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Abstract 

 

Operational risk is defined as a consequence of critical contingencies most of which are 

quantitative in nature and many questions regarding economic capital allocation for 

operational risk continue to be open. Existing quantitative models that compute the value 

at risk for market and credit risk do not take into account operational risk. They also 

make various assumptions about ’normality’ and so exclude extreme and rare events. In 

this paper we formalize the definition of operational risk and apply extreme value theory 

for the purpose of calculating the economic capital requirement against unexpected 

operational losses. 
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1. Introduction 

 

Highly publicized events such as those at LTCM, Barings and Sumitomo have all 

involved mismanagement leading to extraordinary losses and raising concerns about 

financial instability at international levels. As a result, along with the established capital 

charges for market and credit risks, the Basle Committee on Banking Supervision is 

proposing an explicit capital charge to guard the banks against operational risks. The 

response from the banks has been an increasing number of operational risk management 

initiatives with corresponding efforts to formulate a framework for capital allocation for 

operational risk. This paper contains a model for calculating the economic capital against 

extreme operational risks which is our contribution to quantification of operational risk. 

 

One of the first definitions of operational risk (British Bankers’ Association, 1997) was 

specified by a list of possible causes [4]: 
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After four years of intensive debate on what constitutes an operational risk the current 

Basle proposal defines operational risk as [2]: 
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The ‘semantic Wild West’ of operational risk [15] is still 
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with us and the view of operational risk as ‘everything not covered by exposure to credit 

and market risk’ remains the one most often used by practitioners.  

 

Our own operational risk study started with a search for a definition suitable for 

quantitative modelling. The resulting modelling approach is presented in Section 2. 

According to Basle: ‘A capital charge for operational risk should cover unexpected 

losses. Provisions should cover expected losses.’ The Committee clarifies the complex 

issues of risk management by adopting a “three-pillared” approach. The first pillar is 

concerned with capital allocation, the second pillar with supervision and controls and the 

third with transparency and consistency of risk management procedures. With the view 

that statistical analysis of loss data and consistency of modelling techniques may be 

considered respectively as parts of Pillars 2 and 3, we adopt the ‘practitioners’ definition 

of operational risk and propose a model for the capital allocation of Pillar 1. We also 

assume that provisions and improvements in management control (Pillars 2 and 3) will 

cover low value frequently occurring losses and we concentrate here on extreme and rare 

operational risks. A definition of operational risk suitable for quantitative modelling and 

our framework for economic capital allocation are presented in Section 2. This stochastic 

model is based on results from extreme value theory and in Section 3 we review key 

results on stable distributions and the classical theory of extremes. In Section 4 we detail 

our model and discuss related implementation issues. A Bayesian hierarchical simulation 

method is applied to the parameters estimation of extreme distributions from small-sized 

samples. The method also provides a more transparent assessment of risk by taking into 

account data on losses due to different risk factors or business units. We illustrate our 

operational risk framework on an example of anonymous European bank during the 

period of the Russian Crisis in Section 5 and draw conclusions and sketch future 

directions in Section 6.  
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2. Firm-wide operational risk management  

 

Market or credit risk definitions came naturally from specific businesses, effectively 

market trading, lending or investment, with the corresponding consistent probabilistic 

definition of the value at risk (VaR). Operational risk definitions on the other hand are 

based on an identification of causes whose consequences are often not measurable. Such 

differences in defining types of risk result in segregated capital allocation rules  for 

operational risk. Yet the importance of integration of all forms of risk are obvious. 

 

Recall that VaR provides a measure of the market risk of a portfolio due to adverse 

market movements under normal �
N�M�[�O�L)R�X�S�T(Q L�Q X�S�Z)N�S�T\Q�Z�O���U=M�O�Z$Z$O�T\_�O�M�O<Q S:M�O4L�W�M�ShL�O�M

�
Z

N�Z
 

where the return R is the normalised portfolio value change over a specified time horizon, 

N denotes a suitable normal density and π is a probability corresponding to a one-sided 

confidence level (typically 5% or 1%). More generally, N is replaced by an appropriate 

return density fR , for example, one which is obtained by simulation. 

Similarly, credit ratings correspond to normal credit conditions, for example with default 

corresponding to a rating below CCC. In credit modelling the default point threshold is 

difficult to formalize as it depends on the evolution of the institution’s assets (for a 

discussion, see M. Ong [20]). The ‘value of the firm’ framework as implemented by 

CreditMetrics defines a series of levels of the firm’s assets which determine the credit 

rating of the firm. In Ong’s interpretation: ‘Assuming that asset returns denoted by the 

symbol R, are normally distributed with mean µ and standard deviation σ,  the 

generalization concerning the firm’s credit quality immediately translates to the slicing of 

the asset returns distribution into distinct bands. Each band, representing the different 

threshold levels of asset returns, can be mapped one-to-one to the credit migration 

frequencies in the transition matrix.’  Thus the firm’s default probability expressed in 

terms of its asset return distribution is given by  

P (  < VaR) ( )  ,                                                                      (1)
VaR

N R dR π
−∞

= =∫R
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Again, more general or empirical (historical) distributions might be substituted for the 

Gaussian in (2) to represent ‘normal’ market conditions more accurately. 

 

One might thus naturally ask how the definition of “normality” relates to operational risk 

and to the problem of internal bank controls and external supervision. These questions are 

critical when a specific loss event happens, particularly when it is related to extreme 

losses. As market, credit and operational risks become entangled at the time of 

occurrence of large losses, it is important that an operational risk analyst deals with both 

market and credit risk management without double-counting. While risk capital is 

generally understood as a way of protecting a bank against “unexpected” losses – 

expected losses are covered by business-level reserves – it is not clear as to what degree 

risk capital should be used to cover the most extreme risks. In an attempt to answer these 

questions we construct a framework that allows the allocation of capital against extreme 

operational losses while identifying the roles of credit and market risks in their 

occurrence. 

 

Let us assume that a bank’s market and credit risk management is informed by 

quantitative models that compute the value at risk for market risk and credit risk and that 

allocate economic capital to these risks. It is clear that such capital allocation is not 

sufficient to cover unexpected losses due to natural disasters, fraudulent activities and 

human errors. Currently used models do not take into account operational risks. For 

example, VaR models allocate capital ‘under normal market conditions’ and so exclude 

extreme or rare events such as natural disasters and major social or political events. As a 

consequence, inadequate models contribute to operational losses as a part of an 

‘inadequate internal process’. 

 

The first step in operational risk management should be a careful analysis of all available 

data to identify the statistical patterns of losses related to identifiable risk factors. Ideally, 

P (  < CVaR) ( )  .                                                 (2)
CVaR

N R dR ρ π
−∞

= = <∫R



 6

this analysis would form part of the financial surveillance system of the bank. In the 

future perhaps such an analysis might also form part of the duties of bank supervisors. In 

other words at a conceptual level such an analysis relates to the third of the Basle 

Committee’s three pillars. The important point is that this surveillance is concerned with 

the identification of the “normality” of business processes. In statistical terms it means a 

fundamental justification of the Gaussian or normal model to describe the central part of 

the distribution which does not allow for large fluctuations in data. The identification of 

suitable market and credit risk models suitable for the tail events forms a natural part of 

an operational risk assessment. It allows an analyst to classify a bank’s losses into two 

categories: 

(1) significant in value but rare, corresponding to extreme loss event distributions; 

(2) low value but frequently occurring, corresponding to ‘normal’ loss event 

distributions.  

Thus an analysis of profit and loss data and the verification or rejection of the assumption 

of normality may both be considered as the part of the (usually internal) risk supervisory 

process. We take the view that over time control procedures will be developed by a 

financial institution for the reduction of the low value/frequent losses and for their 

illumination and disclosure -- the second pillar of the Basle approach. These control 

procedures, and any continuing expected level of losses, should be accounted for in the 

operational budget.  

 

Any deviation from the normality assumed, or increased volatility in the markets, will 

tend to underestimate market value at risk. Similarly, under normal conditions for credit 

risk, which corresponds to credit ratings higher than BBB, credit models provide 

measures for credit risk. This allows us to assume that only losses of large magnitude 

need be considered for operational risks. With the view that control procedures verify the 

assumptions of internal market and credit models, and that losses within the limits of 

market and credit value at risk can be accommodated, we assume that only losses of 

larger magnitude need be considered for operational risk capital provision. Hence we 

adopt the accepted practice of defining operational risk as ‘everything which is not 
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market or credit risk’ and assume operational losses to be in the category of losses which 

are larger than those due to market or credit risks under normal market conditions.  

 

As all forms of risk are driven by the same fundamental market conditions, capital 

allocation for market, credit risks and operational risk must be derived from the same 

profit and loss distribution simultaneously1. Therefore for integrated profit and loss data 

at the firm- or business unit-level the following thresholds for losses are obtained from 

market and credit risk models as: 

-- the unexpected loss  level due to market risk, denoted by VaRu π , which is exceeded with 

probability π  

-- the level of loss due to both credit and market risks, denoted CVaRu
ρ

which is exceeded 

probability ρ ≤ π, so  that  CVaR VaRu u
ρ π

≤ .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Decomposition of the loss-tail of a Profit & Loss distribution into its three loss-

types (market, credit and operational losses) and definition of  the threshold 

for extreme operational losses.  

                                                             
1 This conceptual view of total risk modelling does not necessarily mean simultaneous implementation of 

market, credit and operational risk model components. 
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Losses beyond the CVaRu
ρ

level, or so called unexpected losses, are assumed to belong to 

the operational risk category. Therefore extreme operational losses are modelled as 

excesses over both market and credit losses on the P&L distribution as shown in Figure 1, 

with the risk measures corresponding to appropriate approximating distribution. The 

required capital allocation for operational risk will be derived from the parameters of the 

asymptotic distribution of extremes of profit and loss.  

 

For the purpose of operational risk management we obtain an unexpected loss threshold u 

obtained from the operational risk model to be developed (see Section 4). We shall 

suppose that CVaRu
ρ

level approximately equals to this threshold u. Relations between the 

thresholds for market and credit risk may be obtained by variety of methods as 

implemented by internal models. These levels should be re-examined with respect to the 

overall implementation of risk management procedures according to the definitions of 

‘expected’ and ‘unexpected’ losses.  

  

3. Stable random variables and extreme value theory 

 

Our formalism in defining operational risk focuses on tail events.  But consistency in 

estimation of profit and loss distributions at different levels of a financial institution and 

at different time scales is difficult to achieve and any successful implementation would 

rely on approximation and heuristics. The asymptotic theories of sums and maxima of 

random variables are thus of crucial importance for risk management. Here we recall 

some definitions and principal results used in our proposed procedure for operational risk 

capital allocation.  

 

The summary effects of daily fluctuations in price return or of a portfolio is well captured 

by a limiting normal distribution for data whose underlying distribution has finite 

variance, but this normal limit is often inadequate for highly variable data. Stable 

distributions approximate the distribution of sums of independent identically distributed 

(i.i.d.) random variables with infinite variance and include the Gaussian as special case. 
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There are many famous monographs on asymptotic theory for sums dating from the 

1950s: Gnedenko and Kolmogorov (1954) [11], Feller(1966) [9], Mandelbrot (1982) [18], 

Samorodnitsky and Taqqu (1990) [22].  

 

Many results of the asymptotic theory for sums (or central limit theory) have their 

complements in the asymptotic theory of extreme order statistics known as extreme value 

theory (EVT). EVT has been applied in engineering, hydrology, insurance and currently 

applies to financial risk management. Some of most useful references are: Galambos 

(1978) [10], Leadbetter et all (1983) [16], Du Mouchel (1983) [7], Castillo (1988) [5], 

Embrechts, Kluppelberg & Mikosch (1997) [8], R. Smith (1985, 1990, 1996) [24-28],  

Danielson and de Vries (1997 ) [6] and McNeil and Saladin (1997) [19]. 

 

One of the fundamental problems of risk management is identification of the functional 

form of a profit and loss distribution. Simulation methods will ‘construct’ such a 

distribution without requiring an analytic form, but this usually involves a complex 

implementation and considerable computing time.  

 

Every random profit/loss X has associated with it a distribution function with four basic 

parameters that have physical or geometric meaning. These are the location µ , the scale 

σ, the tail index α, or equivalently the shape ξ=1/α, and the skewness β.  

 

Stable distributions have a number of equivalent definitions in terms of the ‘stability’ 

property, the domain of attraction, or as a special subclass of the infinitely divisible 

distributions. Most important for applications is the fact that any α-stable random 

variable can be expressed as a convergent sum of random variables indexed by the arrival 

times of a Poisson process (for definitions, see[22]).  
 

A random variable X is said to have an α− stable distribution if for any n ≥ 2 there is a 

positive number nc  and a real number nd  such that  

1 2 ...
d

n n nc d+ + + = +X X X X                                                                                             (3) 
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where 1 2, ,..., nX X X  are independent copies of X  and 1/
nc n α=  for some number α, 

0 2α< ≤ , called the index of stability. 

 

Stable distributions are suitable to modelling a wide class of empirical distributions. In 

fitting such distributions to heavy-tailed samples, the parameter α measures the thickness 

of tails and finiteness of the moments of the distribution of X. The distribution functions 

of stable random variables are often not available in a closed form with the exception of a 

few special cases. Feller [9] describes stable distributions analytically by specifying their 

characteristic function given by  

 

 [ ]( ; , , , ) : E exp( ) | , , ,t itϕ α β µ σ α β µ σ=X X  

   
exp 1 ( ) ,if 1

2

2
exp 1 ( ) log ,if 1

i t t i sign t tan

i t t i sign t t

αα παµ σ β α

µ σ β α
π

      − − ≠           = 
    − + =       

 (4) 

 

for  ,  0 2,  0,  -1 1 and  realt α σ β µ−∞ < < ∞ < ≤ ≥ ≤ ≤ , where E[ � ] denotes expectation. 
A r.v. X is has a stable distribution if, and only if, it has a domain of attraction, i.e. if 

there is a sequence of independent identically distributed (i.i.d.) random variables 

1 2, ,...Y Y  and sequences of positive numbers { }nd and real numbers { }na such that  

 1 2 ... d
n

n
n

a
d

+ + + + ⇒Y Y Y
X .                                                                                                (5)  

where 
d

⇒ denotes convergence in distribution as .n → ∞  In general  1/: ( )  nd n h nα= , 

where ( ),  0h x x > ,  is a slowly (or regular) varying function at infinity, i.e. for 

sufficiently large u>0  

                          

                         lim ( ) / ( ) 1
x

h ux h x
→∞

=   .                                                                                 (6) 

 

When X is Gaussian, i.e. α=2, and  1 2, ,...Y Y  are  i.i.d. with finite variance, then (5) is the 

statement of the Central Limit Theorem (CLT). Generalizations of the CLT involve 
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infinitely divisible random variables [11]. The family of infinitely divisible distributions 

includes the stable distributions. A random variable is infinitely divisible if, and only if, 

for every natural number n it can  be represented as the sum  

                    
1 2

...
nn n n= + + +X X X X                                                                                 (7) 

of  n i.i.d. random variables. 

 

.  

Equivalently, for every natural number n there exists a characteristic function given 

by ( )tϕX  whose nth power is equal to the characteristic function 
nxϕ of X, i.e.  

                       ( )
n

n
x xϕ ϕ= .                                                                                                (8) 

In terms of distribution functions, the distribution function F of X is given by a 

convolution of corresponding nF ’s 

                     * : ...n
n n n nF F F F F= = ∗ ∗ ∗ .                                                                           (9) 

 

Let 1,..., nX X  represent i.i.d. random variables with distribution function F and define 

their partial sum by 1 2 ...n n= + + +S X X X  and their maximum by 

1 2max( , ,..., )n n=M X X X . 

It can be shown [8, 9,12] that regular variation in the tails (6) and infinite divisibility (7) 

together imply subexponentiality of a distributions, i.e. for 2n ≥  

                            
*

( )
lim ,

( )

n

x

F x
n

F x→∞
=                                                                                     (10) 

where, for example, : 1F F= − denotes the survivor function corresponding to F. 

It follows that 

                          ( ) ( )       as    n nP x P x x> > → ∞
�

S M .                                               (11) 

 

Thus behaviour of the  distribution for a sum in its tail  may be explained by that of its 

maximum term, leading to many complementary results to those of central limit theory 

for the max-stable distributions studied in extreme value theory.  
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The possible limiting distributions for the maximum nM of n i.i.d. random variables are 

identified as the class of max-stable distributions, the maximum domain of attraction is 

analogous to the domain of attraction and the Poisson representation mentioned above is 

the main theoretical tool for studying the process of exceedances of a specified level. 

 

The current theoretical foundations of EVT are given in Embrecht, Kluppelberg and 

Mikosch’s book [8]. Since [8] and R. Smith’s papers [24-28] focus on applications to 

insurance and risk management, we will only state here results required for modelling 

operational risk.  

 

The Fisher-Tippett theorem proves the convergence of the sample maxima to the non-

degenerate limit distribution Hξ;µ,σ under some linear rescaling such that for cn>0 and dn 

real, 1
, ,( ) ,

d

n n nc M d H ξ µ σ
− − → as the sample size n increases, i.e.  for x−∞ < < ∞  

 

 ; ,

M
 ( ) as .n n

n

d
P x H x n

c ξ µ σ
−  ≤ → → ∞    

         (12) 

 

Three classical extreme value distributions of normalised sample maxima which are 

included in this representation are the Gumbel, Frechet and Weibull distributions. The 

generalised extreme value distribution (GEV) Hξ;µ,σ provides a representation for the non-

degenerate limit distribution of normalised maxima with shape parameter ξ  

1

: ,

exp 1 if 0, 1 0
( )                                      (13)

exp exp if 0 .

x x

x
x

ξ

ξ µ σ

µ µξ ξ ξσ σ

µ ξ
σ

−  − −   − + ≠ + >     Η = 
 −   − − =       

 

 

For the case of α-max-stable distributions, the shape parameter ξ satisfies 

1/ 2 1/ξ α≤ = < ∞  and determines the existence of moments. For the Gaussian case 

α=1/ξ=2, while for ξ>1 the distribution has no moments finite.  
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Modelling worst case losses will involve fitting an extreme value distribution. This can 

be done by grouping the data into epochs (month, years, etc) and using its maximum 

(minimum) over an epoch as one representative of a GEV. However the longer the epoch 

the larger loss of data with this approach. The central idea of a method based on 

exceedances is to avoid such a loss of information and to consider all data which lie 

above a given threshold value [16, 17, 22, 24].    

 

Given an i.i.d. sequence of random variables X1,…, Xn drawn from an underlying 

distribution F, we are interested in the distribution of excesses Y:= X-u over a high 

threshold u. We define an exceedance of the level u if in the event X=x we have x > u. 

The distribution of excesses is given by the conditional distribution function in terms of 

the tail of the underlying distribution F as 

 

( ) ( ) ( ) ( )
: |    for 0

1 ( )u

F u y F u
F y P u y u y

F u
+ −= − ≤ > = ≤ < ∞
−

X X .       (14) 

The limiting distribution Gξ,β (y) of excesses as u → ∞ is known as the generalised 

Pareto distribution (GPD) with shape parameter ξ and scale parameter β  given by 

1

,

1 1 0

( )

1 exp 0

y

G y

y

ξ

ξ β

ξ ξβ

ξβ

−  − + ≠   = 
   − − =  

    where    
[0, ] 0

[0, ] 0.
y

ξ
β ξ
ξ

∞ ≥∈  − <
      (15) 

 

 

Pickands [21] has shown that the GPD is a good approximation of uF  in that 

 

 , ( )
0

lim sup | ( ) ( ) | 0
F F

u uu x y y
F y G yξ β→ ≤ ≤

− = ,              (16) 

where Fx (possibly infinite) is the right hand end point of the support of the distribution 

given by F and : ,F Fy x u= −  for some positive measurable function of the threshold u 
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given by β(u), provided that this distribution is in the max-domain of attraction of the 

generalized extreme value distribution. 

 

For ξ > 0, the tail of the density corresponding to F decays slowly like a power function 

and F belongs to the family of heavy-tailed distributions that includes among others the 

Pareto, log-gamma, Cauchy and t-distributions. Such distributions may not possess 

moments. Indeed, for the GPD with ξ > 0, E[Yk] is infinite for 1/k ξ> , so that for 

ξ > 1 the GPD has no mean and for ξ >1/2 it has infinite variance.  For 0 1/ 2ξ≤ ≤ , the 

tail of F decreases exponentially fast and F belongs to the class of medium-tailed 

distributions with two moments finite comprising the normal, exponential, gamma and 

log-normal distributions. Finally, for ξ < 0 the underlying distribution F is characterised 

by a finite right endpoint and such short-tailed distributions as the uniform and beta.  

 

Financial losses and operational losses in particular are often such that underlying 

extremes tend to increase without bound over time rather than clustering towards a well-

defined upper limit. This suggests that the shape parameter for the GPD estimated from 

such data can be expected to be non-negative.  

 

Equation (14) may be re-written in terms of survivor functions  as 

 ( ) ( ) ( )uF u y F u F y+ = .            (17)  

 

The survivor function ( )F u  may be estimated empirically by simply calculating the 

proportion of the sample exceeding the threshold u, i.e. ( ) uF u N n= . The corresponding 

q-quantiles of the underlying distribution F are given by 

 

           ( )1 1q
u

n
x u p

n

ξβ
ξ

−  = + − −    
           ξ ≥ 0   

 qx u
β
ξ= −                                             ξ<0                                                         (18) 

and the mean of the GPD or expected excess function equals 
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 ( | )
1

u
E u u

β ξ
ξ

+− > =
−

X X  for  ξ<1,   u>0.                                            (19) 

These may be estimated by replacing the shape and scale parameters by their sample 

estimates [19, 26].     

          

4. Stochastic model for measuring of operational risk  

 

Occurrences of extreme losses over time may be viewed as a point process uN  of 

exceedances which converges weakly to a Poisson limit [7, 17, 19]. The GPD provides a 

model for the excesses over an appropriate threshold u, while the limit Poisson 

approximation helps to make inferences about the intensity of their occurrence. The 

resulting asymptotic model is known as the peaks over threshold (POT) model [8, 16, 

17]. 

 

For u fixed the parameters of the POT model are the shape ξ and the scale uβ  parameters 

of the GPD and the Poisson exceedance rate λu. In terms of these parameters, the 

alternative location µ and scale σ parameters are given respectively by                        

                   ( )1 1u ξµ β ξ λ−= + −                           (20) 

                   ξσ β λ= .                         (21) 

 

Conversely, the location and alternative scale parameters determine the scale parameter 

and exceedance rate respectively as 

                       

                         ( )u uβ σ ξ µ= + −                                                                                    (22) 

                       

1
( )

: 1 .u

u µ ξλ ξ
σ

−− = +  
                                                                      (23) 

   

The POT model captures both aspects of operational risk measures – severity and 

frequency of loss – in terms of excess sizes and corresponding exceedance times. The 
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choice of threshold must satisfy the asymptotic convergence conditions in (11) and (16), 

i.e. be large enough for a valid approximation, but when u is too high classical parameter 

estimators for ξ and uβ  may have too high a variance due to the small size of 

exceedances. In the literature [6, 7, 8, 19, 24-28] various techniques have been proposed 

for a statistically reliable choice of threshold. We will assume that the chosen threshold u 

satisfies a ‘bias versus variance trade-off’ optimality condition. In our operational risk 

framework such a u may be termed an unexpected loss threshold. Since in this threshold 

method all excess data is used for parameter estimation, the intensity is measured in the 

same time units as the given underlying profit and loss data.   

 

Justified by the theoretical results presented from the asymptotic theory of extremes and 

based upon the point process representation of exceedances given by the POT model, we 

are now in a position to quantify operational risk. In summary, the operational risk 

measures are the expected severity and intensity of losses over a suitably chosen 

threshold u for this model estimated from appropriate profit and loss data. 

 

• Severity of the losses is modelled by the GPD. The expectation of excess loss 

distribution, i.e. expected severity is our coherent risk measure [1] given by 

                ( | )     with := ( ).
1
u u

E u u u
β ξ β σ ξ µ

ξ
+− > = + −
−

X X                                      (24)  

• The number of exceedances uN  over the threshold u and the corresponding 

exceedance times are modelled by a Poisson point process with intensity (frequency 

per unit time) given by 

 

                   

1
( )

: 1u

u µ ξλ ξ
σ

−− = +  
.                                                                       (25) 

 

• Extra capital provision for operational risk over the unexpected loss threshold u is 

estimated as the expectation of the excess loss distribution (expected severity) scaled 

by the intensity λu of the Poisson  process, viz. 
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                       ( | )
1
u

u u

u
E u u

β ξλ λ
ξ

+− > =
−

X X ,                                                        (26) 

 

where  u, β,  ξ  and λ are the parameters of the POT model and time is measured in 

the same units as data collection frequency, e.g. hours, days, weeks, etc. (Note that 

usually u and uβ λ  will be expresses in terms of the µ and σ as in (24) and (25).) 

 

• The total amount of capital provided against extreme operational risks for the time 

period T will then be calculated by 

          ( | )   
1T u T u

u
u T E u u u T

β ξλ λ
ξ

++ − > = +
−

X X ,                                               (27) 

where Tu  may in the first instance be considered to be equal to u under the assumption of 

max-stability.  

 

In general this threshold value Tu  over a long horizon T should be adjusted with respect 

to the time horizon appropriate to integrated risk management and to the thresholds 

obtained from market and credit  models. This is a topic of our current research. The 

accuracy of our economic capital allocation (26) depends of course on both the correct 

choice of threshold and accurate estimates of the GPD parameters.  

 

Extreme losses are rare by definition and consequently the issue of small data sets 

becomes of crucial importance to the accuracy of the resulting risk measures. In addition, 

operational risk data sets are not homogeneous and are often classified into several 

subsamples, each associated with a different risk factor or business unit. The 

conventional maximum likelihood (ML) estimation method performs unstably when it is 

applied to small or even moderate sample sizes, i.e. less than fifty observations. Bayesian 

simulation methods for parameter estimates allow one to overcome problems associated 

with lack of data through intensive computation.  
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The Bayesian hierarchical Markov Chain Monte Carlo (MCMC) simulation model [3, 

23] treats uncertainties about parameters by considering them to be random variables 

(Bayesian view) and generates (simulates) an empirical parameter distribution 

approximating the conditional posterior parameter distribution given the available loss 

data. A Bayesian hierarchy is used to link the posterior parameters of interest through the 

use of prior distribution hyperparameters – in our case estimates of the parameters are 

linked through the data on different risk types. Our computational procedures were built 

on R. Smith’s statistical procedures and algorithms for GPD assumption verification and 

corresponding threshold choice [24] using the special library for extreme value statistics 

of Splus software. Stability of parameter estimation in the presence of small samples is 

achieved by taking as estimates the medians of the possibly disperse empirical marginal 

posterior parameter distributions. 

 

Operational loss data may be organized into a matrix according to loss type and to 

business unit as in Table 1 (in which for simplicity only a single cell entry is shown). 

 

Business unit 

Loss factor 

1 … j … N Firm-wide 

Technology 

failure 

1
1X   

1
jX   

1
NX  1 2

1 1 1, , ..., NX X X  

Fraud 1
2X   

2
jX   

2
NX  1 2

2 2 2, , ..., NX X X  

…  …  …  … 

External event 1
nX   j

nX   N
nX  1 2, , ..., N

n n nX X X  

Total 1 1 1
1 2, ,..., nX X X

 

… 
1 2, ,...,j j j

nX X X  … 
1 2, ,...,N N N

nX X X

 

1 2, ,..., NX X X  

 

Table 1  Firm-wide matrix of operational losses.  

 

The simulated values of the parameters of the POT model are used for calculation of 

capital provision according to formulas (25) and (26). For overall capital allocation at the 

top level of the bank, we hope to reduce the overall assessed capital allocation due to 
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portfolio diversification effects and to identify the high-risk factors for specific business 

units of the firm. 

 

The procedure could can be applied to one business unit across different loss types.  

Alternatively, it may be applied to one type of loss across all business units as will be 

demonstrated below in Section 6. Conceptually, both loss factor and business unit 

dimensions can be simultaneously accommodated at the cost of increased complexity – a 

topic of our current research. Essentially, the technique is to apply computational power 

to substitute for insufficient amounts of data, but its empirical estimation efficiency when 

back-tested on large data sets is surprisingly good.  

 

5. Simulation of peaks over threshold model parameters by MCMC  

Bayesian parameter estimation treats uncertainties about parameters by considering 

parameters to be random variables possessing probability density functions. If the prior 

density fθ |ψ of the random parameter vector θ  is parametric, given a vector of random 

hyperparameters ψ,  and of a mathematical form such that the calculated posterior 

density
1 n|X ,...,X , | +f := fψ ψ   is of the same form with new hyperparameters ψ+ determined 

by ψ and the observations X1,…, Xn, then we say that |f ψθ is a parametric family of 

densities conjugate prior to the sampling density fX|θ.  

 

The Bayesian hierarchical model provides a transparent risk assessment by taking into 

account the possible classification of the profit and loss sample according to loss data 

subtypes or classes, i.e. risk factors or business units, as well as the aggregate. In this 

model the prior density for the hyper-parameters ψ is common to all loss subtype prior 

densities for the parameters θ.   The hyper-hyper parameters ϕ   are chosen to generate a 

vague conjugate prior indicating a lack of information on the hyper-parameters’ prior 

distribution before the excess loss data is seen. Thus we have a Bayesian hierarchical 

decomposition of the posterior parameter density | ,f ψXθ given the observations and the 

initial hyper-hyper-parameters ϕ as 
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where ∝ denotes proportionality (up to a positive constant). We may thus perform the 

Bayesian update of the prior parameter density  fθ ∝ fθ | ψ  fψ   in two stages -- first 

updating the hyper-hyper-parameters ϕ  to ϕ+ conditional on a given value of θ  and then 

computing the value of the corresponding posterior density for this θ  given the 

observations X.  Figure 2 depicts schematically the relationships between the 3 parameter 

levels and the excess  loss observations for each risk class.  Note that even though the 

prior specification of parameters for individual risk classes is as an independent sample 

from the same hyperparameter Gaussian prior distribution, their posterior multivariate 

Gaussian specification will not maintain this independence given observations which are 

statistically dependent. 

 

The Bayesian posterior density | ,Xf ψθ  may be computed via Markov chain Monte Carlo 

(MCMC) simulation [23, 27, 28]. The idea, which goes back to Metropolis, Teller et al  

and the hydrogen bomb project, is to simulate sample paths of a Markov chain. The states 

of the chain are the values of the parameter vector θ and its visited states converge to a 

stationary distribution which is the Bayesian joint posterior parameter distribution | ,Xf ψθ  

(termed the target distribution) given the loss data X and a vector ψ   of hyperparameters 

as discussed above. In this context, a Markov chain is a discrete time continuous state 

stochastic process whose next random state depends statistically only on its current state 

and not on the past history of the process. Its random dynamics are specified by the 

corresponding state transition probability density. In this application the parameter vector 

state space of the chain is discretised for computation in order to create a parameter 

histogram approximation to the required multivariate posterior parameter distribution. 

 

|,      

                                                                            (27)
|f ( ��� � � � �������	�
����������

                       f (X | ) f ( | )

                       f (X

ψ ψ θ θ ψ ψ ϕ
θ ψ θ, ϕ

∝

∝

∝

X � ���
X | |

X |

θ θ ψ ψ

θ ψ θ

θ   | ) f ( | )  ,                                         +θ ψ ϕψ
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Figure 2  Hierarchical Bayesian model parameter and observation dependencies 

conditional on their hyperparameters.  

 

For our application, the parameter vector θ  represents the generalized Pareto distribution 

(GPD) parameters of interest {µj, log σj, ξj : j = 1,2… J} for the j=1,…,J data classes 

(business units or risk factors) and the hyperparameter vector ψ consists of { mµ , s2
µ , 

mlogσ , s
2
logσ , mξ , s

2
ξ } which are the parameters of a common (across all business units) 

multivariate Gaussian prior distribution of the GPD parameters. To implement the 

strategy, Gibbs sampling and the Metropolis-Hastings algorithm [3] are used to construct 

the Markov chain possessing our specific target posterior distribution as its stationary 

distribution. This target distribution is defined by standard Bayesian calculations in terms 

of the peaks over threshold likelihood function and appropriate prior distributions. 

Running the Markov chain for very many transitions (about 1M) produces an empirical 

parameter distribution that is used to estimate the posterior density | ,Xf ψθ .  

1 1 1 1 2 2 2 2 J           :  = ( , log , )   :  = ( , log , )   ...   :  = ( , log , )J J Jθ θ µ σ ξ θ µ σ ξ θ µ σ ξ

1 211 1 12 2 1             ,...,                    ,...,                            ,...,
J

n n J n J
X X X X X X X

log log log log        , , ,         , , ,         , , ,µ µ µ µ σ σ σ σ ξ ξ ξ ξϕ α β ν κ α β ν κ α β ν κ

2 2 2
log log                ,                       ,                       ,m m mµ µ σ σ ξ ξψ σ σ σ
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These MCMC dynamical methods generate the sequence {θj
0, θj

1, θj
2,…}of parameter 

estimates θj={µj, logσj, ξj}, j=1,2,…J} for each data class with θj
t+1 (for time t≥0) 

depending solely upon θj
t. This process represents the traditional exchange of 

computational intensity for low data availability. After sufficient iterations the Markov 

chain will forget its initial state and converge to the stationary required posterior 

distribution  | ,Xf ψθ  not depending on the initial state θj
0 or time t. By discarding the first k 

(=10k) states of the chain, constituting the burn-in period, the remainder of the Markov 

chain output may be taken to be a parameter sample drawn from the high-dimensional 

target parameter posterior distribution.  

 

In summary, the MCMC simulation is used to generate an empirical parameter 

distribution approximating the conditional posterior multivariate parameter distribution 

given the available loss data. A Bayesian hierarchical model is used to link the posterior 

parameters of interest through the use of common prior distribution hyperparameters.  

The simulation is implemented using hybrid methods and parameter estimates are taken 

as median values of the generated empirical marginal parameter distributions. 

 

6. Example: Bank trading losses analysis through the Russian Crisis 

 

We apply the framework set out above to analyse the losses of the trading activities of a 

major European investment bank during the period 1 October 1997 to 31 December 1998. 

Financial turmoil in the summer of 1998 caused by the Russian government’s domestic 

bond default on 24 August 1998 caused losses which can be seen as external to the 

bank’s normal operating conditions -- possibly in the category of unexpected large losses. 

In financial crises the separation of financial risks into various types (market, credit etc.) 

proves to be difficult and the Russian crisis is no exception. To reduce bank exposure to 

the consequences of such events a correct model for risk evaluation and capital provision 

should be identified, with the corresponding unexpected threshold level given by current 

historical loss data. In what follows the necessary diagnostics to test and verify the POT 

model assumptions for aggregated P&L data are first performed. Next we back-test the 
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predictive power of the POT model in terms of the proposed capital provision estimation 

rule and then study its breakdown by business unit. Our data (rescaled for confidentiality 

reasons) contains daily P&L reports from four business unit / trading desks. Daily events 

are aggregated across the four desks. The aggregated P&L data consists of n=296 profits 

or losses with a net profit figure of 27,337 monetary units. They range from 2,214 loss to 

1,532 profit; see Table 2 for summary statistics and Figure 3 for a time-series plot and 

histogram of aggregated P&L data.  

 

Min:   -1532.394960                          Mean:     -92.353455 

Max:   2214.319020 

1st Qu.:    -320.839980                            Median:    -119.276080 

3rd Qu.:    68.261120 

Sample size:   296 

Std Dev.:   463.733057 

Excess Kurtosis:   5.047392 

Table 2  Summary statistics for daily aggregated P&L data. Losses are positive and 

profits are negative. 

Figure 3 Daily P&L data aggregated over the four trading desks: time-series plot (left) 

and histogram (right). Note that losses are positive and profits are negative.  
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Figure 4  Empirical mean excess plot and shape parameter ξ ML estimates for an 

increasing sequence of thresholds in aggregated P&L data. Dotted lines 

represent estimated 95% confidence intervals of ξ ML estimates. 

 

In Figure 4 we plot the empirical excesses of the aggregated P&L data for an increasing 

sequence of thresholds. The positive steep slope above a threshold of about 500 indicates 

a heavy loss tail. The shape parameter plot, based on maximum likelihood estimation of 

ξ, seems to have stable standard deviation 0.15 up to a minimum of nu=55 exceedances. 

Samples of size less than nu=55 exceedances (or equivalently thresholds higher than 

u=150) yield ML ξ estimates with significantly large estimated 95% confidence intervals. 

Hence a realistic threshold should not be set higher than u=150 when fitting the POT 

model with this approach.  

 

Figure 5 shows the empirical quantiles versus a standard normal distribution and a GPD 

with scale parameter β =1 and shape parameter ξ = 0.25, which represents the best Q-Q 

plot against the GPD for various values of ξ. These Q-Q plots verify earlier observations 

that the loss tail is heavier than that to be expected from a normal distribution.  
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Figure 5  Q-Q plots of aggregated P&L data. (a) Comparing the empirical quantiles 

(vertical axis) with the quantiles expected from a standard normal 

distribution (horizontal axis); losses are positive. (b) Comparing the 

empirical quantiles (horizontal axis) with the quantiles expected from a GPD 

(β=1, ξ=0.25). 

 

As noted above, choice of threshold should guarantee the stability of the ML estimate of 

the shape parameter ξ when using maximum likelihood estimation.  The ML estimates of 

ξ  together with their standard errors for an increasing sequence of thresholds, 50 ≤ u ≤ 

1534, and the corresponding MCMC Bayesian estimates of ξ based on the medians and 

standard deviations of the marginal posterior distributions for the same thresholds are 

shown in Table 3. The Bayesian estimates of the shape parameter ξ from the MCMC 

algorithm show relative stability in the range u=250 to 1534 (corresponding to the 15% to 

1% tails of the underlying P&L empirical distribution) at a value about ˆ 0.53ξ = , 

indicating an α-stable distribution with only a single moment finite. Moreover the 

Bayesian method allows estimation of the shape parameter from smaller-sized samples, 

less than nu =20 exceedances, whereas the corresponding ML estimates become totally 

unreliable for such small samples. For example, the ML shape parameter estimate for 

u=600 (i.e. nu =16 exceedances) is negative, which is not at all representative of its true 
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value. By contrast, the Bayesian shape parameter estimates are stable even for just nu =4 

exceedances (i.e. u=1534), although, as shown in Table 3, the corresponding posterior 

distribution in this case is rather dispersed.  

 

 

Table 3  Bayesian and ML estimates of the shape parameter ξ  from the fitted POT model 

on the aggregated P&L beyond an increasing sequence of thresholds u. In 

parentheses are the standard errors of the ML estimates and Bayesian posterior 

distributions. 

 

The estimated standard errors of the ML estimates are merely an indication of accuracy 

which in fact deteriorates dangerously for higher thresholds (or, equivalently, lower tail 

probabilities and samples of smaller size). However, by calculating the posterior 

distributions of µ, σ and ξ by the Bayesian MCMC method, statistics – such as standard 

deviation or quantiles -- based on the entire distribution can be considered in addition to 

the median point estimates corresponding to absolute parameter error loss functions. 

Such an EVT analysis can assist in model evaluation by more robustly identifying the 

heavy-tail distributions. In our example, the Bayesian estimates of the shape parameter 

for the aggregated data suggest that only the first moment (i.e. the mean) is finite.  

 

 
 
 

Threshold
u

Number  of
exceedances

nu

% Tail Fitted
P(X>u)

Bayesian Shape par.

ξ̂  (posterior median

estimate)

Maximum
Likelihood

Shape par. ξ̂
50 82 28% 0.396 (0.195) 0.296 (0.167)
75 72 25% 0.311 (0.207) 0.220 (0.163)
100 64 22% 0.258 (0.215) 0.154 (0.158)
150 55 18% 0.254 (0.226) 0.119 (0.163)
250 43 15% 0.536 (0.268) 0.144 (0.197)
400 30 10% 0.520 (0.221) 0.181 (0.261)
600 16 5% 0.573 (0.325) -0.228 (0.527)
1000 8 2.7% 0.524 (0.422) NA*
1534 4 1% 0.527 (0.662) NA*
*NA: not available
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Prediction of actual losses by the economic loss capital provision at firm level 

 

To test the capital allocation rule consider five ‘event’ dates: 17th, 21st, 25th, 28th August 

1998 and 11th September 1998. Three events are before and two after the Russian 

government’s GKO default on 24th August 1998, cf. Figure 3. The fifth event-date (11th 

September) is selected so that the sub-sample includes the maximum historic loss as its 

last observation. (Note that losses are treated as positive unless stated otherwise.) For a 

fixed loss threshold u=150, we fit to data both the normal distribution and the POT model 

using both maximum likelihood and Bayesian estimation. With the threshold set at u=150 

the number of exceedances for all five data sets and the full sample are equal to nu=27, 

29, 31, 33, 36 and 55 respectively. The results are illustrated in Figure 6 where the dots 

represent the empirical distribution function based on the full aggregated P&L data. 

There is a marked difference between the suggested GPD model and the normal 

distribution in all six experiments. The GPD approximates the excess loss distribution uF  

significantly better using the Bayesian posterior median estimates of ξ , µ and σ (see 

Figure 7). No maximum likelihood estimates are available for the first data set (to 17th 

August 1998). Hosking and Wallis [13,14] show empirically that no ML estimates exist 

for nu<50. Our data supports this for nu=27. The Bayesian method yields a posterior 

distribution for the shape parameter with median estimate 0.22ξ =
�

. Prediction results are 

improved by 21st August 1998 with the Bayesian estimates still performing better than 

the maximum likelihood estimates. For data up to 28 August 1998 both estimation 

techniques start to yield comparable fits. This is so for the data up to the 11th September 

1998 and indeed for the full sample. When this experiment is repeated for the threshold 

u=600 corresponding to the 5% tail of the empirical loss distribution only Bayesian 

estimates (based on 16 exceedances in the full sample) are reliable. 

 

For the five dates selected the results of the Bayesian calculations of the operational risk 

capital allocation (using (25)) are given in Table 4. All estimates are based on the 

medians of the corresponding posterior distributions. Table 4A corresponds to the 

statistically fit threshold u=150, while Table 4B corresponds to the more theoretically 

reliable threshold u=600 at which the Bayesian estimate of the tail shape parameter 
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0.57ξ =
�

(c.f. Table 3) indicates that only a single moment of the underlying P&L 

distribution is finite. The estimated annual expected excess risk capital based on 250 

trading days is also shown as a percentage of the corresponding figure estimated from the 

full data. Clearly for both threshold levels the more data used in the period of turmoil, the 

closer our model captures the estimated full-data annual excess capital requirement. 

Examination of  Figure 3 shows visually that while daily losses have settled to early 1997 

patterns by the end 1998 about 92% of in-sample annual loss capital provision for 1998 

could have been predicted using the statistically determined lower threshold value by 11th 

September, less than half-way through the turmoil and before the Long Term Capital 

Management collapse added to volatility. 

 

It is the severity of loss that varies between the five chosen ‘event’ dates, with loss 

frequency playing only a minor role. While the estimated expected excess loss using (24) 

increases from 232 to 587, the estimated time between exceedances decreases only 

moderately from about 12 to 9 days. The average number of losses per year2 exceeding 

the threshold level u=150 remains approximately at 25; that is, ten trading days on 

average between excessive losses, which seems to be a reasonable time interval in which 

to liquidate some risky positions.  

 
Data split date Daily Expected 

Excess beyond 
u (u=150) 

Exponential time 

gap (in days) 1
ûλ −  

between successive 
Loss Excesses 

Annualised Poisson 

Intensity ûλ  
(Expected 

number of Excesses)  

Expected Excess 
Annual Risk 

Capital 
 (% of the full data 

estimate) 

17th Aug ’98 231.6 11.7 21.4 4,956 (29.7%) 

21st Aug ’98 271.0 11.1 22.5 6,098 (36.7%) 

25th Aug ’98 440.3 10.6 23.6 10,391 (62.5%) 

28th Aug ’98 513.9 10.0 24.9 12,796 (77%) 

11th Sep ’98 586.7 9.6 26.0 15,254 (91.7%) 

Full sample 517.0 7.7 32.2 16,647 (100%) 

Tables 4A Expected excess annual risk capital for the five sub-samples and the full-sample 
based on estimated  with u=150. 

                                                             
2 The Poisson intensity ûλ is calculated from equation (24) from the current posterior values for µ, σ and ξ 

on the MCMC simulation path. This yields an empirical distribution for λu from which we select the 

median estimate ûλ . 
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However, the estimated excess provision of 16,647 based on the full sample fails to cover 

actual excess losses over this threshold incurred in the last 250 trading days in the sample 

of 23,422 -- a deficit of about 30%. 

 
 

Data split 
date 

Daily Expected 
Excess beyond u 

(u=600) 

Exponential time 
gap (in days) 1

ûλ −  
between successive 

Loss Excesses 

Annualised 
Poisson 

Intensity ûλ  
(Expected 
number of 
Excesses)  

Expected Excess 
Annual Risk 

Capital 
 (% of the full data 

estimate) 

17th Aug ’98 319.9  86.6 2.9 928 (7.2%) 

21st Aug ’98 432.0  69.9 3.6 1,555 (12%) 

25th Aug ’98 933.1  50.1 5 4,666 (36.4%) 

28th Aug ’98 1245.2  38.7 6.4 7,969 (62.1%) 

11th Sep ’98 1459.9  36.2 6.9 10,073 (78.5%) 

Full sample 1395.4  27.2 9.2 12,838 (100%) 

 

Table 4B   Expected excess annual risk capital for the five sub-samples and the full-sample 
based on estimated  with u=600. 

 
On the other hand, while we see from Table 4B that only 79% of the full sample excess 

capital provision of 12,838 is covered by 11 September using the more theoretically 

justified higher threshold, the suggested annual provision at this date compares very 

favourably with sample excess losses of 8,737 over the last 250 trading days – a surplus 

of about 15% – which might be expected from extreme value theory appropriately 

applied in predictive mode. 
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Figure 6 Aggregated P&L with threshold u=150: Fitted GPD excess distribution 

functions ,Gξ β  based on ML (dashed lines) and Bayesian (solid lines) 

posterior median estimates of ξ  and β  vs. normal distribution functions 

(dotted lines) using data up to the 17th (top-left), 21st (top-right), 25th (middle-

left), 28th August (middle-right), 11th September 1998 (bottom-left) and the full 

sample (bottom-right). Dots represent the empirical distribution function uF  

for aggregated losses exceeding u. 
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Economic capital for operational risk at business unit level 

 

Having estimated the frequency and severity of the aggregated daily P&L our aim next is 

to use the hierarchical structure of the Bayesian model for operational risk capital 

allocation at the level of the four individual trading desks. The Bayesian hierarchical 

MCMC model was applied to the four desks with a fixed loss threshold u=130 for their 

parameter estimation to ensure a sufficient number of exceedances. The numbers of 

exceedances (beyond u=130) are respectively nu= 83, 13, 22 and 8 for desks one, two, 

three and four, which clearly makes maximum likelihood estimation ill-suited to the task, 

particularly for desks two and four. The four individual desks estimates for ξ and β as 

well as for the aggregated P&L data  and the annual risk capital (based on 250 trading 

days) are summarised in Table 5. The GPD-based severity quantile is specified by (18) 

and expected excess is calculated by (24) and (25). 

 

Firm-wide level 

u=150 

Bayes 

posterior 

 median 

estimates 

ξ̂             β̂  

Daily severity 

q-GPD-based 

95%      99% 

Daily 

expected 

excess 

beyond u 

Expected 

number of  

excesses 

beyond u 

(per annum) 

Expected 

excess annual 

risk capital 

 

 

0.25 340 691.0 1,639.5 517.0 32.2 16,646 

Business-unit level  

u=130 

Desk One 0.34 205.2 601.6 1,360.3 365.9 49.3 18,046 

Desk Two 0.25 108.1 116.3 324.5 190.4 7.5 1,435 

Desk Three  0.24 118.6 179.2 442.0 206.5 13.0 2,688 

Desk Four 0.26 106.1 71.2 250.0 192.8 4.8 925 

      Total: 23,094 

 

Table 5 Statistical analysis of the aggregated P&L and the four individual P&L data 

sets: Bayesian estimates of the GPD and Poisson parameters and their resulting 

risk measures, all based on the medians of the corresponding posterior 

distributions. 
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Expected excess annual risk capital provision at the firm-wide level is less than the sum 

of the corresponding capital provisions across the four individual desks. Thus the sub-

additivity  -- or portfolio diversification -- property holds under the expected excess loss 

risk measure [1]. However, in spite of the too low threshold bias discussed above, the 

sum of the individual desk provisions covers actual firm-wide excess losses of 23,422 to 

within about 1%. In addition the hierarchical structure of Bayesian method of parameter 

estimation provides a more transparent risk assessment for the four business units. Based 

on the estimates of the severity parameters ξ, β and frequency parameter λu, we see that 

desk one is the most risky amongst the four desks. The estimated parameters are given by 

the respective medians of their posterior marginal distributions3 as shown in Figure 7. 

 

 

Figure 7  Posterior distributions of the estimated shape ξ and scale β (GPD) parameters, 

and the annualised Poisson intensity λu. The posterior distributions for the 

aggregated P&L are estimated from losses exceeding threshold u=150 

whereas the posterior distributions for the four individual desks are estimated 

from losses exceeding threshold u=130. 

                                                             
3 Boxplot interpretation of posterior marginal parameter distributions: White horizontal line within the 
whisker of the boxplot indicates the median of the posterior distribution while the whiskers’ lower and 
upper sides represent respectively the 25% and 75% of the distribution. The lower and upper brackets 
represent the minimum and maximum values of the distribution. 

0.
0

0.
5

1.
0

1.
5

aggr.PandLdesk 1 desk 2 desk 3 desk 4

GPD shape parameter xi

20
0

40
0

60
0

aggr.PandLdesk 1 desk 2 desk 3 desk 4

GPD scale parameter beta

0
20

40
60

aggr.PandLdesk 1 desk 2 desk 3 desk 4

Annualised Poisson intensity lambda



 33

Economic capital for operational risk at firm level 

 

Our example consists of essentially market data with losses due to political events, i.e. 

operational losses. It is thus important that the unexpected loss threshold is chosen greater 

than or equal to the combined market and credit VaR threshold. With such a choice the 

capital allocation will protect against large and rare losses classified as operational. The 

most problematic aspect of standard VaR methods -- underestimation of capital for longer 

time periods -- in this case will be accounted for by exceedances. In our method we have 

assumed max-stability and therefore only the intensity of the Poisson process is scaled. In 

Table 6 we summarise the different rules for excess risk capital allocation corresponding 

to the 18%, 5% and 2.7% quantile thresholds of the empirical P&L distribution and 

compare them with actual excess losses. 

 

Aggregated Trading P&L Loss Provision 

Threshold u 150 600 1000 

Empirical P&L quantile (%) 18 5 2.7 

Daily Intensity ûλ (days) 

(full sample estimate) 

0.1288 0.0368 0.0180 

Annual Intensity 250 ûλ (days) 32.2 9.2 4.5 

Daily expected excess above u 
(full sample estimate) 

517.0 9.2 4.5 

Annual excess capital provision 16,646 12,838 6,877 

Actual excess losses above u 
(last 250 trading days in sample) 

23,422 8,737 4,619 

Percentage safety margin (%) -29.0 46.9 48.9 

 

 

Table 6  Firm-wide excess capital allocation rules for operational risk. 
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Conclusions and future directions 

 

Losses incurred similar to those of Barings Bank belong to the category of extreme 

operational loss and could have been mitigated through control and capital allocation. 

P&L data, volatility of returns and other factors should be constantly analysed for 

identification of extremes. Apparent lack of operational loss data suggests an 

implementation based on Bayesian hierarchical MCMC simulation, which provides us 

with robust parameter estimates of extreme distributions. When applied at the level of 

business units Bayesian procedures allow more efficient capital allocation. 

 

In measuring operational risk we propose a framework which allows a consistent  

integration with market and credit risk capital allocations. Due to fuzzy boundaries 

between the different risk types, operational risk must be measured as an excess over 

levels for market and credit risk. Integrated risk management will involve different risk 

valuations for different business units and by different models. In our model we assume 

the ‘ordering’ of thresholds: market ≤ credit ≤ operational. For integrated risk 

management further careful adjustments of market and credit thresholds and time re-

scaling of intensity should be performed to be comparable with market and credit risk 

evaluation. These are topics of our current research. Further progress in operational risk 

modelling depends on cooperation with industry and the wider availability of case study 

data.  
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