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EMPIRICAL BAYES ESTIMATION WITH

DYNAMIC PORTFOLIO MODELS

Abstract

This paper considers the estimation of parameters in a dynamic

stochastic model for securities prices, where the expected rate of return

is a random variable. An empirical Bayes estimator is developed from

the model structure. The estimator is an improvement on other pop-

ular estimators in terms of mean squared error. The e�ect of reduced

estimation error on accumulated wealth is analyzed for the portfolio

choice model with constant relative risk aversion utility.
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1 INTRODUCTION

The decision on allocation of investment capital to risky and risk free oppor-

tunities is a fundamental problem in portfolio theory. A basic input to the

investment decision is the distribution of future returns on securities. The

prediction of future securities returns is based on price information available

at the time of the decision. Prediction errors can have a large negative impact

on portfolio choice and the resulting accumulation of wealth (Lo�er 2003).

Errors in the prediction of mean returns are particularly damaging to wealth

accumulation (Kallberg and Ziemba 1984, Chopra and Ziemba 1993).

A standard framework for the trading prices of securities is the geomet-

ric Brownian motion model (Merton 1972). With a hierarchy of stochastic

di�erential equations the model accommodates the dynamics observed in ac-

tual prices (Chernov, et.al. 2002) The random coe�cients in the stochastic

di�erential equations are parameters in the securities price distributions, and

the hierarchy generates a Bayesian model for price distributions. In the typi-

cal Bayesian approach, a noninformative or conjugate prior on parameters in

the price distribution is postulated (Klein and Bawa 1976). The prior in the

framework in this paper is generated by the dynamic equations for param-

eters. In the context of the model, the optimal estimate of the parameters

given price information to date is the posterior mean or Bayes estimate. The

dynamic structure provides a natural mechanism for updating estimates for

parameters as more information is gathered.
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One di�culty with the Bayes approach is that parameters in the prior

distribution (and parameters in the sdes) are unknown. However, the data

on past prices can be used to estimate those parameters and provide an

empirical Bayes estimate for the posterior mean (Efron and Morris 1972,

Frost and Savarino 1986). In the dynamic model format, the observed prices

are points on a trajectory and the movement of prices provides the necessary

information to estimate the conditional (�rst order) and prior (second order)

parameters.

Related to the di�usion models with random parameters are the factor

models of asset pricing theory (Connor and Korajczyk 1995, Ross 1976). The

movements of the prices in the class of securities are driven by underlying set

of common market factors. In the di�usion model, the market factors appear

in the dynamics for the prior parameters. The distribution for securities

prices is de�ned by a factor model. The covariance matrix for prices is

simpli�ed by the factor structure, and there is a reduction in the number of

model parameters, which leads to improved estimates.

The impact of modeling and estimation errors on forecasts for securities

prices and the resulting e�ect on portfolio decisions and capital accumula-

tion have been considered in many studies. Alternative estimates for the

mean return have been considered in a long series of asset prices (Grauer

and Hakannson 1985, 1995), with improves results from shrinkage (Stein) es-

timators. The results are empirical rather than theoretical, and the structure

and dynamics of price distributions is not clear.
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In this paper an empirical Bayes estimate for the expected rate of re-

turn on securities is presented. The basis of the estimator is the structure

of the covariance matrix for the rates of return. With a reduced dimension

representation of covariance based on a truncation of eigenvectors, there are

su�cient degrees of freedom to estimate all parameters in a Bayesian model

for prices.. Furthermore, the structure in the covariance a�ects the theoreti-

cal mean squared error of estimators and facilitates comparisons. This e�ect

carries over to portfolio decisions and accumulated wealth.

The empirical Bayes estimator is developed from the pricing model in

Section 2. The mean squared error properties of the estimator are explored

analytically and through simulation in Section 3. The estimator is compared

to the Bayes-Stein ( Jorion 1985) and maximum liklihood estimators. In

Section 4 the wealth shortfall from estimation error is considered for the ex-

pected utility maximization problem. The methods in the paper are applied

to portfolios of stocks from the Toronto Stock Exchange and the New York

Stock Exchange.

2 EMPIRICAL BAYES ESTIMATIONOF RE-

TURNS PARAMETERS

Consider a competitive capital market where trading of securities takes place

in continuous time. The distribution of prices at a point in time and the

dynamics of prices over time will be analyzed with the geometric Brownian

5



motion model (Merton, 1992).

2.1 Pricing Model

Let Pi(t) equal the price of security i at time t and considerYi(t) = ln Pi(t), i =

0, ..., K. The dynamics of price movements are de�ned by the stochastic dif-

ferential equations

dY0(t) = rdt (1)

dYi(t) = λidt + δidVi, i = 1, ..., K, (2)

where dVi, i = 1, ..., K, are independent Brownian motions. It is further

assumed that the drift in (2) is a random variable, so that

λi = µi + βiZi, i = 1, ..., K, (3)

where Zi, i = 1, ..., K are correlated Gaussian variables with ρij the in-

stantaneous correlation between variablesZiand Zj.

The geometric Brownian motion model in (1) - (3) is a generalization of

a single stock model in Browne and Whitt (1995), where the rate of return

is a random variable. This model is also used in Rogers (2001) to study

parameter estimation error. There are a number of points to consider about

the relevance of this somewhat specialized pricing model.
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[1] This is a multi-factor di�usion model. IfUj, j = 1, ..., m,m ≤ K, are

i.i.d. standard Gaussian variables, thenZi =
∑m

j=1 αijUj and

dYi(t) = [µi +
m∑

i=1

βiαijUj]dt + δidVi, i = 1, ...K. (4)

Typically the number of factors would be small and to have the param-

eters identi�able from the covariance, it is required that m ≤ (K − 1)/2.

The correlation between securities prices typically reduces the number of

parameters in the model, so that all parameters can be estimated.

[2] The volatilities δi, i = 1, ...K, are non-stochastic. They represent the

speci�c variance of each security. The securities prices are correlated, but

the correlation is generated by the factors in the expected rates of return.

There is evidence that stochastic volatility factors are important for captur-

ing certain aspects of returns distributions such as heavy tails ( Chernov

et. al. 2002). An alternative approach to extreme returns involves adding

independent shock terms to capture dramatic price changes. The dynamic

equations become

dYi = λidt + δidVi + ϑidNi(πi),

where dNi(πi) is a poisson process with intensityπi, and shock size ϑi, i =

1, ..., K. Between shocks, the �nancial market is described by the Brownian

motion equations. In normal times, the random drift model is su�cient to

explain the mean, variance and covariance for returns. An approach to the

model with shocks is to de�ne a conditional model given the shocks. The
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conditional dynamics are in the form (2), and the methods of this paper

are appropriate for estimating the conditional parameters. Then the shock

component is iteratively determined to minimize mean squared error.

The emphasis in this paper will be on estimation of the mean since it has

the greatest impact on portfolio decisions. Chopra and Ziemba ( 1993) show

that equal size errors in estimators for the means, variances, and covariances

a�ect portfolio performance in the order of 20:2:1, respectively. Grauer and

Hakanson (1995) also report substantial improvement in investment perfor-

mance using better estimates for the mean.

[3] The rates of return in normal times may be dynamic, with de�ning

equations dλi(t) = µidt + βidqi, where dqi,i = 1, ..., K, are correlated Brow-

nian motions. So λi(t) = λi(0) + µit + βi

√
tZi, i = 1, ..., K. The estimation

methods discussed later are easily adapted to the estimation of parameters

with dynamic stochastic rates of return.

Returning to the pricing equations, let

Y (t) = (Y1(t), ..., YK(t))′,

λ = (λ1, ..., λK)′,

∆ = diag(δ2
1, ..., δ

2
K),

µ = (µ1, ..., µK)′,

Γ = (γij) = (βiβjρij).
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Without loss of generality assumeY (0) = 0. Given (λ, ∆), the conditional

distribution of log-prices at time t is

(Y (t)|λ, ∆) ∝ N(λt, t∆) (5)

From (3) the rate has a prior distribution

λ ∝ N(µ, Γ). (6)

It follows that the marginal distribution of log-prices is

Y (t) ∝ N(µt, Σt), (7)

with

Σt = t2Γ + t∆ = Γt + ∆t.

It is an important property of the model that the covariance for log-

prices is partitioned into a component determined by the random drift and

a component determined by the di�usion.

At any point in time it is assumed that information is available on the

history of prices. Consider the data available at time t,{Y (s), 0 ≤ s ≤ t}, and
the corresponding �ltration =Y

t = σ{Y (s), 0 ≤ s ≤ t}. The usual estimate

for the mean log rate of return based on the data is

Ȳt =
1

t
Y (t) (8)
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With the prior distribution for λ in (5) and the conditional distribution

for Y (t) in (4), the posterior distribution for λ given =Y
t is

(λ|=Y
t ) ∝ N(λ̂t, Γ

0
t ), (9)

where λ̂t = µ + (I −∆tΣ
−1
t )(Ȳt − µ) and Γ0

t = 1
t2

(I −∆tΣ
−1
t )∆t.

It follows that the Bayes estimate for the mean rate of return at time t

is the conditional expectation

λ̂t = E(λ|=Y
t ) = µ + (I − ΛtΣ

−1
t )(Yt − µ) (10)

.

The Bayes estimate in (10) depends upon unknown parameters(λ, Γ, ∆).

If the parameters can be estimated from the data on past returns, then

replacing (λ, Γ, ∆) with estimates (λ̂, Γ̂,∆̂) will provide an empirical Bayes

estimate for the mean rate of return.

2.2 Estimation

Assume that securities have been observed at regular intervals of width t
n
in

the time period (0, t). The log prices at times (s+1)t
n

, given the log prices at

times st
n
, s = 0, ..., n, are de�ned by the model as

Y (s) = y(s− 1) +
t

n
λ +

√
t

n
∆

1
2 Z. (11)

10



The �rst order increments process generates sample rates

e(s) = (Y (s)− y(s− 1))÷ t

n
= λ +

√
n

t
∆

1
2 Z, (12)

which are stationary with covariance

Σnt = Γ +
n

t
∆ = Γnt + ∆nt,

and mean E(e) = λ.

>From the realized trajectory of prices, the observations on log-prices at

times st
n
, s = 0, ..., n, are

{Yis, i = 1, ..., K; s = 1, ..., n}.

The corresponding sample rates are

{eis, i = 1, ..., K; s = 1, ...n}.

With e′s = (e1s, ..., eKs), it follows that

Ȳt =
1

n

n∑
s=1

es (13)

So Ȳt is the maximum liklihood estimate of λ, given the sample rates

{es, s = 1, ..., n} . Let the covariance matrix computed from the observed

rates be Snt, the usual estimate of Σnt. The theoretical covariance is parti-

tioned as Σnt = Γnt + ∆nt, and the objective is to reproduce that partition
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with the sample covariance matrix. If the eigenvalues ofΓnt are λ1, ..., λK ,

and ∆nt = diag(δ2
1, ..., δ

2
K), then the eigenvalues ofΣnt are λ1+δ2

1, ..., λK +δ2
K .

When the rank of Γnt is m < K, then λm+1 = ... = λK = 0. Consider the

spectral decomposition of Snt, with the ordered eigenvalues

g1, ..., gK

and the corresponding eigenvectors l1, ..., lK . To generate the desired sample

sample covariance structure, choose a truncation value m < K, and de�ne

the matrices

Lnt = (l1, ..., lm) (14)

Gnt = LntL
′
nt (15)

Dnt = diag(Snt −Gnt) = (d1, ...dK) (16)

S∗nt = Gnt + Dnt (17)

where the eigenvectors are scaled so that

l′jlj = gj − dj.

In the theoretical covariance, it is possible that the eigenvaluesλj, j = 1, ...K,
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are all positive. However, it is expected that the covariance between securities

prices is generated by a small number of underlying portfolio's (factors) , and

therefore the number of positive eigenvalues(m) is small relative toK. In any

case m is indeterminate and an arbitrary choice introduces error. Since many

of the eignvalues and eigenvectors in the above construction are discarded,

the method is referred to as truncation. The impact of truncation error will

be considered in the next section.

The matrices Gnt, Dnt, S
∗
nt are estimates of Γnt, ∆nt, Σnt, respectively.

Therefore, Γ̂ = Gnt and ∆̂ = t
n
Dnt are estimates of model parameters Γ

and ∆. The estimate of Σt is

Σ̂t = t2Γ̂ + t∆̂ = Γ̂t + ∆̂t. (18)

For the parameter µ, the prior mean, assumptions about the �nancial market

can guide estimation. If it is assumed that the there is a long term equilibrium

value for returns on equities, it is reasonable to say λi, i = 1, ..., K, have a

common mean. So µ′ = (µ, ..., µ) and the prior mean is estimated by µ̂t1,

where 1 is a vector of ones and

µ̂t =
1

nK

∑
i

∑
s

eis. (19)

The truncation estimator for the conditional mean rate of return at time t is

λ̂Tr = µ̂t1 + (I − ∆̂tΣ̂
−1
t )(Yt − µ̂t1).

13



The truncation estimator is an empirical Bayes estimator since it is in the

form of the Bayes estimator, with estimates for the prior parameters. Note

that the assumption of a common prior mean could be relaxed to a common

mean within asset classes, or some other grouping of securities.

An alternative empirical Bayes estimator has been developed by Jorion

(1986). The prior mean is estimated by a weighted grand mean

µ̃t = 1′S−1
nt Yt/(1

′S−1
nt 1). (20)

The Bayes-Stein estimate of λ is

λ̂BS = µ̃t1 + (
n

ϕ + K
)(Yt − µ̃t1), (21)

with

ϕ =
K + 2

(Yt − µ̃1)′S−1
nt (Yt − µ̃1)

. (22)

Although they have similar forms, the concept behind the Bayes-Stein es-

timator is quite di�erent from the truncation estimator. The truncation

estimator adjusts the maximum likelihood estimate Ȳt based on the correla-

tion between securities prices, or equivalently the scores on the latent market

factors. The prior distribution is multivariate normal and the conditional co-

variance (speci�c variance) is diagonal. The Bayes-Stein estimator shrinks

all the Ȳit toward the grand mean, based on variance reduction. In this case,

the prior is univariate normal, and the conditional covariance is not diagonal.
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3 PARAMETER ESTIMATION ERROR

A number of possible estimators for the expected rate of return on securities

have been presented. The truncation estimator is based on the Brownian

motion model for dynamics, and incorporates structural information about

the covariance between rates of return on securities. The estimator has logical

appeal, but the standard assessment of an estimator is based on estimation

error. This error is now considered both theoretically and numerically. Since

it is understood that estimation is based on data at timet, the time subscript

will be dropped in all expressions.

Each of the estimators can be written as

λ̂ = µ̂1 + (I − B̂)(Y − µ̂1). (23)

So B̂ = 0 gives λ̂ = Y , B̂ = DS∗
−1 gives λ̂ = λ̂Tr, and B̂ = (1− n

ϕ+I
)I gives

λ̂ = λ̂BS. In each case B̂ can be viewed as an estimate of B = ∆Σ−1, the

Bayes value. Of course, the assumptions underlying the prior would di�er

for each estimator.

3.1 Theoretical Risk

The standard criterion for comparing estimators is based on the mean squared

error matrix:

E(λ̂− λ)(λ̂− λ)′. (24)
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(In the analysis of this section, the expectation in the MSE is with respect

to the conditional and prior distributions, so the dynamic Bayes model is

assumed to be correct.) The risk of an estimator is de�ned as the trace of

the MSE matrix:

R(λ, , λ̂) = trE(λ̂− λ)(λ̂− λ)′. (25)

It is well known that the Bayes estimate minimizes the risk. The work here

will focus on the additional risk that is incurred by using an empirical Bayes

estimate. Consider the di�erence

λ̂B̂ − λ̂B = B(µ̂1− µ1) + (B − B̂)(Y − µ̂1).

The additional risk for an empirical Bayes estimator is

R+(λ̂B̂) = trEB(µ̂1−µ1)(µ̂1−µ1)′B′+trE(B−B̂)(Y −µ̂1)(Y −µ̂1)′(B−B̂)′.

This expression can be simpli�ed to

R+(λ̂B̂) =
1

K2n
(1′Σ1)trB11′B′ +

1

n
trE(B − B̂)S(B − B̂). (26)

The relevant information for the truncation estimator is the correlation be-

tween asset prices, and in particular the underlying factors generating the

correlation. To simplify the model, it is assumed thatΣn has eigenvalues
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γ1 ≥ ... ≥ γm > γm+1 = ... = γK = δ2.

So Σn = ΛnΓnΛ′n, with Γn = diag(γ1, ..., γm, δ2, ..., δ2), and then Σn =

Λ∗nΛ∗n
′ + δ2I for Λ∗nj = (γj − δ2)

1
2 Λnj, j = 1, ..., m. (With the time subscript

dropped, n denotes the number of equally spaced time points.)

The above structure speci�es the rank of Γn, that is, the number of fac-

tors, and assumes a common error variance. To focus on the covariance, it

will be assumed that the error variance is known. (Note that an estimate of

the error variance is given in (16).) With the assumed structure, the addi-

tional risk for the truncation estimator and the mean rate of return can be

compared. A convenient measure for additional risk is the relative savings

loss (RSL) ( Efron and Morris, 1972).

De�nition 1- Relative Savings Loss

Consider the Bayes estimator λ̂B, the maximum likelihood estimator Yt

and an alternative estimator λ̂. Then the relative savings loss for the esti-

mator λ̂ is

RSL(λ̂) =
R+(λ̂)

R+(Y )
. (27)

So the RSL of the optimal Bayes estimator is 0, and the RSL for the

sample mean is 1 . Intuitively, the risk for the truncation estimator is between
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the risk for the Bayes estimator and that for the mean, i.e. the RSL is less

than 1 for the truncation estimator. There are two important components

in the risk and RSL expressions for the truncation estimator: (i) sampling

error; and (ii) truncation error. These components are considered separately-

sampling error when there is no truncation error, and truncation error when

there is no sampling error.

3.2 Sampling error when m is known

If the number of factors in the random rates of return is known, then the

empirical Bayes estimator λ̂Tr is an improvement on the mean rate of return

Y , provided there is su�cient data to identify model parameters.

Proposition 1

Suppose that the number of factors m < K and the volatility ∆ = δ2I in the

random rate of return model are known. Then there is a sample sizen∗ such

that

RSL(λ̂Tr) ≤ 1,

if n ≥ n∗.

Proof:

18



Consider the additional risk for the truncation estimator,

R+(λ̂Tr) =
1

nK2
(1′Σ1)trB11′B′ +

1

n
trE(B − B̂)Sn(B − B̂)′,

where B = ∆Σ−1and B̂ = ∆S∗
−1

. Also Sn = LGL′ for G = diag(g1, ..., gK).

With m and ∆ = δ2I known, thenB = ∆Σ−1 = δ2ΛΓ−1Λ′ and B̂ = ∆S∗
−1

=

δ2LG∗−1
L′, where Γ = diag(γ1, ..., γm, δ2, ..., δ2) andG∗ = (g1, ..., gm, δ2, ..., δ2).

Consider

trE(B − B̂)Sn(B − B̂)′ = trEBSnB′ − 2trEBSnB̂′ + trEB̂SnB̂
′.

>From the structure it follows that

trEB̂SnB̂′ = E(
m∑

j=i

δ4

gj

+
K∑

j=m+1

gj)

and

trEBSnB
′ =

m∑
j=1

δ4

γj

+ δ2(K −m).

From the asymptotic moments of eigenvalues ( Seber, 1984) and after some

simpli�cation

trEBSnB̂′ =
m∑

j=1

δ4

γj

+
∑m

i=1
Egj + O(n−2).
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As well

E

m∑
j=1

1

gj

=
m∑

j=1

1

γj

+
1

n
{(K −m)

m∑
j=1

1

δ2 − γj

}+ O(n−2)

E

I∑
j=m+1

gj = (K −m) +
1

n
{(K −m)

m∑
j=1

γj

δ2 − γj

}+ O(n−2).

Substituting expressions into the additional risk for λ̂Tr yields

R+(λ̂Tr) =
1

nK2
(1′Σ1)trB11′B′ +

1

n
{K −m

n

m∑
j=1

δ4 − γj

δ2 − γj

}+ O(n−2).

For Y , it follows that

R+(Y ) =
1

nK2
(1′Σ1)trB11′B′ +

1

n
(

m∑
j=1

δ4

γj

+ δ2(K −m)).

Consider that

[
{K −m

n

m∑
i=1

δ4 − γj

δ2 − γj

} − {
m∑

j=1

δ4

γj

+ δ2(K −m)}
]
≤ 0

if

n ≥ 1

δ2

∑m

i=1

γj − δ4

γj − δ2
= n∗.

In that case,
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RSL(λ̂Tr) =
R+(λ̂Tr)

R+(Yt)
≤ 1

as required.

Usually the relative savings from using λ̂Tr in place of Y would be sub-

stantial. This will be demonstrated with an example.

Example 1

Suppose there are K = 5 risky assets with prices de�ned by equations

(2) and (3). Assume there ism = 1 factor in the random rates of return and

the covariance matrix for log prices is

Σ =




.10 .0395 .0395 .0395 .0395

.0395 .10 .0395 .0395 .0395

.0395 .0395 .10 .0395 .0395

.0395 .0395 .0395 .10 .0395

.0395 .0395 .0395 .0395 .10




.

The eigenvalues are γ = .250 and δ2 = .0625 with multiplicity 4. From the

expressions for additional risk

R+(λ̂Tr) =
.078125

n
+

5.25

n2

and
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R+(Y ) =
.343725

n
.

Then the relative savings loss for the truncation estimator isRSL(λ̂Tr) =

0.227 + 15.27
n

. So RSL(λ̂Tr)≤ 1 if n ≥ 20.

3.3 Asymptotic Truncation Error

In the situation where the number of factors is unknown, then an estimate

m∗ for m is required before estimating Λ. Understating the number of fac-

tors, presumably because the contribution of some factors is insigni�cant, is

the rationale for the label truncation estimator. If the factors are equally

important, so that the eigenvalues of Γ are equal, then the impact of trun-

cation will be greater. This worst case will be considered since it provides

a bound on the extra error from truncation. To simplify analysis, it will be

assumed that the sample size n is large and therefore

Σ = ΛΛ′ + δ2I

will be used in the truncation estimator. Also,σ2 = 1
K

trΣ.

Proposition 2

Suppose Σ has eigenvalues γ with multiplicity m and δ2 with multiplicity

K −m, where γ > δ2. Consider λ̂Tr, the truncation estimator with number
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of factors m∗ < m.

(i) If m < K
2
, thenRSL(λ̂Tr) ≤ 1.

(ii), If m > K
2
, then there exists a value δ2

1, 0 ≤ δ2
1 ≤ σ2, such that

RSL(λ̂Tr) ≤ 1 forδ2 ≥ δ2
1.

Proof:

With the covariance Σ having eigenvalues γ with multiplicity m and δ2

with multiplicity K−m, then the m∗ truncation estimates for δ2 and Λ·j are

d2 = δ2 +
(m−m∗)
(K −m∗)

φ

and

l·j = (1 +
δ2 − d2

φ
)

1
2 Λ·j, j = 1, ..., m∗,

where φ = γ − δ2. With Σ∗ = L′L + D, then trΣ = trΣ∗. The truncation

estimator, based on Σ, has

B̂ =

[
δ2 + (

m−m∗

K −m∗ )φ
](

1 +
δ2 − d2

φ

)
Λ1Λ

′
1,

where Λ = (Λ1, Λ2) and Λ1 is K ×m∗ and Λ2 is K × (m −m∗). Then the

additional risk for the truncation estimator is
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R+(λ̂Tr) =
1

K2n
(1′Σ1)trB11′B +

1

n
tr(B − B̂)Σ(B − B̂)′ =

1

K2n
(1′Σ1)trB11′B +

1

n

φ(m−m∗)(K2 − 2Km∗ + mm∗)
(φ + δ2)(K −m∗)2

.

For the mean Y , the additional risk is

R+(Yt) =
1

K2n
(1′Σ1)trB11′B +

1

n

Kδ2(φ + δ2)−mφδ2

φ + δ2
.

Without loss of generality let σ2 = 1. Then

RSL(λ̂Tr) ≤ 1

is equivalent to

φ(m−m∗)(K2 − 2Km∗ + mm∗) ≤ (K −m∗)2[Kδ2(φ + δ2)−mφδ2].

This becomes aδ4 + bδ2 + c ≥ 0, where a = (K −m∗)(2m −K), b = (K −
m∗)(K −m) + (K2 − 2m∗K + mm∗), and c = −(K2 − 2m∗K + mm∗). For

the quadratic in δ2 there are two cases.

(i) If m < K
2
, the quadratic is concave with one root less than zero

and the other greater than one. So aδ4 + bδ2 + c ≥ 0 for δ2 ∈ (0, σ2) and

RSL(λ̂Tr) ≤ 1.
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(ii) If m ≥ K
2
, the quadratic is convex with one root less than zero and

the other between zero and one, say 0 < δ2
1 < 1. Then aδ4 + bδ2 + c ≥ 0 and

RSL(λ̂Tr) ≤ 1 for δ2 ∈ (δ2
1, σ

2).

If the number of market factors is small, the e�ect of truncation cannot

make the additional risk greater than that for the mean rate of return. If the

number of factors is large, then the truncation estimator dominates when the

variance speci�c to each asset is close to the variance of the common factors.

Example 2

To illustrate the e�ects of truncation, consider an example withK = 8

assets. The covariance structure is determined by the matrixΛm = m− 1
2 Em,

where Emis de�ned by the �rst m columns of the matrix

E =




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 1 1 −1

1 −1 −1 1 1 −1 −1 1




.

The error variance is δ2 = 1. The variance of each log-price is 2 and
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trΣ = 16. The eigenvalues of Σ are γ = 8
m

+ 1, with multiplicity m, and

δ2 = 1, with multiplicity K − m. This is the situation of the proposition,

where truncation error is greatest. In Table 2, the relative savings loss for

the truncation estimator, with the range of values ofm and m∗, is presented.

m
1 2 3 4 5 6 7 8

1 0.9903 0.9575 0.9219 0.9007 0.8995 0.9249 0.9252 1.0
2 0.9513 0.9804 0.8809 0.8769 0.9061 0.9391 1.0
3 0.8944 0.8581 0.8490 0.8817 0.9214 1.0

m∗ 4 0.8351 0.8154 0.8419 0.8960 1.0
5 0.7812 0.8055 0.8572 1.0
6 0.7586 0.7921 1.0
7 0.6975 1.0
8 1.0

Table 1: Relative Savings loss with Truncation: Worst Case Scenario

As expected, including more factors (less truncation) improves the relative

performance of the empirical Bayes estimator.

3.4 Simulation Results

The analytic results have established the relative advantage of the truncation

estimator. To calibrate the size of the advantage, two data sets of actual asset

returns are now considered: (i) end of month prices for 24 leading stocks from

the Toronto Stock Exchange (TSE); (ii) end of month prices for 24 leading

stocks from the New York Stock Exchange (NYSE). For both markets, the

data covers the years 1990 -2002. The correlation structure for prices is
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di�erent for the exchanges, so a performance comparison of estimators will

show the signi�cance of structure. The percent of variance accounted for by

the top 5 eigenvalues for each correlation matrix is shown in Table 2.

Table 2: Leading Eigenvalues (% of variance)

γ1 γ2 γ3 γ4 γ5 Total
NYSE 21.9 12.4 7.9 6.6 5.5 54.3
TSE 28.3 18.7 14.8 8.9 6.7 77.4

>From the data on monthly closing prices for the set of 24 stocks on

the Toronto Stock Exchange and the separate set of stocks on the New York

Stock Exchange, the price increments (natural log of gross monthly rates

of return) were computed. The mean vector and covariance matrix of the

increments for each exchange was computed, and these values were used as

parameters in the dynamic model. Trajectories of prices for 50 months were

simulated and the expected rates of return were estimated by the various

methods: average, truncation estimator, and Bayes-Stein estimator. For the

truncation estimator the number of factors was preset at m∗ = 5. Since

the TSE data has a more compact market structure, it is expected that the

truncation estimator with m∗ = 5 will perform better in that case. This

expiriment was repeated 1000 times and the root mean squared error for

each estimator was computed. The results are shown in Table 2.
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NYSE Estimator TSE Estimator
Stock Tr Avg BS Stock Tr Avg BS

SNY SE,1 1.9725 2.8432 2.1462 STSE,1 1.7668 4.5063 3.1027
SNY SE,2 4.1581 4.8305 4.2945 STSE,2 2.7083 4.4457 3.2007
SNY SE,3 1.8415 2.9378 2.2138 STSE,3 1.9782 4.3989 3.0300
SNY SE,4 2.2514 3.0818 2.3202 STSE,4 1.7466 4.3747 3.0131
SNY SE,5 2.5917 2.8565 2.2977 STSE,5 1.6950 4.5301 3.1046
SNY SE,6 2.8090 2.9188 2.2270 STSE,6 1.8265 4.6527 3.2517
SNY SE,7 4.9898 5.3249 5.8516 STSE,7 1.6682 4.2899 2.9744
SNY SE,8 2.1711 2.9338 2.2597 STSE,8 1.8485 4.3125 2.9897
SNY SE,9 2.3748 3.1987 2.5019 STSE,9 1.8717 4.8132 3.3046
SNY SE,10 2.0109 3.0979 2.4649 STSE,10 2.0050 4.4784 3.1089
SNY SE,11 2.5031 3.0759 2.4323 STSE,11 2.3007 4.5624 3.2394
SNY SE,12 1.9821 2.9752 2.2563 STSE,12 2.2495 5.0386 3.4564
SNY SE,13 2.0238 2.9266 2.2242 STSE,13 2.6598 4.3629 3.1579
SNY SE,14 1.9424 3.1798 2.5272 STSE,14 1.9208 4.5340 3.1757
SNY SE,15 1.9684 3.0972 2.3393 STSE,15 1.7682 4.4389 3.0406
SNY SE,16 2.2664 2.6545 2.0528 STSE,16 1.9065 4.3880 3.0011
SNY SE,17 2.2813 2.7824 2.1058 STSE,17 2.1732 4.8737 3.2946
SNY SE,18 4.5069 5.5240 5.7066 STSE,18 2.1746 4.7862 3.3036
SNY SE,19 1.8315 2.8630 2.2293 STSE,19 2.2255 4.4604 3.1621
SNY SE,20 5.3000 5.6623 6.3081 STSE,20 1.8554 4.3601 3.0257
SNY SE,21 2.3198 2.7973 2.1474 STSE,21 1.6668 4.2875 2.9623
SNY SE,22 2.2613 3.2026 2.3916 STSE,22 2.0788 4.5036 3.1099
SNY SE,23 2.7386 2.8809 2.3177 STSE,23 2.0384 4.4373 3.1094
SNY SE,24 1.8536 2.9950 2.2968 STSE,24 1.9518 4.1811 2.8882

AV G 2.6229 3.3600 2.8297 AV G 2.0026 4.5007 3.1253

Table 3: %Root Mean Squared Error

The truncation estimator has smaller mean squared error for most stocks

on the NYSE and for all stocks on the TSE. As predicted, the performance

is better for the stocks on the TSE.
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4 WEALTH EFFECTS

The signi�gance of quality estimates for model parameters gets highlighted

when those values becomes inputs to portfolio decisions and the accumula-

tion of wealth over time. The dynamic process for determining a portfoliois

illustrated in Figure 2, where at discrete points in time the model parameters

are re-estimated to include new information acquired for prices. The revised

estimates are fed into the portfolio choice model, and a new strategy is cal-

culated. So the investment strategy depends on the estimated parameters.

Figure 1: Dynamic Investment Process

This process will be illustrated for the portfolio selection problem with

constant relative risk aversion utility.

4.1 Wealth Loss

Consider an investor with wealthwt at time t and investment strategy, given

estimator B,
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XB(t) = (xB1(t), ..., xBK(t))′,

where xBi(t) is the fraction invested in risky security i, i = 1, ..., K, and

xB0(t) = 1−∑K
i=1 xBi(t) is the fraction in the risk-less security. Let α̂Bi(t) =

λ̂Bi(t) + 1
2
δ2
i , i = 1, ..., K. The wealth in period t + 1 with the strategy XB(t)

is

WB(t+1) = wt exp

{
XB(t)′(α̂B(t)− r) + r − 1

2
XB(t)′∆XB(t) + XB(t)′∆Z

}
,

(28)

where Z ′ = (Z1, ..., ZK), Zi ∝ N(0, 1).

The objective is to maximize the expected utility of wealth at timet + 1,

with

Eu(W (t + 1)) = E

[
W (t + 1)β − 1

β

]
, (29)

where β < 1 and β 6= 0. This is the constant relative risk aversion power

utility function. When β = 0,u(w) = ln(w). For the dynamic pricing model

with random rates of return, the optimal strategy is similar to the solution

given by Merton (1992):

XB(t) =
1

1− β
∆−1(α̂B(t)− re). (30)

It is assumed with (30) that the Bayes pricing model from (1)�(3) is correct.
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A derivation of the optimal solution is given in MacLean, Ziemba and Li (

2003). It is signi�cant that the conditional covariance of log-prices,∆, is

a key component of the solution. So the investment strategy depends on

the conditional mean and the conditional covariance, and values for both

are required to implement the strategy. The empirical Bayes (truncation)

estimation provides estimates for both parameters.

When estimates for the parameters are used in calculating the strategy,

so that

XB̂(t) =
1

1− β
∆̂−1(α̂B̂(t)− re), (31)

then t + 1 period wealth is

WB̂(t + 1) = wt exp

{
XB̂(t)′(α̂B(t)− r) + r − 1

2
XB̂(t)′∆̂X(t) + X(t)′∆̂Z

}
.

(32)

The ratio

WL(XB̂) = E log
WB(t + 1)

WB̂(t + 1)
(33)

indicates the wealth loss from estimating the parameters in the Bayes model.

A comparison of the empirical Bayes (truncation) strategy with the mean

rate strategy (with an independent estimate for covariance) is de�ned by the

relative wealth loss.
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De�nition 2- Relative Wealth Loss

Let XY (t), XB̂(t) be the investment strategies from using the maximum likli-

hood, and empirical Bayes (truncation) estimates, respectively, for the ran-

dom rates of return. The one period ahead relative wealth loss is de�ned

as

RWL(XB̂) =
WL(XB̂)

WL(XY )
.

Following from the results on mean squared error, the wealth loss should

be less for the strategy based on the truncation estimator than for the strat-

egy based on the mean rate of return. In developing the comparison assume

that ∆ = δ2I is given.

Proposition 3

Assume that∆ = δ2I and m are known. Then

RWL(XB̂) < RSL(λ̂B̂) if β < 0

RWL(XB̂) = RSL(XB̂) if β = 0

RWL(XB̂) > RSL(λ̂B̂) if 0 < β < 1.

Proof:

Consider WL(XB̂) = ElnW (t + 1)− ElnW (t + 1)
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=
−β

(1− β)2
δ−2E(λ̂B − λ̂B̂)′(λ̂B + (

1

2
δ2 − r)e) +

1

2(1− β)2
δ−2E(λ̂B̂ − λ̂B)′(λ̂B̂ − λ̂B)

=
−β

(1− β)2
δ−2E(λ̂B − λ̂B̂)′(λ̂B + (

1

2
δ2 − r)e) +

1

2(1− β)2
δ−2R+(λ̂B̂, λ̂B).

Also

E(λ̂B − λ̂Tr)
′λ̂B = E(λ̂B − λ̂Y )λ̂B + E(λ̂Y − λ̂Tr)λ̂B.

Furthermore

E(λ̂Y−λ̂Tr)
′λ̂B =

[
B̂(Y − µ̂1)

]′ [
Y −B(Y − µ1)

]
= −EtrB(Y−µ̂1)(Y−µ1)′B̂′ = −EtrBSnB̂

′

and

E(λ̂B − λ̂Y )′λ̂B = E
[
[−B(Y − µ1)]′(µ1 + (I −B)(Y − µ1)

]
=

EB′(Y − µ1)′(Y − µ1)B − E(Y − µ1)′B(Y − µ1) = EtrBSnB
′ − EtrBSn = EtrBSnB − tr∆.

So

WL(XTr) =
1

2(1− β)2
δ−2R+(λ̂Tr, λ̂B) +

β

(1− β)2
δ−2tr∆,

and
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WL(XY ) =
1

2(1− β)2
δ−2R+(λ̂Y , λ̂B)+

β

(1− β)2
δ−2tr∆− β

(1− β)2
δ−2trEBSnB.

With RWL(XTr) = WL(XTr)
WL(XY )

and RSL(λ̂Tr) = R+(λ̂Tr)

R+(λ̂Y )
, the statement in the

theorem follows.

The wealth loss depends upon the risk aversion at the time of decision. In

the decision rule, the risk aversion parameter β de�nes a fraction of capital

invested in the optimal growth portfolio: 1
1−β

. When β < 0, the control of

decision risk also reduces the impact of estimation error. Correspondingly,

when β > 0, the overinvestment increases the e�ect of estimation error.

When comparing the decisions based on the empirical Bayes and mle esti-

mates, the improvement in parameter estimation translates into better wealth

performance.
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Corollary 1

Suppose that the number of factors m < K and the volatility ∆ = δ2I

are known. Then there exists a value n∗ such that RWL(XTr) < 1 when

n ≥ n∗ and β ≤ 0.

If the number of factors is unknown, then additional error from truncation

will be included in the estimator and the investment decision. Consider the

bias introduced by truncation

Θ(λ̂Tr) = E(λ̂B − λ̂Tr)
′1. (34)

If this bias is su�ciently small, then the relationship between wealth loss

and estimation error are retained.

Proposition 4

Consider assets with price dynamics de�ned by (1)-(3), and investment

strategy de�ned by (29). Let λ̂Tr be the truncation estimate with number of

factors m∗ < m. If the bias for the truncation estimate satis�es

(
1

2
δ2 − r)Θ(λ̂B̂) < trEBSnB

′,
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then RWL(XB̂) < RSL(λ̂B̂) if β < 0

RWL(XB̂) = RSL(XB̂)if β = 0

RWL(XB̂) > RSL(λ̂B̂) if 0 < β < 1.

Proof:

>From the �rst statement in Proposition 3, it follows that

RWL(XB̂) =
R+(λ̂B̂) + 2βtr∆− 2β(1

2
δ2 − r)Θ(λ̂B̂)

R+(λ̂Y ) + 2βtr∆− 2βtrEBSnB′ .

If the bias inequality is satis�ed, then the statements relatingRWL and RSL

hold.

The ordering on estimation loss generates an ordering on wealth loss for

alternative investment strategies when the number of factors in the price dy-

namics is truncated. For the worst case, where the truncated factors are as

important as those retained, the ordering follows from Proposition 2.

Corollary 2
Suppose Σ has eigenvalues γ with multiplicity m and δ2 with multiplicity

K − m, where γ > δ and σ2 = 1
K

trΣ. Let the number of factors in λ̂B̂ be

m∗ < m, with β ≤ 0, and assume (1
2
δ2 − r)Θ(λ̂B̂) < trEBSnB

′. Then

(i)RWL(λ̂B̂) < 1 when m ≤ K
2

(ii)RWL(λ̂B̂) < 1 when m < K
2
and δ2 ≥ δ2

1, for appropriate choice of
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δ2
1, 0 ≤ δ2

1 ≤ σ2.

The empirical Bayes or truncation estimator in general has smaller mean

squared error than the mle, and that saving translates directly into improved

decisions and wealth accumulation in the case of log utility (β = 0). The

log or optimal growth strategy is aggressive, even in the Bayes case where

parameter values are known. A fractional log strategy, based on a negative

power utility function ( 1
1−β

< 1), controls the inherent risk, and also low-

ers the loss from estimation error. In contrast, the levered strategies, from

positive power utility functions ( 1
1−β

> 1), exacerbate the losses.

4.2 Application to NYSE

The dynamic investment process is now implemented with the data from the

New York Stock Exchange. The approach is to forecast the prices for the next

month using the Truncation or Bayes-Stein estimator, then calculating the

investment strategy for the expected utility maximization criteria. The log

utility is assumed, so thatβ = 0. The segment of the data series from January,

1995 to December 1996 is used. The forecast and strategy are developed

from past prices, and the return is calculated from the actual prices. This

backcast is worked forward for 24 months, with the resulting accumulated

capital shown in Table 4. The returns are very large, as is characteristic

of that period, and capital is borrowed to invest in high return securities.

The relevant statistic is the relative return for the comparative estimators.
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The superiority of the truncation estimator, which was demonstrated in the

simulation, translates into improved strategies and greater wealth.

Month Bayes-Stein Truncation Ratio
1 1000.00 1000.00 1.00
2 2753.84 3114.25 1.13
3 4734.16 5755.60 1.22
4 6155.03 7495.27 1.22
5 7072.46 8635.16 1.22
6 8800.46 10852.75 1.23
7 8057.76 9693.90 1.20
8 9839.54 12188.45 1.24
9 9915.73 12495.84 1.26
10 12373.73 16287.52 1.32
11 12945.05 17198.59 1.33
12 14734.91 19844.46 1.35
13 15114.73 20335.51 1.35
14 15905.18 21378.58 1.34
15 15753.94 21355.97 1.36
16 16988.85 23065.39 1.36
17 17817.41 24258.14 1.36
18 16744.71 22670.64 1.35
19 17483.44 23516.54 1.35
20 19935.02 26538.49 1.33
21 21354.56 28376.71 1.33
22 25299.94 33494.38 1.32
23 24760.45 32790.56 1.32
24 28880.96 37855.50 1.31

Table 4: Actual Wealth Trajectory

The 24 month test interval is appropriate for comparing estimators since

it doesn't include the market collapse following an overvaluation of securities.

A model including shocks with depending on the size of the overvaluation
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would supplement the model to cover a market bubble.

5 CONCLUSION

The estimation of the rates of return on assets is a critical ingredient to a

successful investment strategy. An e�ective combination of modeling and

data can result in signi�cant improvement in capital accumulation. In this

paper a Bayes dynamic pricing model is the basis for a truncation estimator

of the instantnaeous rate of return on assets. The key to the truncation

estimator is the correlation between asset prices. The common information in

price movements contributes to improved estimation of individual estimates.

The truncation estimator is compared to well known estimators - mean

and Bayes-Stein. If asset prices follow the geometric Brownian motion model,

then analytic results establish the superiority of the truncation estimator.

From simulation results, the truncation estimator outperforms the alterna-

tives in general.

The savings in estimation error with the proposed estimator translate

into better decisions and wealth. A back test on data from the New York

Stock Exchange emphasize the gains. The analytic formulation provides an

assessment of risk aversion in the face of uncertain returns. In particular,

the risk aversion index can be used to o�set the loss from estimation error

with the truncation estimator.
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