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Abstract

We hedge European and Barrier options in a discrete time and discrete space
setting by using stochastic optimization to minimize the mean downside hedge error
under transaction costs. Scenario trees are generated using a method which ensures
the absence of arbitrage and which matches the mean and variance of the underlying
asset price in the sampled scenarios to those of a given distribution. The stochastic
optimization based strategy is benchmarked to the method of delta hedging for the
case where the underlying asset price follows a discretized geometric Brownian mo-
tion and implemented for the case where the underlying asset price is driven by a

discretized Variance Gamma process.



1 Introduction

By definition, in a complete market every derivative can be hedged perfectly using a repli-
cating trading strategy. However, in reality unpriced uncertainties and market frictions
make most markets incomplete and the replication of some derivatives impossible. This

makes a derivative genuinely risky and can make the problem of hedging it very challenging.

Methods based on the greeks (see e.g. Hull [11]) probably remain the most common form
of hedging. In these methods a hedging strategy is sought which makes the combined
position of the derivative and the hedging portfolio immune to small changes in factors
such as the underlying asset price and volatility. While these methods are intuitive and
practical, it can be difficult to devise a hedging strategy that accounts for all relevant un-
derlying factors and market frictions such as transaction costs. Other methods of hedging
derivatives in incomplete markets existing in the literature include superreplication (see
e.g. El Karoui and Quenzez [4]), move based methods (see e.g. Martellini and Priaulet
[16]), quantile hedging (Follmer and Leukert [5]), efficient hedging (Follmer and Leukert
[6]) and utility based methods (Monoyios [17]). Naturally, each of these methods has its

pros and cons.

In this paper we derive hedging strategies for European and Barrier options using stochas-
tic optimization. This framework allows for different measures of the hedge error and thus
different attitudes to risk and can easily handle various market frictions such as transaction
costs and position limits. In addition, due to the simulation based nature of the method-
ology nearly arbitrary models for the underlying asset stochastics can be accommodated.
We generate scenario trees using a method which ensures the absence of arbitrage and
which matches the mean and variance of the underlying asset price in the sampled scenar-

ios to those of a given distribution. We then benchmark the stochastic optimization based



hedging strategy to delta hedging for the case where the underlying asset price follows a
discretized geometric Brownian motion and implement it for the case where the underlying

asset price is driven by a discretized Variance Gamma process.

Follmer and Schweitzer [7] and Bertsimas, Kogan and Lo [1] also develop optimization
based hedging strategies, but both papers use a different measure of the hedge error, work
within a frictionless market and use different solution techniques. This paper also comple-
ments the work of King [12] who formulates a superreplicating strategy using stochastic
optimization, Dempster and Thompson [3] who use stochastic programming to track a
portfolio of European options with a subset of the target portfolio and Gondzio et al. [9]
who use stochastic optimization to maximize the “utility” of the hedge error under stochas-
tic volatility and transaction costs. In the last paper there are few numerical examples and

in particular only European options are studied.

2 Stochastic Optimization Framework

2.1 Set Up

There are T'+ 1 times, indexed by t = 0,...,T, where T corresponds to the maturity of
the derivative. Trading is allowed at all times except for maturity. Below we restrict the
hedging strategy to positions in the underlying asset and cash, but the extension to an
arbitrary set of hedging securities is straight forward (see Dempster and Thompson [3]).
Uncertainty is represented by a finite set of scenarios denoted by €2, which can in turn be
represented in the form of a scenario tree. Let pr(w) denote the probability of scenario
w € Q. An example scenario tree is given in Figure 1 for 7' = 2 and Q2| = 4.

By numbering the nodes (vertices in the scenario tree) as in Figure 2 the set of nodes can

be indexed by n = 0,..., N where n = 0 corresponds to the node at t = 0, and n = N



scenario 1

scenario 2

scenario 3

scenario 4

t=0 t=1 t=2

Figure 1: Example hedging scenario tree

corresponds to the bottom node at ¢t = T. Let N, denote the set of nodes at t =0,...,7T
and a,, denote the ancestor of node n € N, for t = 1,...,T. The ancestor of node n € N,
is the unique node in N;_; connected to node n. Let the set of children of node n in N,
for t = 0,...,7 — 1 be denoted by ¢, with the 7% child denoted by ct. The children of
node n € N, are the set of nodes in Ny, that are connected to n. Let V,, denote the set

of scenarios that visit node n and let pr,, denote the unconditional probability of node n

given by Y- ¢y pr(w). Let:

e S, = (5% S!Y denote the vector of asset prices where S° and S! denote respectively
the prices of cash and the underlying asset in node n € N, for ¢t = 0,...,T. For

simplicity we assume that the cash returns are constant.

e X, = (X9 X}) denote the vector of positions where X? and X! denote respectively
the number of units of cash and the underlying asset held between node n € N, and

each node in ¢, fort =0,...,T — 1.

o Xb, = (X2, Xbl) denote the vector of buy variables where Xb2 and Xb. denote

respectively the number of units of cash and the underlying asset bought at node



t=0 t=1 t=2

Figure 2: Nodal representation

n € Ny for t = 0,...,7 — 1. The buy (and following sell) variables are used to
account for a proportional transaction cost ¢ on buying and selling the underlying

asset.

o Xs, = (Xs2 Xsl) denote the vector of sell variables where Xs® and Xs,) denote
respectively the number of units of cash and the underlying asset sold at node n € N,

fort=0,...,T —1.

A hedging strategy is given by {X,, Xb,, Xs, : n € Ny,t = 0,...,T — 1}. For European
options we only define the derivative price for n € Np, i.e. at maturity, where the derivative
price is given by its payoff function. While the derivative price can be defined at other
nodes using a pricing model, this would make the hedging strategy dependent on the choice
of pricing model which we wish to avoid. Likewise for knock-out Barrier options we only
define the derivative price at the nodes where the option terminates. For a given scenario
this will be the node at maturity or the node in which the barrier is first hit, which ever
comes first. In either case we let I denote the set of nodes over which the derivative price

is defined, f, for n € I denote the derivative price and h,, for n € I denote the hedge error.



2.2 Problem Formulation

One advantage of the stochastic optimization based hedging strategy is its ability to in-
corporate different measures of the hedge error and thus different attitudes to risk. In this
paper we use a linear downside measure of the hedge error. Another advantage of the
methodology is the ease in which market frictions such as transaction costs, position limits
and turnover constraints can be explicitly modeled. Here we explicitly model proportional

transaction costs.

We assume that no money can be added to the hedging strategy between t =0 and t =T
and that it begins with an initial wealth wy in cash corresponding to the price of the
derivative at ¢ = 0. This corresponds to the case where the writer has sold the derivative
and then uses the premium received as the initial wealth of the hedging strategy. The

resulting hedging problem becomes:

mnE[ hd (1)

st. ef —e; =X | Si— fut= l,t.z.l. ,T (2)

ef,e; >0;t=1,...,T (3)

hi=e >0;t=1,...,T (4)

Xby — Xso = Xo (5)

Xp1+ Xby— Xsg=Xpit=1,....,T 1 (6)

X080 4+ (1 — ) X558y — Xb3SY — (14 ¢)X by S + wy > 0 (7)

X89S+ (1—c)XstS! — Xb2S) — (1+¢)Xb!SE > 0;t=1,....,T -1 (8)
Xby, Xs;>0:4=0...,T 1. 9)

For convenience we work with the nodal form of this problem which is given by:



min Y _ pryhy, (10)

s.t.ef —e, =X, S, —7;;[;77,6 I (11)

efe, >0nel (12)

hn=e€,;n€l (13)

Xbo — Xs0 = Xo (14)

Xo, — Xsp+ Xb, = X,;n>0,n¢ Np (15)

X080+ (1 — ) Xs5S3 — X3S0 — (14 ¢)Xb5SE +we >0 (16)

Xs28Y + (1 —¢)Xs St — X02S% — (1 +¢)Xb.S! > 0;n>0,n¢ Ny (17)
Xbp, Xsp, > 0;n ¢ Np. (18)

The hedging problem is a linear dynamic stochastic program (DSP) and can be solved using
techniques such as simplex (see e.g. Luenberger [14]), interior point (see e.g. Wright [20])
and decomposition methods (see e.g. Birge and Louveaux [2]). The objective (10) is the
minimization of the mean downside hedge error where the downside hedge error of a node
is defined by (11) - (13). The difference in the values of the derivative and hedging portfolio
in node n € [ is split into upside and downside components, e and e, respectively, and
the downside hedge error is given by e, . (14) and (15) are inventory balance constraints
which give the position in each asset at each node. (16) and (17) are cash balance con-
straints which ensure that no money is added to the hedging strategy, and (18) requires

the buy and sell variables to be nonnegative.

The uncertainty in the problem is a result of the uncertainty in S. Because the values of
Sy for n # 0 are usually generated using simulation techniques a wide range of stochastic

models for S including jumps and stochastic volatilities can be accommodated.



2.3 Implementation

In practice a separate problem would be solved at each trading time and only the first
stage solution would be implemented. Specifically, at each trading time ¢t = 0,...,7 — 1
a T —t stage hedging DSP would be constructed and solved. The first stage solution of
this problem would give the time ¢ hedging positions, X;. One reason for this method of
implementation is that the realized values of the variables are unlikely to coincide with any
of the simulated values in the scenario trees. If this were to be the case then the optimal
hedging strategy would be undefined. Another reason for solving a new problem at each
time is that this allows the stochastic model of S to be updated using market information

observed from the previous time.

3 Scenario Tree Generation

The effectiveness of the stochastic optimization based hedging strategy depends crucially
on an accurate representation of the uncertainty and thus on an accurate scenario tree. In
this paper we employ a method of scenario tree generation which ensures the absence of
arbitrage and matches the mean and variance of the underlying asset price in the sampled
scenarios to those implied by a given stochastic model, a process referred to as moment
matching. As discussed in Villaverde [19], moment matching can help to suppress sampling
error, i.e. differences in the distribution of the sampled scenarios and the distribution the
scenarios are sampled from. An arbitrage is a trading strategy that is guaranteed not to
lose money and is expected to make money. Since such opportunities are usually assumed
not to exist in practice, generating scenario trees which are arbitrage free is consistent with

reality.

This method of scenario tree generation employs the following algorithm at each node n.

First the children of n are generated using random sampling. Let {SL : m € ¢,} denote



the randomly generated children. The following optimization problem is then solved:

min 3" (S}, - 51)? (19)
S,,lnlmECn mecy
s.t. E[SY] = py, (20)
Var[S'] = o2 (21)
St o
1
;;‘_ <St-a, (23)

where 1, and o2 denote the mean and variance of the underlying asset price implied by the
given stochastic model at node n and « is a small strictly positive number. This problem
finds new children {S}, : m € c,} which are close to the original randomly generated
children (in the least squares sense) subject to mean, variance and arbitrage constraints.
(20) and (21) ensure a mean and variance consistent with the given stochastic model and
(22) and (23) enforce the absence of arbitrage. A derivation of the arbitrage constraints
is given in Appendix A. This problem has nonlinear constraints but can be solved with

sequential quadratic programming (see e.g. Gill [8]).

4 Benchmarking to Delta Hedging

In this section we benchmark the stochastic optimization based hedging strategy to delta
hedging with respect to the mean downside hedge error obtained by applying the two hedg-
ing methods to simulated test scenarios. We consider the case of no transaction costs in
detail as well as providing a description of how the mean hedge error of the two hedging

strategies change with increasing transaction costs.

We consider four stage problems for European and Barrier call options with weekly re-

balancing where the underlying asset prices are assumed to follow a discretized geometric



10

Brownian motion (GBM) of the form:

Sl —S!
=l = )+ o6, (24)
Stfl

where the €; terms are independent standard normal random variables and the time step
is one week. The underlying asset of the European option was assumed to be the S&P 500

1

index * and the underlying asset of the Barrier option was assumed to be the price of 1

GBP in USD (UK/US exchange rate)) 2.

Each option had a maturity of four weeks and was assumed to be at-the-money initially.
The Barrier option was assumed to be a down-and-out call 3. The initial wealths of the

hedging strategies were given by the Black-Scholes prices of the options?.

We first generated 1000 test scenarios for each underlying asset by simulating (24). We
then applied each hedging method to the test scenarios under a range of proportional
transaction costs. The stochastic optimization based hedging strategy was implemented as
in Section 2.3 with scenario trees generated using (24) and the mean and variance matching
arbitrage free method described in Section 3 3. A description of the implementation of the
delta hedging strategies is given in Appendix B. The hedge error for the European option
was always calculated at maturity while the hedge error for Barrier option was calculated

either at maturity or when the barrier was first hit, which ever came first.

Ly = .0028 and o = .0189 per week.

21, = .0001 and ¢ = .0146 per week.

3The Barrier option was written on 1000 GBP and had a barrier equal to 98% of the strike price.
4The return on cash was assumed to be constant at 5% per annum.

5 A branching factor of 20 was used.
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4.1 European Call Option

Table 1 gives the mean, standard deviation, minimum and maximum of the hedge error
distribution over the 1000 test scenarios for each hedging method with no transaction costs.
The results for both methods are similar but the stochastic optimization strategy, which
is formulated to minimize the mean hedge error, produces a better mean while the delta

strategy produces a better standard deviaion and maximum.

Method | Mean | St. Dev. | Min | Max

Delta 2.76 4.73 0.00 | 34.20

SP 2.35 5.89 0.00 | 64.75

Table 1: European option-GBM results

Figure 3 shows the that the hedge error histograms of the two methods for the no trans-
action costs problem are similarly shaped.

Figure 4 shows the mean downside hedge errors for the two methods using transaction
costs ranging from 0% to 1% in .2% increments. The graph corresponding to the stochastic
optimization strategy lies below that of the delta strategy which implies that it produces a
lower mean hedge error at all levels of transaction costs. In addition, the mean hedge error
of the delta hedge increases faster than that of the stochastic optimization based hedge so

that the gap between the two strategies widens as the transaction costs increase.
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Hedge Error Histograms
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Figure 3: European option-GBM downside hedge error histograms with 0% transaction

costs
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Figure 4: European option-GBM mean downside hedge error vs. transaction costs
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4.2 Barrier Call Option

Table 2 gives the mean, standard deviation, minimum and maximum of the hedge error
distribution over the 1000 test scenarios for each hedging method with no transaction costs.
As with the European option the stochastic optimization strategy produces a better mean

and the delta hedge produces a better standard deviation and maximum.

Method | Mean | St. Dev. | Min | Max

Delta 5.57 5.73 0.00 | 30.56

SP 4.76 7.65 0.00 | 57.63

Table 2: Barrier option-GBM results

As with the European option, Figure 5 shows the hedge error histograms of the two methods

for the no transaction costs problem are similar in shape.

Hedge Error Histograms
0.5 T

T
"deltahist”

0.45 |+ 1

0.4 f g

0.35 = 1

0.3 ¢ 1

0.25 [ 1

Frequency

0.2 | 1
0.15 1

0.1 ¢ 1

0.05 W‘I_l{ﬂﬂ_m_rﬂh ]
. e , ‘ ‘

0 10 20 30 40 50 60
Mean Hedge Error

Figure 5: Barrier option-GBM downside hedge error histograms with 0% transaction costs

Figure 6 shows the mean downside hedge errors for the two methods using transaction costs
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ranging from 0% to 1% in .2% increments. As with the European option, the stochastic
optimization based hedging strategy produces a lower mean hedge error at all levels of

transaction costs and the gap widens as the transaction costs increase.

Transaction Costs
20 T T T T

18 1

16 - 1

Mean Hedge Error
=
N
T
1

4 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01

Transaction Cost

Figure 6: Barrier option-GBM mean downside hedge error vs. transaction costs
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5 Variance Gamma Process

In this section we implement the stochastic optimization based hedging strategy on the
European and Barrier option problems of the previous section for the case where the under-
lying asset price is driven by a discretized Variance Gamma (VG) process. The VG process
is a Levy process that was first introduced by Madan and Seneta [15] as a model for stock
returns. Because it is a pure jump process, this process is able to take into account excess

skewness and kurtosis.

The underlying asset price is assumed to evolve according to:

St = Sjet, (25)

where x; is a discrete time Variance Gamma process VG (o, v, ). This process is described

in detail in Appendix C ©.

As described in (see e.g. Schoutens [18]), derivative pricing formulas are not easily ob-
tained with the VG model which is problematic for the delta hedging strategy. However, a
hedging strategy is readily obtained using stochastic optimization since this method does
not depend on a pricing formula. All that is needed is a method for simulating the VG
process. To simulate the VG process we use the fact that it can be represented as the dif-
ference of two Gamma processes and simulate each Gamma process using Johnk’s Gamma

Generator (see e.g. Schoutens [18]).

6To keep the first two moments of the VG processes similar to those of the GBMs of the previous section
we chose (o, v,0) equal to (.0028,.0189, 1) for the underlying of the European option and (.00017,.0146, 1)

for the underlying of the Barrier option.
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5.1 European Call Option

Table 3 gives the mean, standard deviation, minimum and maximum of the hedge error
distribution over the 1000 test scenarios with no transaction costs. The results are similar
but slightly worse across all statistics than the case where the underlying asset price follows

a discretized GBM.

Mean | St. Dev. | Min | Max

3.66 9.57 0.00 | 90.21

Table 3: European option-VG results

Figure 7 shows the hedge error histogram for the no transaction costs problem, and Figure
8 shows the mean downside hedge errors using transaction costs ranging from 0% to 1%
in .2% increments. In both cases the graphs are similar to the case where the underlying

asset price follows a discretized GBM.

Hedge Error Histograms
0.45 T T T T T T

”sphist"’

0.4 H E

0.35 (1 _

Frequency

0.2 H B
0.15 1
0.1 H B

0.05 f _

0 m ! — 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Mean Hedge Error

Figure 7: European option-VG downside hedge error histogram with 0% transaction costs
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Transaction Costs
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Figure 8: European option-VG mean downside hedge error vs. transaction costs
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5.2 Barrier Call Option

Table 4 gives the mean, standard deviation, minimum and maximum of the hedge error
distribution over the 1000 test scenarios with no transaction costs. As with the Euro-
pean option the results are similar to the case where the underlying asset price follows a

discretized GBM.

Mean | St. Dev. | Min | Max

5.72 10.74 0.00 | 90.26

Table 4: Barrier option-VG results

Figure 9 shows the hedge error histogram for the no transaction costs problem, and Figure
10 shows the mean downside hedge errors using transaction costs ranging from 0% to 1%
in .2% increments. As with the European option, in both cases the graphs are similar to

the case where the underlying asset price follows a discretized GBM.

Hedge Error Histograms
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Mean Hedge Error

Figure 9: Barrier option-VG downside hedge error histogram with 0% transaction costs
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Mean Hedge Error

Figure 10: Barrier option-VG mean downside hedge error vs. transaction costs
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6 Conclusions

This paper has presented a method of hedging derivatives in an incomplete market based on
stochastic optimization. Advantages of this method include its ability to explicitly incor-
porate different measures of the hedge error, various market frictions and nearly arbitrary
stochastic models for the underlying variables. In this paper we used a linear downside
measure of the hedge error and explicitly modeled proportional transaction costs. Sce-
nario trees were generated with a method which ensured the absence of arbitrage and
which matched the mean and variance of the underlying asset price to those of a given
distribution. The stochastic optimization based strategy was then benchmarked to delta
hedging for European and Barrier options for the case where the underlying asset price fol-
lows a discretized GBM. These experiments showed that the stochastic optimization based
method produced a lower mean downside hedge error for both types of options for a range
of transaction costs. The gap between the the two strategies was shown to increase as the
transaction costs increased and was more pronounced for the Barrier option than for the
European option. The stochastic optimization based strategy was them implemented for
the case where the underlying asset price was driven by a discretized VG process in which
case delta hedging methods are not readily available. The results of these experiments

were similar to the case where the underlying asset price follows a discretized GBM.

Appendix A

Without loss of generality we assume in this appendix that the cash price is always 1
or that the interest rate is zero, which implies that prices and discounted prices are the
same. We also assume for simplicity that trading is allowed at maturity and that there
are no transaction costs. If a scenario tree is arbitrage free under both these assumptions

then it will be arbitrage free if either or both are relaxed since this can only make an
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investor worse off. Let P be a probability measure on the scenario tree with the transition
probability from node n to node m denoted by p]’. Here an arbitrage is a trading strategy

{X¢:t=0,...,T} such that:

B[S X71] > 0 (26)
S(I)X() :0
S (Xp—Xa,)=0neN,t=1,...,T

S, Xn, > 0;n € Nr.

Thus, an arbitrage is a self-financing trading strategy which has a zero initial cost, a
nonnegative terminal value and a positive expected terminal value. Harrison and Kreps
[10] showed that there is no arbitrage if and only if there is an equivalent martingale
measure, or a probability measure equivalent to P under which the discounted price process
is a martingale. Thus, here an equivalent martingale measure () consists of transition

probabilities g]* such that:

Y @S =5uyn€Ny,u=0,...., T—1t=u+1,...,T (27)
mEN
g, >0&pt>0.

The following Lemma shows that if there is no equivalent martingale measure for some
subtree of the scenario tree then there is no equivalent martingale measure for some node

in that subtree.

Lemma 1: Suppose that for some node r € N; with ¢ € {0,...,7 — 1} and some time

u € {t+1,...,T} there is no solution to the following system:

> @S, = (28)
VEN,
g, > 0<p, > 0.
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Then for some node g € Ny with k& € {t,...,u — 1} there is no solution to the one period

system:

> qgs,} = S; (29)

be Nk+1

@ >0sp)>0.

Proof: We prove the contrapositive. Therefore suppose for each node in N, for k£ =

t,...,u — 1 there is a solution to the one period system given in (29). Then by iterative
substitution:
S} = Z Q1r"n1571n1 (30)
mleNyy
1 2 ol
= > 4" X miSm)
mlENi 41 m2€N¢42

= Y > aManiSm

Mm1EN+1 M2EN42

= Z Z o Z q:‘nlqz%’aqza(ufl)si

M1EN L1 m2EN 2 VEN,

Thus, taking:

q:"} = Z Z IR Z qquz%a' . '7qzjn(u—1) (31)

m1lENL1 m2EN 42 m(’u,—l)ENu_1

results in a solution to (29) and the result follows.O

A one period arbitrage at node n in N, with ¢t € {0,...,7 — 1} is a portfolio X, such that:

> (SnXa)py >0 (32)

meEcn

S' X, =0

S; Xn > 0;m € cp.
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The following proposition shows the equivalence of arbitrage and one period arbitrage.

Proposition 1: There is arbitrage if and only if there is a one period arbitrage.

Proof:

=

Suppose there is an arbitrage. Then for some node r € N; with ¢t € {0,...,7 — 1} and
some time u € {t+1,...,T} there is no solution to the system given in (27). By Lemma 1
this implies that there is some node g € Ny for some k € {¢,...,u — 1} such that there is
no solution to the one period system (29). This implies that there is a one period arbitrage
at node g.

=

Suppose there is a one period arbitrage at node g € Ny with k € {0,...,T — 1} given by
Xg4. The following trading strategy is an arbitrage. If £ = 0, then follow X, at ¢t = 0 and
invest in cash for ¢ > 0. If £ > 0, then invest in cash for the scenarios that do not visit g.
For the scenarios that do visit g, invest nothing for ¢ < £, follow X, at ¢ = k and invest in

cash for ¢t > k.O

Klaassen [13] notes that one way to generate an arbitrage free scenario tree is to set P
equal to an equivalent martingale measure. However, while the resulting tree would be
arbitrage free, this would cause all assets to have an expected return equal to that of the

numeraire (cash) resulting in an unrealistic representation of future real world uncertainty.

Below we use the definition of a one period arbitrage to derive an alternative method for
generating arbitrage free scenario trees. This method relies on the following proposition
which gives a sufficient condition for a node to be arbitrage free. This proposition is only
for the case of one stochastic asset since the only stochastic asset here is the underlying

asset price.

Proposition 2: Node n in N; with ¢t € {0,...,7 — 1} will be one period arbitrage free
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if in one branch the discounted price of the underlying goes up and in one branch the
discounted price of the underlying goes down.
Proof: The node will be one period arbitrage free if the following SP has an objective

value of 0.

max »_ (S, Xn)py (33)
méEcp

S' X, =0

S X, > 0;m € cyp.

Since S° = 1 for all n this can be rewritten as:
n

max »_ (S5, Xn)py (34)

meccen

X0+ S8 X =0

X'+ SEXI>0mec,.

Substituting X2 = —S! X! gives:

max »_ (S, Xn)pn (35)
mecn
X, (S, — Sp) > 0;m € cp.

If in one branch the discounted price of the underlying goes up, then S. > Sl and the
inequality implies that the optimal X! > 0. If in one branch the discounted price of the
underlying goes down, then S} < S! and the inequality implies that the optimal X! < 0.
Together this implies that optimally X! = 0, which implies that the corresponding X? and

objective value are zero.O

Thus, an arbitrage free tree can be generated by ensuring that at each node the discounted
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price of the underlying goes up in one child and down in another.

To check a given scenario tree for arbitrage, the following DSP can be solved.

max E[S7. X 7] (36)
' Xo =0
S (Xn—X,,)=0neN,t=1,...,T
S X, > 0;n € Nr.

By the definition of arbitrage given in (26), if there is an arbitrage then the objective value

of this DSP will be positive and will be 0 otherwise.

Appendix B

This appendix describes the implementation of the delta hedge. For a test scenario with
T rebalancing times, trading takes place at ¢t = 0,...,T — 1. The delta of the European
call is given by N(d;) (see e.g. Hull [11]), where N(-) is the cumulative standard normal

distribution function and:

In(3) + (r+%)T
oVT '

Here S denotes the initial underlying value, o denotes the volatility, () denotes the strike

di = (37)

price and r is the risk free rate. The formula for the price of the Barrier option can be
found in Hull [11]. Differentiating this with respect to the underlying gives the Barrier

delta:

eTIN() — (BN () + N (-2 + DS (39)

—Xe TBP (SN (y — oVT)y + N(y — oVT)(—2) +2)S ).



26

Here B is the barrier level, r¢ is the foreign risk free rate which is assumed to be equal to

r and N'(a) is the standard normal density given by:

The entities z, A, y and y' are given by:

B ln(%) +(r—rp+2)T
x = T (39)
A= T-ZL (40)
 In(5)
= Jr " AoV T (41)
I (42)

Let X? and X/ denote respectively the number of units held of cash and the underlying
between times ¢ and ¢+ 1, and let SY and S/ denote respectively the price of cash and the

underlying at time ¢. The delta hedging strategy is given by:

Xy =Dy (43)

0 _
and
th =D, (45)
X0 — Xy 1S — Xi8) — |Xi — Xi_[Sje (46)
Y=

SP
fort=1,...,T —1.
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Appendix C

A VG(0,v,0) process starts at zero, has independent and stationary increments and has

increments 54+ — €, which are distributed VG (ovt,v/t,t0). The characteristic function

of the VG(o, v, §) distribution is given by:

1
é(u:o,v,0)=(1—1iubv+ 5021/112)’1/".

Let:

C = 1/v

-1
1 1 1
— [202,2 & 2452, — =
G <49V—|—201/ 20V>
1
1 1 1
M = ( 102U2+§O'2V: éay\ .

Then this distribution can be characterized by the Levy triplet [y, 0, v(dx)] where:

—C(G(exp(=M) — 1) — M(exp(-G) — 1))
MG

() Cezp(Gz)|z|™'dz <0
v(dz) = :
Cerp(—Mz)z™'dx x>0

’)/:

The first four moments of this distribution are given by:

mean : 0
variance : o° + vh?
skewness : v(30% + 2v6%)/(0? + v6?)3/?

kurtosis : 3(1+2v —vo’(0® + v6?)7?).

(47)

(50)
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