same branching

factor at each node, and we gradually increase the branching factor expecting that larger

trees should lead to better replicating trading strategies.

The results are presented in Tables 8 and 9. Again we see that allowing the dy-

namic strategy to trade in options is detrimental, although the di�erence decreases as the

branching-factor increases. None of the dynamic strategies based on balanced scenario trees

with equal branching at each node and trading in only cash and the underlying index beat

the simple benchmarks. However we will see that by varying the branching structure over

decision points these results can be improved.

Experiments varying initial branching

Since with the dynamic replication strategy although we re-solve the optimization problem

at each timestep using a new scenario tree, we ultimately only use the optimal portfolio
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Branching Objective
Expected average absolute

tracking error
CPU time (s)

2-2-2-2 15.6 414.8 (27.0) 1

3-3-3-3 51.5 260.4 (20.3) 1

4-4-4-4 43.5 210.4 (7.4) 1

5-5-5-5 58.4 163.6 (6.0) 1

6-6-6-6 50.0 145.5 (3.7) 2

7-7-7-7 54.3 142.4 (3.6) 8

Table 8: Dynamic portfolio replication results: dynamic strategy with varying tree sizes.

Only cash and the underlying index are available as trading instruments. One

standard error in the estimate of the expected average tracking error is indicated

in brackets.

Branching Objective
Expected average absolute

tracking error
time (s)

2-2-2-2 0.0 987.0 (98.9) 1

3-3-3-3 23.6 703.2 (74.9) 1

4-4-4-4 1.5 694.2 (83.8) 1

5-5-5-5 21.3 433.7 (29.0) 4

6-6-6-6 18.6 312.5 (37.0) 9

7-7-7-7 26.0 188.5 (16.0) 61

Table 9: Dynamic portfolio replication results: dynamic strategy with di�erent branching

structures. Cash, the underlying index and four options are available as trading

instruments. One standard error in the estimate of the expected average tracking

error is indicated in brackets.
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associated with the root node appropriate to the timestep. Given this procedure, it seems

sensible to make scenario trees branch more near the root node of each successive DSP

problem. Here we keep the total number of nodes in the tree roughly constant (in an

attempt to keep the optimization time constant across experiments) and gradually increase

the branching at the root node of each successive DSP problem.

The results are summarized in Tables 10 and 11. As the initial branching increases,

both the objective and the expected average tracking error tend to decrease, but with some

sampling 
uctuation due to the randomly generated scenario trees. This random decrease

is more prominent when the dynamic trading strategy is allowed to use options (Table 11),

when the �nal strategies in the table (in which almost all branching occurs at the root

node), give a signi�cant improvement over the best benchmark strategy in less than one

third the computing time (cf. Table 7). Initial positions chosen by the various strategies

are set out in Table 12.

Finally, a comparison of the distributions of the average and worst absolute tracking

errors (measured at the initial time and the four subsequent decision points) for the quasi-

static simple benchmarks and the dynamic replication strategies based on the tree with

highest branching in the initial time stage, both with and without the availability of trading

options, is shown in Figures 11 and 12. Again this shows that the best dynamic replication

strategies continue to track the target in extreme market conditions.

6 Conclusions

For both applications considered in this paper|portfolio compression and dynamic port-

folio replication|the solutions from a stochastic programming approach are superior to

optimized `quasi-static' approaches and a delta hedge. For compression however, is not

clear how the solution of the stochastic programming problem should be interpreted as a

trading strategy; the method used here is not robust enough to allow the strategy to trade

in options as well as cash and the underlying.

From Figures 9 and 10 we see that the extreme values taken by the target portfolio

over the planning horizon have medians close to 1750 and 3000 respectively, indicating that

the expected average absolute tracking error achieved by the best dynamic hedge (90:5) is

approximately 3%{5% of the target value.

In the dynamic portfolio replication problem, very di�erent trees should be used from

those e�ective for portfolio compression: almost all the branching should occur at the root
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Branching Objective
Expected average absolute

tracking error
CPU time (s)

6-6-6-6 50.0 145.5 (3.7) 2

8-6-5-4 43.6 137.3 (3.3) 3

9-7-5-3 40.5 134.0 (3.9) 5

13-8-4-2 47.5 135.8 (3.1) 3

21-9-3-1 38.8 122.4 (2.6) 2

22-8-3-1 30.1 119.7 (2.6) 2

31-8-2-1 34.1 118.6 (2.4) 4

43-9-1-1 25.9 122.8 (2.5) 7

55-7-1-1 28.9 120.6 (2.5) 4

75-5-1-1 24.7 119.3 (2.5) 5

120-3-1-1 23.0 115.7 (2.0) 6

300-1-1-1 17.1 116.5 (2.3) 5

Table 10: Dynamic portfolio replication results: dynamic strategy with di�erent branching

structures. Only cash and the underlying index are available as trading instru-

ments. One standard error in the estimate of the expected average tracking error

is indicated in brackets.
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Branching Objective
Expected average absolute

tracking error
CPU time (s)

6-6-6-6 18.7 312.5 (37.0) 9

8-6-5-4 9.3 261.5 (29.7) 5

9-7-5-3 7.1 215.9 (17.2) 7

13-8-4-2 19.9 132.5 (5.3) 8

21-9-3-1 16.9 133.4 (14.3) 10

22-8-3-1 12.2 107.2 (6.0) 7

31-8-2-1 17.9 116.7 (4.5) 8

43-9-1-1 10.2 103.9 (7.2) 6

55-7-1-1 12.2 132.1 (34.4) 73

75-5-1-1 10.2 94.8 (2.0) 6

120-3-1-1 8.1 96.1 (2.6) 7

300-1-1-1 3.6 93.0 (1.8) 8

Table 11: Dynamic portfolio replication results: dynamic strategy with di�erent branching

structures. Cash, the underlying index and four options are available as trading

instruments. One standard error in the estimate of the expected average tracking

error is indicated in brackets. The anomalous runtime is due to chance degeneracy

of the deterministic equivalent linear programme.

Method Cash Underlying 30-day 60-day 180-day 360-day

quasi-static simple, 100 scenarios �329.2 1.73 0.27 2.97 3.85 0.00

quasi-static simple, 200 scenarios �171.4 1.62 0.00 2.97 3.65 0.00

quasi-static simple, 300 scenarios �387.6 1.80 0.00 2.41 3.95 0.00

dynamic with options �1426.8 2.16 �4.23 0.00 0.00 13.45

dynamic w/o options �5194.0 5.81 N/A N/A N/A N/A

Table 12: Dynamic portfolio replication results: Optimal initial portfolio holdings.
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error for two dynamic hedging techniques and three benchmark strategies.
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node. In this case the method is robust enough to allow the dynamic strategy to trade

options in order to reduce tracking error and produce an overall signi�cantly best strategy

in a running time three times faster than the best quasi-static benchmark alternative.

In a companion paper we will describe the extension of these ideas to a swaption portfolio

where, unfortunately, further ingenuity is required.
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Appendix: A prototype implementation in RiskWatch

To demonstrate the practicality of using a stochastic programming approach to dynamic

portfolio replication, we have implemented a general stochastic programming system using

RiskWatch for instrument and portfolio valuation. At present the system is in prototype

form, using a number of external programs and our stochastic programming model genera-

tion suite STOCHGEN 2.3. In future these will be integrated seamlessly with RiskWatch,
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allowing the whole process of simulation, solution and solution analysis to be performed

from behind a RiskWatch GUI.

An overview of the prototype's design is given in Figure 13. The aim is to let the

user write a quite general stochastic programming problem using STOCHGEN, which

employs the modelling language AMPL, with reference to the value of RiskWatch enti-

ties such as instruments and portfolios. This allows the user to combine the 
exibility of

STOCHGEN/AMPL for expressing optimization problems (which covers all the optimiza-

tion functionality currently in RiskWatch) with that of RiskWatch for valuing �nancial

instruments. The design also makes it easy to implement alternative sampling techniques

such as quasi-random sampling or even to allow part of the scenario-tree to be constructed

by hand, to include crash scenarios for example.

In more detail: we use a Perl script to create the scenario tree, outputting a scenario

set containing each scenario present in the scenario tree, load this into RiskWatch, run a

simulation to value the instruments and portfolios, and use a RiskScript macro to write all

the simulation data to a single data-�le.

This data-�le is read by another program which creates AMPL-format data-�les con-

taining the data for each scenario, and a �le of auxiliary information, such as the names of

the RiskWatch entities for which data is present, the number of timesteps, the simulation

dates and so on. Other information such as a non-uniform weighting of scenarios could

easily be passed via this �le.

These data-�les, together with the stochastic programming problem expressed as an

AMPL model, are fed into the STOCHGEN system, producing a single linear program (the

deterministic equivalent form of the stochastic programming problem) in standard MPS or

SMPS format for solvers.

Once solved, the optimal decision variables at each node in the tree can be extracted

from solver output �les and represented as a RiskWatch scenario set.
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Figure 13: Stochastic programming using RiskWatch and STOCHGEN (prototype design)
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