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Abstract

We investigate a method for pricing the generic spread option beyond the classical
two-factor Black-Scholes framework by extending the fast Fourier Transform technique
introduced by Carr & Madan (1999) to a multi-factor setting. The method is applicable
to models in which the joint characteristic function of the underlying assets forming the
spread is known analytically. This enables us to incorporate stochasticity in the volatility
and correlation structure – a focus of concern for energy option traders – by introducing
additional factors within an affine jump-diffusion framework. Furthermore, computational
time does not increase significantly as additional random factors are introduced, since the
fast Fourier Transform remains two dimensional in terms of the two prices defining the
spread. This yields considerable advantage over Monte Carlo and PDE methods and
numerical results are presented to this effect.
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1 Introduction

Spread Options are derivatives with terminal payoffs of the form: [(S1(T ) − S2(T )) −K]+,
where the two underlying processes S1,S2 forming the spread could refer to asset or futures
prices, equity indices or (defaultable) bond yields. There is a wide variety of such options
traded across different sectors of the financial markets; for example, the crack spread and
crush spread options in the commodity markets [16, 22], credit spread options in the fixed in-
come markets, index spread options in the equity markets [10] and the spark (electricity/fuel)
spread options in the energy markets [9, 18]. They are also applied extensively in the area of
real options [23] for both asset valuations and hedging a firm’s production exposures. Despite
their wide applicability and crucial role in managing the so-called basis risk, hedging and
pricing of this class of options remain difficult and no consensus on a theoretical framework
has emerged.

The main obstacle to a “clean” pricing methodology lies in the lack of knowledge about
the distribution of the difference between two non-trivially correlated stochastic processes:
the more variety we inject into the correlation structure, the less we know about the stochas-
tic dynamics of the spread. At one extreme, we have the arithmetic Brownian motion model
in which S1,S2 are simply two Brownian motions with constant correlation [19]. The spread
in this case is also a Brownian motion and an analytic solution for the spread option is thus
available. This, however, is clearly an unrealistic model as it, among other things, permits
negative values in the two underlying prices/rates. An alternative approach to modelling
the spread directly as a geometric Brownian motion has also proven inadequate as it ignores
the intrinsic multi-factor structure in the correlation between the spread and the underlying
prices and can lead to severe misspecification of the option value when markets are volatile
[13].

Going one step further we can model the individual prices as geometric Brownian mo-
tions in the spirit of Black and Scholes and assume that the two driving Brownian motions
have a constant correlation [17, 20, 22]. The resulting spread, distributed as the difference
of two lognormal random variables, does not possess an analytical expression for its density,
preventing us from deriving a closed form solution to the pricing problem. We can however
invoke a conditioning technique which reduces the two dimensional integral for computing the
expectation under the martingale measure to a one dimensional integral, thanks to a special
property of the normal distribution: conditional on a correlated random variable a normal
random variable remains normally distributed.

As we develop a stochastic term structure for volatilities and correlations of the underly-
ing processes, we move out of the Gaussian world and the conditioning technique no longer
applies. Furthermore, a realistic model for asset prices often requires more than two factors;
for example, in the energy market, random jumps are essential in capturing the true dynam-
ics of electricity or oil prices, and in the equity markets, stochastic volatilities are needed.
Interest rate models such as the CIR or affine jump-diffusion models [11] frequently assume
more than two factors and non-Gaussian dynamics for the underlying yields. However, the
computational times using existing numerical techniques such as Monte Carlo or PDE meth-
ods increase dramatically as diffusion models take these issues into account.
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In this paper we propose a new method for pricing spread options valid for the class of
models which have analytic characteristic functions for the underlying asset prices or market
rates. This includes the Variance Gamma (VG) model [15], the inverse Gaussian model [3]
and numerous stochastic volatility and stochastic interest rates models in the general affine
jump-diffusion family [1, 4, 6, 14, 21]. The method extends the fast Fourier transform ap-
proach of Carr & Madan [5] to a multi-factor setting, and is applicable to options with a
payoff more complex than a piecewise-linear structure. The main idea is to integrate the
option payoff over approximate regions bounding the non-trivial exercise region, analogous
to the method of integrating a real function by Riemann sums. As for the Riemann integral,
this gives close upper and lower bounds for the spread option price which tend to the true
value as we refine the discretisation.

The FFT approach is superior to existing techniques in the sense that changing the un-
derlying diffusion models only amounts to changing the characteristic function and therefore
does not alter the computational time significantly. In particular, one can introduce factors
such as stochastic volatilities, stochastic interest rates and random jumps, provided the char-
acteristic function is known, to result in a more realistic description of the market dynamics
and a more sophisticated framework for managing the volatility and correlation risks involved.

We give a brief review of the FFT pricing method applied to the valuation of a simple
European option on two assets in Section 2. In Section 3 our pricing scheme for a generic
spread option is set out in detail. Section 4 describes the underlying models implemented
for this paper and presents computational results to illustrate the advantage of the approach
and the need for a non-trivial volatility and correlation structure. Section 5 concludes and
describes current research directions.

2 Review of the FFT Method

To illustrate the application of the fast Fourier Transform technique to the pricing of simple
European style options in a multi-factor setting, in this section we derive the value of a cor-
relation option as defined in [2] following the method and notation of [5] in the derivation of
a European call on a single asset.

A correlation option is a two-factor analog of an European call option, with a payoff of
[S1(T )−K1]+ · [S2(T )−K2]+ at maturity T , where S1,S2 are the underlying asset prices.
Denoting strikes and asset prices by K1,K2, S1, S2 and their logarithms by k1, k2, s1, s2, our
aim is to evaluate the following integral for the option price:

CT (k1, k2) := EQ

[
e−rT

[
S1(T )−K1

]
+
·
[
S2(T )−K2

]
+

]
≡

∫ ∞
k1

∫ ∞
k2

e−rT
(
es1 − ek1

)(
es2 − ek2

)
qT (s1, s2)ds2ds1 , (1)

whereQ is the risk-neutral measure and qT (·, ·) the corresponding joint density of s1(T ), s2(T ).
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The characteristic function of this density is defined by

φ(u1, u2) := EQ

[
exp(iu1s1(T ) + iu2s2(T ))

]
=

∫ ∞
−∞

∫ ∞
−∞

ei(u1s1+u2s2)qT (s1, s2)ds2ds1.

As in [5, 8], we multiply the option price (1) by an exponentially decaying term so that it is
square-integrable in k1, k2 over the negative axes:

cT (k1, k2) := eα1k1+α2k2CT (k1, k2) α1, α2 > 0.

We now apply a Fourier transform to this modified option price:

ψT (v1, v2) :=
∫ ∞
−∞

∫ ∞
−∞

ei(v1k1+v2k2)cT (k1, k2)dk2dk1

=
∫∫

R2

e(α1+iv1)k1+(α2+iv2)k2

∫ ∞
k2

∫ ∞
k1

e−rT
(
es1 − ek1

)(
es2 − ek2

)
qT (s1, s2)ds2ds1dk2dk1

=
∫∫

R2

e−rT qT (s1, s2)
∫ s2

−∞

∫ s1

−∞
e(α1+iv1)k1+(α2+iv2)k2

(
es1 − ek1

)(
es2 − ek2

)
dk2dk1ds2ds1

=
∫∫

R2

e−rT qT (s1, s2) e(α1+1+iv1)s1+(α2+1+iv2)s2

(α1 + iv1)(α1 + 1 + iv1)(α2 + iv2)(α2 + 1 + iv2)
ds2ds1

=
e−rTφT

(
v1 − (α1 + 1)i, v2 − (α2 + 1)i

)
(α1 + iv1)(α1 + 1 + iv1)(α2 + iv2)(α2 + 1 + iv2)

. (2)

Thus if the characteristic function φT is known in closed form, the Fourier transform ψT of the
option price will also be available analytically, yielding the option price itself via an inverse
transform:

CT (k1, k2) =
e−α1k1−α2k2

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−i(v1k1+v2k2)ψT (v1, v2)dv2dv1.

Invoking the trapezoid rule we can approximate this Fourier integral by the following sum:

CT (k1, k2) ≈ e−α1k1−α2k2

(2π)2

N−1∑
m=0

N−1∑
n=0

e−i(v1,mk1+v2,nk2)ψT (v1,m, v2,n)∆2∆1, (3)

where ∆1,∆2 denote the integration steps and

v1,m := (m− N

2
)∆1 v2,n := (n− N

2
)∆2 m,n = 0, . . . , N − 1. (4)

Recall that a two-dimensional fast Fourier transform (FFT) computes, for any complex
(input) array,

{
X[j1, j2] ∈ C

∣∣ j1 = 0, . . . , N1 − 1, j2 = 0, . . . , N2 − 1
}

, the following (output)
array of identical structure:

Y [l1, l2] :=
N1−1∑
j1=0

N2−1∑
j2=0

e
− 2πi
N1

j1l1− 2πi
N2

j2l2X[j1, j2], (5)
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for all l1 = 0, . . . , N1 − 1, l2 = 0, . . . , N2 − 1. In order to apply this algorithm to evaluate the
sum in (3) above, we define a grid of size N ×N , Λ :=

{
(k1,p, k2,q) : 0 ≤ p, q ≤ N − 1

}
, where

k1,p := (p− N

2
)λ1, k2,q := (q − N

2
)λ2

and evaluate on it the sum

Γ(k1, k2) :=
N−1∑
m=0

N−1∑
n=0

e−i(v1,mk1+v2,nk2)ψT (v1,m, v2,n).

Choosing λ1∆1 = λ2∆2 = 2π
N gives the following values of Γ(·, ·) on Λ:

Γ(k1,p, k2,q) =
N−1∑
m=0

N−1∑
n=0

e−i(v1,mk1,p+v2,nk2,q)ψT (v1,m, v2,n)

=
N−1∑
m=0

N−1∑
n=0

e−
2πi
N

[
(m−N/2)(p−N/2)+(n−N/2)(q−N/2)

]
ψT (v1,m, v2,n)

= (−1)p+q
N−1∑
m=0

N−1∑
n=0

e−
2πi
N

(mp+nq)
[
(−1)m+nψT (v1,m, v2,n)

]
.

This is computed by the fast Fourier transform of (5) by taking the input array as

X[m,n] = (−1)m+nψT (v1,m, v2,n), ∀m,n = 0, . . . , N − 1.

The result is an approximation for the option price at N ×N different (log) strikes given by

CT (k1,p, k2,q) ≈
e−α1k1,p−α2k2,q

(2π)2
Γ(k1,p, k2,q)∆2∆1 0 ≤ p, q ≤ N.

3 FFT Pricing of the Spread Option

3.1 Pricing a Spread Option with Riemann Sums

Let us now consider the price of a spread option, given by

V (K) := EQ

[
e−rT

[
S1(T )− S2(T )−K

]
+

]
=

∫ ∫
Ω
e−rT

(
es2 − es1 −K

)
qT (s1, s2)ds2ds1

=
∫ ∞
−∞

∫ ∞
log(es1+K)

e−rT
(
es2 − es1 −K

)
qT (s1, s2)ds2ds1,

where the exercise region is defined as

Ω :=
{

(s1, s2) ∈ R2
∣∣∣es2 − es1 −K ≥ 0

}
.

Transforming the option price with respect to the log of the strike K no longer gives the same
kind of simple relationship with the characteristic function as in (2) of the previous section
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as a consequence of the simple shape of the exercise region Ω of the correlation option. If the
boundaries of Ω are made up of straight edges, an appropriate affine change of variables can
be introduced to make the method in the previous section applicable. This will not work for
the pricing of spread options for which the exercise region is by nature non-linear (see Figure
1).

Exercise Region 

Figure 1: Exercise region of a spread option in logarithmic variables

Notice however from above that the FFT option pricing method gives N × N prices
simultaneously in one transform, that is, integrals of the payoff over N ×N different regions.
By subtracting and collecting the correct pieces, we can form tight upper and lower bounds
for an integral over a non-polygonal region analogous to integrating by Riemann sums. More
specifically, we consider the following modified exercise region:

Ωλ :=
{

(s1, s2) ∈
[
− 1

2Nλ,
1
2Nλ

)
× R

∣∣∣ es2 − es1 −K ≥ 0
}

and construct two “sandwiching” regions Ω ⊂ Ωλ ⊂ Ω out of rectangular strips with vertices
on the grid of the inverse transform (see Figure 2 and 3).

Take as before an N ×N equally spaced grid Λ1 × Λ2, where

Λ1 :=
{
k1,p

}
:=
{(
p− 1

2N
)
λ1 ∈ R

∣∣0 ≤ p ≤ N − 1
}

Λ2 :=
{
k2,q

}
:=
{(
q − 1

2N
)
λ2 ∈ R

∣∣0 ≤ q ≤ N − 1
}

For each p = 0, . . . , N − 1, define

k2(p) := min
0≤q≤N−1

{
k2,q ∈ Λ2

∣∣ek2,q − ek1,p+1 ≥ K
}

k2(p) := max
0≤q≤N−1

{
k2,q ∈ Λ2

∣∣ek2,q − ek1,p < K
}
,
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the s2-coordinates of the lower edges of the rectangular strips,

Ωp := [k1,p, k1,p+1)× [k2(p),∞)

Ωp := [k1,p, k1,p+1)× [k2(p),∞).

Putting these together we obtain two regions bounding Ωλ:

Ω :=
N−1⋃
p=0

Ωp , Ω :=
N−1⋃
p=0

Ωp.

-4

-3

-2

-1

0

1

2

3

-6 -5 -4 -3 -2 -1 0 1 2 3

Exercise Region 

Figure 2: Construction of the boundary of the approximate region Ω

Since Ω ⊂ Ωλ and the spread option payoff is positive over Ωλ, we have a lower bound for
its integral with the pricing kernel over this region:

V (K) :=
∫ ∫

Ωλ

e−rT
(
es2 − es1 −K

)
qT (s1, s2)ds2ds1

&
∫ ∫

Ω
e−rT

(
es2 − es1 −K

)
qT (s1, s2)ds2ds1. (6)

Establishing the upper bound is a trickier issue since the integrand is not positive over the
entire region Ω. In fact, the payoff is strictly negative over Ω \Ωλ by the definition of Ωλ. To
overcome this, we shall pick some ε > 0 such that

Ω ⊂
{

(s1, s2) ∈ R2
∣∣∣es2 − es1 −K ≥ −ε}.

9
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-1.5

-1

-0.5

0

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Exercise Region 

Figure 3: Approximation of the exercise region with rectangular strips

We then have

V (K) = e−rT
[ ∫ ∫

Ωλ

(
es2 − es1 − (K − ε)

)
qT (s1, s2)ds2ds1 −

∫ ∫
Ωλ

ε · qT (s1, s2)ds2ds1

]
. e−rT

[ ∫ ∫
Ω

(
es2 − es1 − (K − ε)

)
qT (s1, s2)ds2ds1 −

∫ ∫
Ω
ε · qT (s1, s2)ds2ds1

]
= e−rT

[ ∫ ∫
Ω

(
es2 − es1

)
qT (s1, s2)ds2ds1 − (K − ε)

∫ ∫
Ω
qT (s1, s2)ds2ds1

−ε
∫ ∫

Ω
qT (s1, s2)ds2ds1

]
. (7)

By breaking (6) and (7) into two components we can obtain these bounds by integrating
(es2−es1)·qT (s1, s2) and the density qT (s1, s2) over Ω and Ω, using the fast Fourier Transform
method described in the previous section. Set

Π1 :=
∫ ∫

Ω

(
es2 − es1

)
qT (s1, s2)ds2ds1 Π2 :=

∫ ∫
Ω
qT (s1, s2)ds2ds1

Π1 :=
∫ ∫

Ω

(
es2 − es1

)
qT (s1, s2)ds2ds1 Π2 :=

∫ ∫
Ω
qT (s1, s2)ds2ds1.

Equations (6) and (7) can now be written as

e−rT
[

Π1 −KΠ2

]
. V (K) . e−rT

[
Π1 − (K − ε)Π2 − εΠ2

]
. (8)

3.2 Computing the Sums by FFT

We now demonstrate in detail how to compute, by performing two fast Fourier transforms,
the four components Π1,Π2,Π1,Π2 in the approximate pricing equations (8) and hence the
spread option prices across different strikes. (In fact, if one only wishes to approximate the
option price from below, a single transform is sufficient.) This is set out explicitly for Π1
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below and the other three cases follow similarly.

Π1 :=
∫ ∫

Ω

(
es2 − es1

)
qT (s1, s2)ds2ds1 =

N−1∑
p=0

∫ ∫
Ωp

(
es2 − es1

)
qT (s1, s2)ds2ds1

:=
N−1∑
p=0

[ ∫ ∞
k1,p

∫ ∞
k2(p)

(
es2 − es1

)
qT (s1, s2)ds2ds1 −

∫ ∞
k1,p+1

∫ ∞
k2(p)

(
es2 − es1

)
qT (s1, s2)ds2ds1

]

=
N−1∑
p=0

Π1(k1,p, k2(p))−Π1(k1,p+1, k2(p)),

(9)

where
Π1(k1, k2) :=

∫ ∞
k1

∫ ∞
k2

(
es2 − es1

)
qT (s1, s2)ds2ds1.

As before we apply a Fourier transform to the following modified integral:

π1(k1, k2) := eα1k1+α2k2Π1(k1, k2) α1, α2 > 0.

for a simple relationship with the characteristic function:

χ1(v1, v2) :=
∫ ∞
−∞

∫ ∞
−∞

ei(v1k1+v2k2)π1(k1, k2)dk2dk1

=
∫ ∞
−∞

∫ ∞
−∞

e(α1+iv1)k1+(α2+iv2)k2

∫ ∞
k2

∫ ∞
k1

(
es2 − es1

)
qT (s1, s2)ds2ds1 dk2dk1

=
∫ ∞
−∞

∫ ∞
−∞

(
es2 − es1

)
qT (s1, s2)

∫ s2

−∞

∫ s1

−∞
e(α1+iv1)k1+(α2+iv2)k2dk2dk1 ds2ds1

=
∫ ∞
−∞

∫ ∞
−∞

(
es2 − es1

)
qT (s1, s2)

e(α1+iv1)s1+(α2+iv2)s2

(α1 + iv1)(α2 + iv2)
ds2ds1

=
φT
(
v1 − α1i, v2 − (α2 + 1)i

)
− φT

(
v1 − (α1 + 1)i, v2 − α2i

)
(α1 + iv1)(α2 + iv2)

. (10)

Discretising as in the previous section with

λ1 ·∆1 = λ2 ·∆2 = 2π
N

v1,m := (m− N
2 )∆1 v2,n := (n− N

2 )∆2, (11)

we now have via an (inverse) Fast Fourier transform values of Π1(·, ·) on all N ×N vertices
of the grid Λ1 × Λ2 given by

Π1(k1,p, k2,q) =
e−α1k1,p−α2k2,q

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−i(v1k1,p+v2k2,q)χ1(v1, v2)dv2dv1

≈ e−α1k1,p−α2k2,q

(2π)2

N−1∑
m=0

N−1∑
n=0

e−i(v1,mk1,p+v2,nk2,q)χ1(v1,m, v2,n)∆2∆1

=
(−1)p+q · e−α1k1,p−α2k2,q

(2π)2
∆2∆1

N−1∑
m=0

N−1∑
n=0

e−
2πi
N

(mp+nq)
[
(−1)m+nχ1(v1,m, v2,n)

]
and hence the values of the 2 · p required components in (9). Repeating the same procedure
for the other components in (6) and (7) gives the bounds for the spread option value V (K).
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4 Numerical Performance

4.1 Underlying Models

Previous works on spread options have concentrated on the two-factor Geometric Brownian
motion (GBM) model in which the risk-neutral dynamics of the underlying assets are given
by

dS1 = S1((r − δ1)dt+ σ1dW 1)
dS2 = S2((r − δ2)dt+ σ2dW 2),

where EQ[dW 1dW 2] = ρdt and r, δi, σi denote the risk-free rate, dividend yields and volatil-
ities respectively. Working with the log prices, si := logSi, one has the following pair of
SDEs:

ds1 = (r − δ1 − 1
2σ

2
1)dt+ σ1dW 1

ds2 = (r − δ2 − 1
2σ

2
2)dt+ σ2dW 2 .

We shall now extend this model to include a third factor, a stochastic volatility for the two
underlying processes.

ds1 = (r − δ1 − 1
2σ

2
1ν)dt+ σ1

√
ν dW 1

ds2 = (r − δ2 − 1
2σ

2
2ν)dt+ σ2

√
ν dW 2

dν = κ(µ− ν)dt+ σν
√
ν dW ν ,

where

EQ[dW 1dW 2] = ρ dt

EQ[dW 1dW ν ] = ρ1 dt

EQ[dW 2dW ν ] = ρ2 dt.

This is a direct generalisation of the single-asset stochastic volatility model [14, 21] and is
considered for the case of correlation options in [2]. Applying Ito’s lemma and solving the
resulting PDE, one obtains an analytical expression for its characteristic function:

φsv(u1, u2) := EQ

[
exp

(
iu1s1(T ) + iu2s2(T )

)]
= exp

[
iu1 · s1(0) + iu2 · s2(0) +

(
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )

)
· ν(0)

+
∑
j=1,2

uj(r − δj)T −
κµ

σ2
ν

[
2 · log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+
(
θ − γ

)
T

]]
, (12)

where

ζ := −1
2

[(
σ2

1u
2
1 + σ2

2u
2
2 + 2ρσ1σ2u1u2

)
+ i
(
σ2

1u1 + σ2
2u2

)]
γ := κ− i

(
ρ1σ1u1 + ρ2σ2u2

)
σν

θ :=
√
γ2 − 2σ2

νζ.

12



Notice that as we let the parameters of the stochastic volatility process approach the limits

κ, µ, σν → 0, ν(0)→ 1,

the three-factor stochastic volatility (SV) model degenerates into the two-factor GBM model
and the characteristic function simplifies to that of a bivariate normal distribution:

φgbm(u1, u2) = exp
[
iu1 · s1(0) + iu2 · s2(0) + ζ T +

∑
j=1,2

uj(r − δj)T
]
.

We shall use these two characteristic functions to compute the spread option prices under
the GBM and SV model. In the former case the prices computed by the FFT method are
compared to the analytic option value obtained by a one dimensional integration based on
the conditioning technique. This fails when we introduce a stochastic volatility factor and
thus a Monte Carlo pricing method is used as a benchmark for the SV model.

Prices are also compared for the two diffusion models. Given a set of parameter values
for the SV model, one can compute from the characteristic function the mean and covariance
matrix of s1(T ), s2(T ) under the stochastic volatility assumption. We can then infer for these
the parameter values of the two-factor GBM model needed to produce the same moments.
Option values may then be computed and compared to the three factor SV prices.

The code is written in C++ and includes the fast Fourier Transform routine FFTW (the
Fastest Fourier Transform in the West), written by M. Frigo and S.G. Johnson [12]. The
experiments were conducted on an Athlon 650 MHz machine running under Linux with 512
MB RAM.

4.2 Computational Results

Table 1 documents the spread option prices across a range of strikes under the two factor Geo-
metric Brownian motion model [22], computed by three different techniques: one-dimensional
integration (analytic), the fast Fourier Transform and the Monte Carlo method. The values
for the FFT methods shown are the “lower” prices, computed over Ω, regions that approach
the the true exercise region from below and are therefore all less than the analytic price in
the first column. 80000 simulations were used to produce the Monte Carlo prices and the
average standard errors are recorded in brackets at the bottom. Note that if one is only in-
terested in computing prices in the two factor world, it is not actually necessary to discretise
the time horizon [0, T ] as was done here. Since we know the terminal joint distribution of
the two asset prices are bivariate normal, they can be simulated directly and one single time
step is sufficient. However, the point of this exercise is to acquire an intuition into how the
computational time and accuracy varies as one changes the underlying assumptions, since the
introduction of extra factors into a model inevitably involves generating the whole paths of
these factors.

The average errors of the two methods are computed and recorded in Table 2. First we
note that integrating over Ω from below is more accurate than over Ω, as one can expect from
the less straightforward procedure for constructing the upper bound. For N = 1024 the lower
bound has an error of roughly one basis point, whereas N = 2048 takes us well below this
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Table 1: Prices computed by alternative methods under the 2-factor GBM model

Analytic Fast Fourier Transform Monte Carlo
No. Discretisation N Time Steps

Strikes K 512 1024 2048 4096 1000 2000
0.0 8.513201 8.509989 8.511891 8.512981 8.513079 8.500949 8.516613
0.4 8.312435 8.311424 8.311995 8.312370 8.312385 8.300180 8.315818
0.8 8.114964 8.113877 8.114304 8.114901 8.114916 8.102730 8.118328
1.2 7.920790 7.919520 7.920173 7.920712 7.920741 7.908614 7.924135
1.6 7.729903 7.728471 7.729268 7.729810 7.729852 7.717831 7.733193
2.0 7.542296 7.540686 7.541637 7.542185 7.542242 7.530322 7.545496
2.4 7.357966 7.356278 7.357288 7.357830 7.357901 7.346038 7.361136
2.8 7.176888 7.175080 7.176185 7.176734 7.176818 7.164956 7.180054
3.2 6.999052 6.997200 6.998345 6.998881 6.998979 6.987070 7.002243
3.6 6.824451 6.822477 6.823721 6.824259 6.824371 6.812353 6.827700
4.0 6.653060 6.651047 6.652306 6.652852 6.652976 6.640874 6.656364

(0.018076) (0.018184)

S1(0) = 96 δ1 = 0.05 σ1 = 0.1 S2(0) = 100 δ2 = 0.05 σ2 = 0.2
r = 0.1 T = 1.0 K = 4.0 ρ = 0.5

Note: 80000 simulations have been used in the Monte Carlo method

error level. From Table 3 they take 4.28 and 18.46 seconds respectively, clearly outperforming
the Monte-Carlo method. For the same level of accuracy, one would require simulations far
more than 80000, which already take 304.95 seconds (606.40 seconds for the case of 2000
time steps) to generate. Although the Monte Carlo code employed uses no variance reduction
technique other than antithetic variates and its speed could be significantly improved, the
method is still unlikely to beat the FFT method in performance.

Table 2: Accuracy of alternative methods for the 2-factor GBM model: Error in b.p.

Fast Fourier Transform Monte Carlo
Number of Number of Time Steps

Discretisation Lower Upper Simulations 1000 2000
512 4.44 25.60 10000 129.15 (0.051839) 70.81 (0.050949)
1024 1.13 13.90 20000 22.34 (0.036225) 40.67 (0.035899)
2048 0.32 7.20 40000 7.44 (0.025737) 7.63 (0.025733)
4096 0.10 3.65 80000 18.34 (0.018076) 4.94 (0.018184)

S1(0) = 96 δ1 = 0.05 σ1 = 0.1 S2(0) = 100 δ2 = 0.05 σ2 = 0.2
r = 0.1 T = 1.0 K = 4.0 ρ = 0.5

A close examination of Table 3 reveals the real strength of the FFT method. As we in-
troduce a stochastic volatility factor, the Monte Carlo technique needs to generate this value
at each time step, which is then multiplied with the increments dW 1, dW 2 of the Brownian
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Table 3: Computing Time of Alternative Methods

Fast Fourier Transform
Number of 10 Strikes 100 Strikes

Discretisation GBM SV GBM SV
512 1.04 1.11 1.10 1.20
1024 4.28 4.64 4.48 4.83
2048 18.46 19.54 18.42 19.74
4096 74.45 81.82 76.47 81.27

Monte Carlo: 1000 Time Steps
Number of 10 Strikes 100 Strikes
Simulation GBM SV GBM SV

10000 38.2 144.87 41.95 151.75
20000 76.22 288.09 83.81 303.31
40000 152.5 576.25 168.48 606.53
80000 304.95 1152.9 335.20 1212.76

Monte Carlo: 2000 Time Steps
Number of 10 Strikes 100 Strikes
Simulation GBM SV GBM SV

10000 75.57 287.41 79.83 295.21
20000 157.28 574.18 159.08 590.23
40000 303.37 1149.25 317.49 1184.32
80000 606.40 2298.37 636.33 2359.05

motions to give the asset price in the next period. As indicated across the columns this in-
creases the computational time by almost a factor of 4. Recalling the FFT method described
in the previous section, we notice that only a different characteristic function is substituted
when more factors are included, and the transform remain two dimensional. Comparing the
times for the GBM and SV models, we observe only a 5 to 9 percent increase and falling as
we increase the discretisation number. The extra computing time is due to the more complex
expression of the characteristic function with a larger set of parameters. For both methods
however, increasing the number of strikes does not result in dramatic increases in the com-
putational times.

Table 4 shows the spread option prices for different strikes under the three factor SV
model. The Monte Carlo prices with a discretisation of 2000 time steps oscillate around those
computed by the FFT method. Since we observe that in the two factor case the errors of the
Monte Carlo method remain high even for 80000 simulations, more experiments need to be
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conducted for a conclusive judgment on this point.

Table 4: Prices computed by alternative methods under the 3-factor SV model

Fast Fourier Transform Monte Carlo
No. of Discretisations No. of Simulations

Strikes K 512 2048 10000 20000 40000 80000
2.0 7.546895 7.543618 7.514375 7.567536 7.572211 7.523968
2.2 7.451878 7.452998 7.421861 7.475093 7.479742 7.431489
2.4 7.357703 7.363377 7.330142 7.383470 7.388080 7.339813
2.6 7.264298 7.274876 7.239209 7.292616 7.297218 7.248961
2.8 7.171701 7.186990 7.149234 7.202571 7.207191 7.158919
3.0 7.079987 7.099819 7.060043 7.113303 7.117954 7.069687
3.2 6.989008 7.013731 6.971625 7.024808 7.029515 6.981272
3.4 6.898826 6.928373 6.884026 6.937119 6.941875 6.893664
3.6 6.809471 6.843671 6.797246 6.850283 6.854984 6.806859
3.8 6.720957 6.759903 6.711328 6.764275 6.768886 6.720859
4.0 6.633232 6.676768 6.626221 6.679076 6.683587 6.635661

(0.052702) (0.036984) (0.025739) (0.018206)

r = 0.1 T = 1.0 ρ = 0.5
S1(0) = 96 δ1 = 0.05 σ1 = 0.5 ρ1 = 0.25
S2(0) = 100 δ2 = 0.05 σ2 = 1.0 ρ1 = −0.5
ν(0) = 0.04 κ = 1.0 µ = 0.04 σν = 0.05

Note: 2000 time steps have been used for the Monte Carlo simulation.

Finally, Figure 5 plots the difference in the spread option values under the 3-factor stochas-
tic volatility model and the 2-factor geometric Brownian motion model. Under the SV model,
knowing the characteristic function of s1, s2, we can calculate their means and covariance ma-
trix, which can then be used as the implied parameters r − δi and σi, i = 1, 2, and ρ for the
GBM model. We repeat the procedure for different values of ρ1, ρ2, the correlation param-
eters between the Brownian motions W i, i = 1, 2 driving the asset prices and W ν driving
the stochastic volatility factor ν. When ρ1, ρ2 are high, a large increment W ν in (12) is
more likely to induce simultaneously large values of W i, i = 1, 2, and dν. This increases the
volatilities of both s1 and s2 and hence the spread and the spread option value. Compared
with the two factor GBM model, the SV model of (12) obviously exhibits a richer structure
for the spread option value which can be used by traders with forward views on the term
structures of volatilities and correlations of the components of the spread [16].

5 Conclusions and future directions

We have described and implemented an efficient method of computing, via a construction of
suitable approximate exercise regions, the value of a generic spread option under models for
which the characteristic function of the two underlying asset prices is known in closed form.
This takes us well beyond the two factor constant correlation Gaussian framework found in the
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Figure 4: Price Difference between SV Model and the GBM Model with Implied Parameters

existing literature, which is commonly assumed only for its tractability. In particular, one can
now price spread options under many multi-factor models in the affine jump-diffusion family.
For example, an index spread option in the equity markets can be priced under stochastic
volatility models. Spark and crack spread options in the energy market can now be valued
with asset price spikes and random volatility jumps, with major implications for trading, as
well as for asset and real option valuation.

Furthermore, switching between alternative diffusion models only amounts to substituting
a different characteristic function for the underlying prices/rates, leaving the dimension of the
transform and the summation procedure unchanged. As more factors are introduced more
time is devoted to the inexpensive evaluation of the more complex characteristic function,
but not to the fast Fourier Transform algorithm. This significantly cuts down the increase of
computational times expected when one applies the generic PDE or Monte Carlo approaches
to such a high dimensional option pricing problem.

The computational advantage of the approach is demonstrated with numerical experi-
ments for both the two factor geometric Brownian motion and the three factor stochastic
volatility models. Price differentials between the models as one varies the parameters of the
volatility process confirm the significance of a non-trivial correlation structure in the model
dynamics.
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One possible direction to enrich the volatility and correlation structure further is to assume
a four factor model with two correlated stochastic volatility processes [7]. The calibration
issue also remains to be resolved in detail, where the focus of concern will be an efficient
procedure for backing out a implied correlation surface from observed option prices.
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