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Airline Network Revenue Management with Buy-up

Houyuan Jiang∗ Giovanna Miglionico†

January 27, 2006

Abstract

The emergence of budget airlines, the advent of new sales channels, the disappearance of

traditional fare-class fences, and other on-going changes in the airline industry pose serious

challenges to traditional revenue management models, which make some rigid and unrealistic

assumptions. One of these is that passengers who do not get the fare they want book and

travel on other airlines or do not travel at all. In reality many are not necessarily lost to

the airline but buy up, i.e., buy a more expensive ticket. In this paper, we model network

revenue management which incorporates buy-up using dynamic programming (DP). The

resulting DP model is unlikely to be solved optimally due to the curse of dimensionality

and hence is solved approximately by various simpler models such as deterministic linear

programming (DLP), probabilistic nonlinear programming (PNLP), randomized linear pro-

gramming (RLP), and approximate dynamic programming. Policies based on partitioned

booking limits and bid prices in conjunction with some of the above approximate models

are proposed to control capacity. We show that the partitioned booking limit policies for

several models are asymptotically optimal. The bid-price policy is also shown to be asymp-

totically optimal provided that correct bid prices are used. We establish some analytical

results to estimate expected network revenue gradients based on the RLP. Numerical results

show that a significant increase in revenue is obtainable for all five booking schemes on four

test examples even when the buy-up probability is relatively small.
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programming, nonlinear programming.
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1 Introduction

Revenue management (RM) has experienced a boom period in both theory and practice in

the last two decades. The state of the art is presented in the recent book by Talluri and van

Ryzin [21]. The emergence of budget airlines, the advent of new sales channels, the disappearance

of traditional fare-class fences, and other on-going changes in the airline industry pose serious

challenges to traditional RM models.

It has long been recognized that many traditional RM models are based on rigid and unre-

alistic assumptions. Hornick [12] describes five basic assumptions in the context of airlines that

need to be challenged:

(1) Fares themselves are static and the thing that changes is the availability of fare classes;

(2) Demand is distinct for specific products or groups that are “fenced off” from one another

to prevent less price-sensitive segments from buying lower-fare products;

(3) Passengers who do not get the fare they want book travel on another carrier or do not travel

at all;

(4) Demand forecasts are based on historical patterns, not up-to-the-minute market conditions;

(5) Competitive actions from other carriers or other unexpected events are captured by the

manual adjustment of forecasts.

In this paper we make one small step forward by weakening assumptions (2) and (3) above,

which have often been discussed in the literature, see, for example, Talluri and van Ryzin [21].

In reality, many initially denied customers are not necessarily lost to the airline. According to

Belobaba [3], the unavailability of a desired flight and fare class can lead to:

(a) A vertical shift to a higher fare class, same flight;

(b) A horizontal shift to a different flight, same fare class and airline;

(c) A booking loss to the refusing airline.

In [15], purchase behavior (a) is called buy-up or upgrade, and purchase behavior (b) is called

recapture. We are particularly interested in customers’ choices related to (a) and (b), and shall

consider a buy-up model which captures both behaviors.

In the traditional RM models based on assumptions (2) and (3), each customer requests a

unique product. The customer’s request is either accepted or the customer is lost to the airline.
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Our buy-up model can be interpreted in the following way in practice. When customers arrive,

they have a product in mind. They either directly requests a product from an agent or checks

seat availability over the internet. If their requested product is available, the request will be

accepted. If not, they may ask for another product, but it is more likely that the agent will

recommend a new set of products which could be an upgraded product with the same travel

time and route or similar products with different travel time(s) and route(s). If they accept the

agent’s recommendation, they purchase a new product. If not, they leave the airline. In the case

of internet bookings, the customers can act as an agent for themselves by repeatedly sending

enquires to the booking system.

Several models without assumptions (2) and (3) have been proposed in the literature. In

a single-leg setting, Belobaba [2, 3] proposes a heuristic algorithm based on the well-known

expected marginal seat revenue (EMSR) for static capacity management which considers buy-

up. You [27, 28] studies the optimal dynamic programming model and analyzes the booking

policy. You obtains the following results: (1) The rejection decision can be optimally controlled

using either a set of critical booking capacities or a set of critical decision periods; (2) The

offering decision of possible buy-up can also be optimally controlled using a set of critical values.

In the context of RM in a single-leg setting, Shumsky and Zhang [17] consider a problem similar

to the one studied by You [27, 28] and examine a multiperiod capacity allocation model with

upgrading. Buy-up models with only two classes of customers are also considered in [5, 16, 25].

A somewhat different approach incorporating buy-up is the so-called choice model. More

precisely, at any point of time, possibly more than one product is made available to customers.

Purchase behavior of customers may depend on which products are available and is characterized

by the probability distribution as a function of the set of products offered. A general analysis

based on dynamic programming is provided by Talluri and van Ryzin [20] for a single-leg setting.

The same model has been extended to a network setting in [9, 22, 24].

In this paper, we propose a buy-up model for network RM using dynamic programming

(DP). This new model reduces to the one proposed by You [27] in a single-leg setting and to the

one proposed by Bertsimas and Popescu [4] without buy-up in a network setting. The result-

ing DP model is unlikely to be solved optimally due to the curse of dimensionality and hence

is solved approximately by various simpler models such as deterministic linear programming

(DLP), probabilistic nonlinear programming (PNLP), randomized linear programming (RLP),

and approximate dynamic programming. Policies based on partitioned booking limits and bid

prices in conjunction with some of the above approximate models are proposed to control ca-
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pacity. We show that the partitioned booking limit policy based on both the DLP and the

PNLP are asymptotically optimal. We further show that the bid-price policy is also asymptot-

ically optimal provided that bid prices are obtained from the appropriate approximate model.

It is known that the RLP is used to estimate the gradient of the expected perfect information

network revenue, which in turn is used to approximate the gradient of the optimal expected

network revenue. The resulting gradient can be used in the bid-price policy. We establish some

analytical results to estimate expected network revenue gradients based on the RLP.

The rest of this paper is organized as follows. In the next section, we define the buy-up

model more precisely and present a dynamic programming formulation. We then show that the

airline is always better off using the buy-up model if some customers do buy up. In section 3, we

present several approximate formulations to the dynamic programming formulations including

the DLP, the PNLP, the RLP and the opportunity cost-based approximation using the DLP. It

turns out that those approximations are direct extensions of the same approximations from

the traditional network revenue management. Policies based on partitioned booking limits

and bid prices in conjunction with some of the above approximate models are proposed to

control capacity. In section 4, we show that the partitioned booking limit policy based on

either the DLP or the PNLP is asymptotically optimal. The bid-price policy is also shown to

be asymptotically optimal in section 5 provided that correct bid prices are used. In section 6,

we establish some analytical results to estimate expected network revenue gradients based on

the RLP, which provides some basis for using the RLP as an approximation for solving the

DP. Some further analytical properties for the DP, the PNLP and the opportunity cost-based

approximation are discussed in section 7. We report our numerical experiments on some test

examples in section 8. The numerical results confirms that the buy-up model is indeed a better

model than the traditional network revenue management models when some customers do elect

to buy up. In section 9, we make some concluding remarks.

2 The Dynamic Programming Model (DP)

Assume an airline company sells n products over a network that has m resources/legs. Each

product j is a combination of an itinerary and a fare and has an associated unit revenue rj .

Define the incidence matrix A = [aij ] where aij = 1 if resource i is used by product j, aij = 0

otherwise. Let Aj denote the j-th column of matrix A. The initial capacity of the network is

c = (c1, . . . , cm)> ∈ IRm. The state of the network is described by a vector x = (x1, . . . , xm)> ∈

IRm of resource capacities. The booking horizon is divided into T periods indexed by t, which
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runs backwards so that t = 0 is the departure time.

Let us formally make some assumptions for our buy-up model.

(A1) In each time-period t no more than one request for one product can arrive with probability

λtj for product j. It holds that λt0 +
∑n

j=1 λtj = 1, where λt0 is the probability that no

booking request arrives at time t.

(A2) In any time period, a customer who is denied for their initial booking request can ask for

any other product if they wish to do so. If a customer with a booking request of product

j arriving at time t is rejected, then let qj
t` denote the probability that this customer will

express to buy product `. General conditions imposed on qj
t` are qj

t` ≥ 0, ∀j, `, t and

qj
t0 +

∑n
`=1 qj

t` = 1 ∀j, t, where qj
t0 ≥ 0 denotes the probability of having no further booking

requests for the denied booking of product j at time t.

(A3) No customer will ask for another product if they are denied a second time, i.e., customers

who are denied twice are lost forever.

Assumption A1 is standard for a dynamic network RM model in the literature. Under

Assumption A2, a booking request for any other product is possible for any denied booking in

any time period. In other words, this model allows the customers to upgrade or downgrade to a

product on the same itinerary or on different itineraries. In reality, many of qj
t` = 0 for any fixed

t and j as many customers are only able to buy up (or upgrade) to closely related products.

Assumption A3 is still restrictive in reality. Nevertheless, our model is one step closer to reality

than the traditional network RM models which do not consider buy-up.

At any time t, the airline has to make the following decisions when a booking arrives:

(D1) Accept or reject a booking request for product j.

(D2) In the case of rejection in D1 and if the customer wants to buy up to product `, accept or

reject the customer’s new booking request.

Let us introduce the boolean variables utj and vj
t` to represent decisions D1 and D2 for any

t, j and `. In particular, utj = 1 if and only if a booking request for product j at time t is

accepted. When utj = 1, vj
t` = 0 for all `, and when utj = 0, vj

t` = 1 if and only if an upgrade

to product ` from j is accepted.

The problem can be formulated as a dynamic program by letting Vt(x) be the maximum

expected revenue obtainable from periods t, t− 1, . . . , 1 given that there are x units of capacity

at time t. Then the Bellman equation for Vt(x) is:
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Vt(x) =
n∑

j=1

λtj max
utj + vj

t` ≤ 1

utj ∈ {0, 1}

vj
t` ∈ {0, 1}

[rjutj + utjVt−1(x−Ajutj)

+(1− utj)
n∑

`=1

qj
t`(r`v

j
t` + Vt−1(x−A`v

j
t`))

+(1− utj)q
j
t0Vt−1(x)

]
+λt0Vt−1(x)

(1)

with boundary conditions

Vt(0) = 0, ∀t;

V0(x) = 0, ∀x ≥ 0;

V0(x) = −∞, ∀x such that xj < 0 for some j.

According to definitions of λt0 and qj
t0, the Bellman equation can be rewritten as:

Vt(x) =
n∑

j=1

λtj max {rj + Vt−1(x−Aj),

n∑
`=1

qj
t` max[r` + Vt−1(x−A`), Vt−1(x)] + qj

t0Vt−1(x)}

+λt0Vt−1(x)

=
n∑

j=1

λtj max {rj + Vt−1(x−Aj),
n∑

`=1

qj
t` max[r` −∆Vt`(x), 0] + Vt−1(x)}

+λt0Vt−1(x)

=
n∑

j=1

λtj max {rj −∆Vtj(x),
n∑

`=1

qj
t` max[r` −∆Vt`(x), 0]}

+Vt−1(x)

(2)

where ∆Vtj(x) = Vt−1(x)−Vt−1(x−Aj) represents the opportunity cost/profit of holding a unit

of product j at time period t− 1.

The representation of Vt(x) in the last equation above is quite intuitive and can be explained

as follows. An initially denied booking request of product j is accepted (vj
t` = 1) to be upgraded

to product ` if and only if r` −∆Vt`(x) > 0, i.e., when the revenue from a unit of product ` is

higher than the opportunity cost of holding it in time period t−1. Let ∆Wtj(x) =
n∑

`=1

qj
t` max[r`−

∆Vt`(x), 0]. Then ∆Wtj(x) is nonnegative and can be interpreted as the benefit of denying an

initial booking request of product j. The above equation also states that a booking request of

product j is accepted (utj = 1) if and only if rj −∆Vtj(x) > ∆Wtj(x), i.e., the booking request
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of product j at time t is accepted if and only if the benefit of accepting it is more than the

benefit of rejecting it. Notice that max{rj −∆Vtj(x),∆Wtj(x)} ≥ 0 because ∆Wtj(x) ≥ 0 holds

in any case.

We point out that the dynamic programming formulation (1) or (2) reduces to that presented

in [27] in a single-leg setting. Also the DP reduces to the dynamic programming formulation

without buy-up presented by Bertsimas and Popescu [4].

A natural question arises as to whether or not the dynamic programming formulation (2) is

better than the traditional capacity management model without buy-up, which is defined in [4]

by

Gt(x) =
n∑

j=1

λtj max{rj + Gt−1(x−Aj), Gt−1(x)}+ λt0Gt−1(x). (3)

For all x and t, is Vt(x) ≥ Gt(x)? The answer is positive and the claim can be proven by

induction. Clearly, V0(x) = G0(x) = 0 for any x ≥ 0 and V0(x) = G0(x) = −∞ for any x such

that for some j, xj < 0. Hence for any x, V0(x) ≥ G0(x). Now assuming that Vt−1(x) ≥ Gt−1(x)

for any x, we aim to prove that Vt(x) ≥ Gt(x) for any x. This can be shown using (2):

Vt(x) =
n∑

j=1

λtj max {rj + Vt−1(x−Aj),

n∑
`=1

qj
t` max[r` + Vt−1(x−A`), Vt−1(x)] + qj

t0Vt−1(x)}

+λt0Vt−1(x)

≥
n∑

j=1

λtj max {rj + Gt−1(x−Aj),

n∑
`=1

qj
t` max[r` + Gt−1(x−A`), Gt−1(x)] + qj

t0Gt−1(x)}

+λt0Gt−1(x)

≥
n∑

j=1

λtj max {rj + Gt−1(x−Aj), Gt−1(x)}+ λt0Gt−1(x)

= Gt(x).

(4)

The above result is summarized below.

Proposition 2.1 The buy-up model performs no worse than the non buy-up model, i.e., for any

t and x,

Vt(x) ≥ Gt(x).
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3 Deterministic and Probabilistic Approximations

The DP model proposed in the last section is unlikely to be solved optimally due to the curse

of dimensionality. In this section, we propose several approximations to solutions of the DP,

which are extensions of well-known approximations for the DP of traditional network capacity

management. In particular, we are interested in approximations by deterministic linear pro-

gramming (DLP) [8, 26], probabilistic nonlinear programming (PNLP) [21, 26], randomized

linear programming (RLP) [19], and opportunity cost-based methods [4].

3.1 The Deterministic Linear Programming Model (DLP)

In the DLP, we replace stochastic demand quantities by their mean values and assume that

capacity and demand are continuous.

Let d ∈ IRn be the random vector of cumulative future demand at time t, and d̄ ∈ IRn its

mean vector. In particular, dj represents the aggregate demand for product j from period t

to the departure time. Let yj be the initial booking limit of capacity for product j and z`
j the

upgraded booking limit of capacity for product j when a customer whose initial request to buy

product ` is rejected wishes to buy a unit of product j with probability Q`
j . If time index t is

ignored, Q`
j can be thought as an average of q`

tj across the entire booking horizon.

For any given capacity x at time t, the deterministic linear program can be formulated as:

V DLP
t (x) = max r>(y +

n∑
`=1

z`)

s.t. A(y +
n∑

`=1

z`) ≤ x

y ≤ d̄

z` ≤ (d̄` − y`)Q`, ∀` = 1, . . . , n

y ≥ 0, z` ≥ 0, ∀` = 1, . . . , n.

(5)

It is well known [21] that by solving the DLP model we can use either the primal variables to

construct a partitioned booking limit control directly or the dual variables to define a bid-price

control. In the partitioned booking limit control, a fixed amount of capacity of each resource is

allocated to every product offered. The demand for each product has access only to its allocated

capacity and no other product may use this capacity. In contrast, a bid-price control policy sets

a threshold price or bid price for each resource in the network. Roughly this bid price is an

estimate of the marginal cost of consuming the next incremental unit of the resource’s capacity.

When a booking request for a product arrives, the revenue of the request is compared to the
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sum of the bid prices of all the resources required by the product. If the revenue exceeds the

sum of the bid prices, the request is accepted provided that all the resources associated with the

requested product are still available; if not, the request is rejected.

In the context of the DLP, optimal solutions y∗ and z∗ give partitioned booking limits while

bid prices are formed from optimal dual variables of constraint A(y +
∑n

`=1 z`) ≤ x. Assume α∗

is the optimal dual solution of the DLP. Next we formally define the partitioned booking limit

policy and the bid-price policy based on the DLP.

Partitioned booking limit policy (BLP).

Step BL1. A new booking request of product j arrives. Go to Step BL2.

Step BL2. If the number of bookings of product j accepted from initial requests is less than or

equal to y∗j − 1 and there is enough resource on each leg covered by product j, then accept

the booking request and go to Step BL1. Otherwise, reject the booking request and go to

Step BL3.

Step BL3. If the rejected customer does not wish to upgrade to any other product, go to

Step BL1. Otherwise, the rejected customer wishes to upgrade to another product `. If

the number of accepted bookings of product ` which have been upgraded from product

j to product ` is less than or equal to (z∗)j
` − 1, and there is enough resource on each

leg covered by product `, then accept the upgraded booking request and go to Step BL1.

Otherwise, reject the upgraded booking request and go to Step BL1.

Bid-price policy (BPP).

Step BP1. A new booking request of product j arrives. Go to Step BP2.

Step BP2. If rj − A>j α∗ >
∑n

`=1 max{r` − A>` α∗, 0}Qj
` , and there is enough resource on each

leg covered by product j, then accept it and go to Step BP1. Otherwise, reject the booking

request and go to Step BP3.

Step BP3. If the rejected customer does not wish to upgrade to any other product, go to

Step BP1. Otherwise, the rejected customer wishes to upgrade to another product `. If

r` > A>` α∗ and there is enough resource on each leg covered by product `, then accept the

upgraded booking request and go to Step BP1. Otherwise, reject the upgraded booking

request and go to Step BP1.

9



Remarks. (1) The DLP reduces to the traditional DLP [8, 26] when upgrades are not con-

sidered, i.e., Qj
` ≡ 0 for all j, `. (2) The partitioned booking limit policy also reduces to the

corresponding policy for the traditional DLP when upgrades are not considered. (3) In the BPP,

if rj ≤ A>j α∗, then rj −A>j α∗ >
∑n

`=1 max{r`−A>` α∗, 0}Qj
` does not hold and hence the initial

booking request should be rejected. Once again, the traditional bid-price policy is recovered if

the upgrade probabilities are assumed to be zero for all products.

3.2 The probabilistic nonlinear programming model (PNLP)

The probabilistic nonlinear program can be formulated as:

V PNLP
t (x) = max IE

 n∑
j=1

rj min(yj , dj) +
n∑

`=1

n∑
j=1

rj min{z`
j , Q

`
j(d` −min(y`, d`))}


s.t. A(y +

n∑
`=1

z`) ≤ x

y ≥ 0, z` ≥ 0, ∀` = 1, . . . , n.

(6)

When upgrades are not considered, the PNLP reduces to the traditional PNLP [21, 26].

Similar to the DLP, one can propose both the partitioned booking limit and the bid-price policies

based on the optimal primal and dual solutions of the PNLP, which reduce to the corresponding

policies for the traditional PNLP when upgrades are not considered.

3.3 The randomized linear programming model (RLP)

The randomized linear program is based on replacing d̄, the expected value of d, with the random

vector d itself into the constraints of the DLP.

V RLP
t (x, d) = max r>(y +

∑n
`=1 z`)

s.t. A(y +
n∑

`=1

z`) ≤ x

y ≤ d

z` ≤ (d` − y`)Q`, ∀` = 1, . . . , n

y ≥ 0, z` ≥ 0, ∀` = 1, . . . , n.

(7)

Note that the optimal value V RLP
t (x, d) is a random variable. Indeed, Vt(x) can be approx-

imated by V RLP
t (x) = IE[V RLP

t (x, d)]. If V RLP
t (x, d) is continuously differentiable with respect

to x for all d, then so is IE[V RLP
t (x, d)] and IE[ ∂

∂xV RLP
t (x, d)] = ∂

∂x IE[V RLP
t (x, d)]. Therefore

the opportunity cost of IE[V RLP
t (x, d)] is equal to the expected value of the opportunity cost of
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V RLP
t (x, d), which in turn can be approximated by sample averages of the optimal dual solution

of the RLP.

When upgrades are not considered, the RLP reduces to the traditional RLP [19] and one

can propose the bid-price policy based on the RLP, which matches the same policy for the

traditional RLP. Note that there is no partitioned booking limit policy for the RLP similar to

the traditional RLP.

3.4 Opportunity cost-based approximations

Bertsimas and Popescu [4] point out that two main disadvantages of the bid-price policy based

on the DLP are: (a) the bid price may not be uniquely defined; (b) the bid price provides

an additive approximation of the opportunity costs, which are not necessarily additive due to

bundle effects (group or multileg itinerary requests may determine basis changes in the dual

linear program). To rectify these shortcomings of the bid-price policy, Bertsimas and Popescu

propose a different approximation scheme for the opportunity cost of product j by

OCDLP
tj (x) ≡ V DLP

t (x, d̄(t− 1))− V DLP
t (x−Aj , d̄(t− 1))

where V DLP
t (x, d̄(t−1)) denotes the optimal objective function value of the DLP at time t when

the expected future demand is d̄(t−1). In other words, the opportunity cost of a seat for product

j is equal to the difference between the approximate total future revenue obtainable by keeping

this seat and that obtainable by selling it.

With the same notation, this is exactly the opportunity cost for the buy-up model. Then an

initial booking request of product j is accepted if and only if rj−OCDLP
tj (x) > max{

∑n
`=1 Qj

` [r`−

OCDLP
t` (x)], 0}, and the upgraded booking of product ` is accepted if and only if r` > OCDLP

t` (x).

When upgrades are not considered, the above opportunity based booking policy reduces to the

one proposed in [4].

4 Asymptotic Optimality of the Booking Limit Policies

The boundedness of the feasible region of the DLP shows the existence of its dual variables. Let

α ∈ IRm, β ∈ IRn, and γ` ∈ IRn for any ` be dual variables of the first three inequalities of the
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DLP. Then the dual problem of the DLP is the following linear program:

min x>α + (d̄)>β +
n∑

`=1

(d̄`Q
`)>γ`

s.t. A>α + β + ((Q1)>γ1 . . . (Qn)>γn)> ≥ r

A>α + γ` ≥ r, ∀` = 1, . . . , n

α ≥ 0, β ≥ 0, γ` ≥ 0, ∀` = 1, . . . , n.

(8)

Using the DP, the DLP and its dual, we are able to establish the relationship of the optimal

objective function values between the DP and the DLP and also the so-called asymptotic opti-

mality property which is well known in the traditional DLP [7, 21]. The asymptotic optimality

property basically states that the expected revenue generated from the partitioned booking limit

policy based on the optimal primal solution of the DLP is asymptotically convergent to the op-

timal expected revenue Vt(x) when both the available capacity x and the demand are scaled up

proportionally.

More precisely, consider a sequence of the network buy-up problems indexed by θ in which

the available capacity is equal to θx, the expected demand θd̄, and the demand random variable

d(θ). When θ = 1, the θ-scaled problem corresponds to the original problem defined in Section 2.

Let Vt(x, θ) and V DLP
t (x, θ) be the optimal objective function values of the DP and the DLP of

the θ-scaled problem respectively. With a given demand scenario d(θ), define UDLP
t (x, d(θ)) to

be the revenue generated from the partitioned booking limit policy based on the optimal primal

solution of the DLP corresponding to the θ-scaled problem. Then the asymptotic optimality

property states that under appropriate demand conditions, Vt(x, θ) scaled by 1/θ converges to

V DLP
t (x) as θ approaches infinity and the revenue generated from the optimal solution of the

DLP is also asymptotically optimal.

Theorem 4.1 (a) For any fixed t, V DLP
t (x) is a piecewise linear, nonincreasing and concave

function of the available capacity x and the expected future demand d̄.

(b) For any t and x, the optimal revenue of the DP is bounded above by the optimal objective

function value of the DLP, i.e.,

Vt(x) ≤ V DLP
t (x).

(c) The vector (y∗, (z∗)1, . . . , (z∗)n) is an optimal solution of the DLP if and only if

(θy∗, θ(z∗)1, . . . , θ(z∗)n) is an optimal solution of the DLP of the θ-scaled problem. More-

over,

V DLP
t (x, θ) = θV DLP

t (x).
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(d) For any fixed available capacity x, if the expected demand of the θ-scaled problem is θd̄ and
d(θ)
θ

converges to d̄ in distribution, then, in distribution,

UDLP
t (x, d(θ))

θ
→ V DLP

t (x) (9)

and

lim
θ→∞

Vt(x, θ)
θ

= lim
θ→∞

V DLP
t (x, θ)

θ
= V DLP

t (x).

Proof. (a) Let Ω be the set of vertices of the feasible region of (8). Clearly, the cardinality of

Ω is finite. Recall that both the DLP and its dual (8) have optimal solutions since the feasible

region of the DLP is bounded. Furthermore, both the DLP and its dual have the same optimal

objective function value V DLP
t (x) satisfying

V DLP
t (x) = min

(α,β,γ1,...,γn)∈Ω
x>α + (d̄)>β +

n∑
`=1

(d̄`Q
`)>γ`.

That is, V DLP
t (x) is the minimum of finitely many linear functions of x and d̄, and hence it is

piecewise linear and concave. Because Q` and all α, β and γ` in Ω are nonnegative, all linear

functions defining V DLP
t (x) in the above equation have nonnegative coefficients. Therefore,

V DLP
t (x) is a nondecreasing function of both x and d̄.

(b) For any demand realization d, the revenue generated from the optimal policy of the DP

is bounded above by V RLP
t (x, d) (see the RLP) as the latter is obtained from the optimal policy

that is based on the perfect demand information. It follows that

Vt(x) ≤ IE[V RLP
t (x, d)].

Applying the result in (a) to the RLP, we obtain that V RLP
t (x, d) is a piecewise linear, nonin-

creasing and concave function of d. Jensen’s inequality shows that

IE[V RLP
t (x, d)] ≤ V RLP

t (x, IE[d]) = V DLP
t (x)

which implies the result.

(c) It is easy to verify that (θy∗, θ(z∗)1, . . . , θ(z∗)n) is a feasible solution and an optimal

solution of the DLP of the θ-scaled problem if (y∗, (z∗)1, . . . , (z∗)n) is an optimal solution of the

DLP, and vice versa. The result follows easily.

(d) By definition,

UDLP
t (x, d(θ)) =

n∑
j=1

rj min[θy∗j , dj(θ)] +
n∑

`=1

n∑
j=1

rj min
{

θ(z∗)`
j , Q

`
j(dj(θ)−min[θy∗j , dj(θ)]

}

13



and since the min-operator is continuous, it follows from Lemma 1 of [7] that when θ approaches

infinity, in distribution,

UDLP
t (x, d(θ))

θ
→

n∑
j=1

rj min[y∗j , d̄j ] +
n∑

`=1

n∑
j=1

rj min
{

(z∗)`
j , Q

`
j(d̄j −min[y∗j , d̄j ]

}
=

n∑
j=1

rjy
∗
j +

n∑
`=1

n∑
j=1

rj(z∗)`
j ,

i.e., in distribution, (9) holds, where the last equality follows from (5). Since Vt(x, θ) is the

optimal value of the θ-scaled problem, it yields

IE[UDLP
t (x, d(θ))] ≤ Vt(x, θ) ≤ V DLP

t (x, θ) = θV DLP
t (x),

where the second inequality follows from an application of (b) to the θ-scaled problem and the

last equality follows from (c). This shows that

IE[UDLP
t (x, d(θ))]

θ
≤ Vt(x, θ)

θ
≤ V DLP

t (x, θ)
θ

= V DLP
t (x).

The results follow from (9).

The next proposition shows that we can obtain the similar asymptotic property for the PNLP

and some analytical property for the RLP. To our knowledge, the results in Theorem 4.2 have

not been addressed in the literature for the traditional network capacity management problem.

Theorem 4.2 (a) V PNLP
t (x) is a lower bound of the optimal value function Vt(x) and on

average, the PNLP performs no worse than the DLP, i.e.,

IE[UDLP
t (x)] ≤ V PNLP

t (x) ≤ Vt(x).

(b) For any fixed available capacity x, if the expected demand of the θ-scaled problem is θd̄ and
d(θ)
θ

converges to d̄ in distribution, then

V PNLP
t (x, θ)

θ
→ V DLP

t (x), (10)

i.e., asymptotically, the optimal solution of the PNLP provides an optimal inventory control

policy.

(c) IE[V RLP
t (x, d)] also provides an upper bound for Vt(x), i.e.,

Vt(x) ≤ IE[V RLP
t (x, d)] ≤ V DLP

t (x)

and moreover
IE

[
V RLP

t (x, d(θ))
]

θ
→ V DLP

t (x).
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Proof. (a) It is trivial to prove that V PNLP
t (x) is a lower bound of Vt(x) as the former is exactly

equal to the expected revenue generated from the partitioned booking limit policy of the PNLP,

which must not exceed the optimal expected revenue Vt(x) generated from the optimal policy.

Note that the optimal solution of the DLP is a feasible solution of the PNLP. Therefore the

expected revenue generated from the optimal booking limits (y∗, (z1)∗, . . . , (zn)∗) of the DLP

is equal to the objective function value of the PNLP evaluated at (y∗, (z1)∗, . . . , (zn)∗), which

must not exceed the optimal objective function value of the PNLP, which in turn is equal to the

expected revenue generated from its optimal booking limits.

(b) By (a) and Theorem 4.1 (d),

lim sup
θ→∞

V PNLP
t (x, θ)

θ
≤ lim

θ→∞

Vt(x, θ)
θ

= V DLP
t (x).

On the other hand, by (a) again and Theorem 4.1 (d),

V PNLP
t (x, θ)

θ
≥ IE[UDLP

t (x, d(θ))]
θ

→ V DLP
t (x)

which shows that

lim inf
θ→∞

V PNLP
t (x, θ)

θ
≥ V DLP

t (x).

This proves (10).

(c) The two inequalities are proved in the proof of Theorem 4.1 (b). The last result follows

from the two inequalities and Theorem 4.1 (d).

5 Asymptotic Optimality of the Bid-Price Policy

Talluri and van Ryzin [18] prove that the bid-price policy is also asymptotically optimal when

leg capacities and demand are large provided that the right bid prices are used. Our next result

is to extend the asymptotic optimality of Talluri and van Ryzin to the buy-up model.

As in [18], we replace price rj of product j by a continuous random variable Rj defined over

(0,+∞) with mean rj . It is assumed thatR1, . . . ,Rn are mutually and statistically independent.

It is also assumed that Rj has a bounded support: there exists a positive constant r̄j such that

P (Rj ≤ r̄j) = 1, i.e., the probability that the unit revenue of product j does not exceed r̄j is

one. A price range is preferable to a single value for product j since the price changes with time

with some small perturbations. More discussions on this rationale can be found in [18]. We

shall call this problem the DP’ which is more general than the DP (1).
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Based on the revenue random variables (R1, . . . ,Rn), we define a probabilistic mathematical

program (PMP):

V PMP
t (x) = max IE

[
R>(y +

n∑
`=1

z`)

]

s.t. A(y +
n∑

`=1

z`) ≤ x

y ≤ d̄

z` ≤ (d̄` − y`)Q`, ∀` = 1, . . . , n

y ≥ 0, zj ≥ 0, ∀j = 1, . . . , n.

(11)

where the expectation IE is defined over the joint probability space of (R1, . . . ,Rn) with (R1, . . . , Rn) ∈

IRn representing a particular price scenario, and for each scenario (R1, . . . , Rn), there is a corre-

sponding optimal solution (y, z1, . . . , zn). The PMP is more general than the DLP, but it reduces

to the DLP when Rj takes only a single value rj for all j. The PMP is also quite different from

the PNLP as the expectation in the objective of the former is taken over the prices of products

but not over demand as in the latter.

Let Φt(x) denote the optimal expected revenue for the DP’. Similar to Theorem 4.1 (b) and

(c), we can prove the following results.

Proposition 5.1 For any t and x, the optimal expected revenue of the DP’ is bounded above

by the optimal objective function value of the PMP, i.e.,

Φt(x) ≤ V PMP
t (x).

Moreover,

V PMP
t (x, θ) = θV PMP

t (x),

where V PMP
t (x, θ) is the optimal objective function value of the θ-scaled problem of the PMP.

Consider an Lagrangian relaxation (LR) problem of the PMP by dualizing the network leg

capacity constraints with a common dual variable α ∈ IRm for all different price scenarios.

V LR
t (x, α) = max IE

 n∑
j=1

(Rj −A>j α)yj +
n∑

j=1

n∑
`=1

(Rj −A>j α)z`
j)

 + α>x

s.t. y ≤ d̄

z` ≤ (d̄` − y`)Q`, ∀` = 1, . . . , n

y ≥ 0, z` ≥ 0, ∀` = 1, . . . , n

(12)

where α ≥ 0 is the Lagrangian multiplier corresponding to the network leg capacity constraints.
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The Lagrangian dual (LD) of the LR (12) is the following minimization problem:

V LD
t (x) = min V LR

t (x, α)

s.t. α ≥ 0.
(13)

Remark. It is easy to see that for any nonnegative α, the optimal value V LR
t (x, α) of the LR

provides an upper bound to the optimal value V PMP
t (x) of the PMP. Together with Proposi-

tion 5.1, the last result implies

V LD
t (x) ≥ V PMP

t (x) ≥ Φt(x). (14)

For each fixed scenario (R1, . . . , Rn) and a given α ≥ 0, define several index sets:

J > = {j : Rj > A>j α}

J = = {j : Rj = A>j α}

J < = {j : Rj < A>j α}

K = {j : Rj −A>j α >
∑

`:`∈J>

(R` −A>` α)Qj
`}

M = {1, . . . , n} \ K.

Proposition 5.2 For any α ≥ 0, we can find an optimal solution (y∗, (z∗)1, . . . , (z∗)n) of the

LR (12) for scenario (R1, . . . , Rn) satisfying the conditions specified in Table 1.

j ∈ J > ∩ K j ∈ J > ∩M j ∈ J = j ∈ J <

y∗j d̄j 0 0 0

(z∗)j
` ` ∈ J > 0 d̄jQ

j
` d̄jQ

j
` d̄jQ

j
`

` ∈ J = 0 0 0 0

` ∈ J < 0 0 0 0

Table 1: Optimal values for y∗ and z∗.

Furthermore, the optimal objective function value of the LR can be evaluated exactly

V LR
t (x, α) =

n∑
j=1

d̄jIE

[
max{(Rj −A>j α)+,

n∑
`=1

Qj
`(R` −A>` α)+}

]
+ α>x (15)

where f+ = max{0, f}.

Proof. Observe that for each scenario (R1, . . . , Rn), the LR can be decomposed into n simple

linear programs with simple constraints. By checking index sets of j and `, it is easy to es-

tablish the result by pushing optimal values of y and zj to either their lower or upper bounds

appropriately. We omit the detail.
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Under some conditions, V LR
t (x, α) can be proven to be continuously differentiable with re-

spect to α. We need a result from [10].

Lemma 5.1 Suppose R(θ) is a random function of θ satisfying the global Lipschitz condition:

there exists a positive constant L such that for any ∆θ ≥ 0, it holds that

‖R(θ + ∆θ)−R(θ)‖ ≤ L∆θ.

If R(θ) is continuously differentiable with respect to θ with probability one, then IE[R(θ)] is

continuously differentiable with respect to θ and

d

dθ
IE[R(θ)] = IE[

d

dθ
R(θ)].

Proposition 5.3 If R1, . . . ,Rn are continuous random variables over (0,+∞) respectively and

mutually statistically independent, then for any fixed x ≥ 0,

(a) V LR
t (x, α) is continuously differentiable with respect to α,

(b) V LR
t (x, α) is convex with respect to α.

Proof. (a) Note that if f is globally Lipschitz continuous, then so is max{0, f}, and a linear

combination of two globally Lipschitz continuous functions is still globally Lipschitz continuous.

Since a linear function is globally Lipschitz continuous and

max{(Rj−A>j α)+,

n∑
`=1

Qj
`(R`−A>` α)+} = (Rj−A>j α)++max{0,

n∑
`=1

Qj
`(R`−A>` α)+−(Rj−A>j α)+},

Fj = max{(Rj −A>j α)+,

n∑
`=1

Qj
`(R` −A>` α)+} is globally Lipschitz continuous.

On the other hand, Fj is continuously differentiable with respect to α except at the points

where one of the following conditions holds:

Rj −A>j α = 0, R` −A>` α = 0,

Rj −A>j α =
∑

`:(R`−A>
` α)+>0

Qj
`(R` −A>` ).

That is, Fj is not continuously differentiable with respect to α at some points that belong

to finitely many hyperplanes of the n-dimensional probability space. In other words, Fj is

continuously differentiable with probability one. Continuous differentiability of V LR
t (x, α) follows

from Lemma 5.1.
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(b) It is easy to prove convexity of V LR
t (x, α) from (15) by noticing that the max of finitely

many convex functions is still convex, and the integral operator retains the convexity property.

Proposition 5.3 states that the LD (13) is a smooth and convex constrained optimization

problem with simple bound constraints, for which the KKT conditions are both necessary and

sufficient for optimality. We introduce some notation before presenting this result. Suppose

α∗ ∈ IRm is an optimal solution of the LD. Define several event sets of (R1,R2, . . . ,Rn):

X>
j = {Rj > A>j α∗}

X=
j = {Rj = A>j α∗}

X<
j = {Rj < A>j α∗}

Yj = {Rj −A>j α∗ >

n∑
`=1

(R` −A>` α∗)+Qj
`}

Zj = {Rj −A>j α∗ ≤
n∑

`=1

(R` −A>` α∗)+Qj
`}.

Proposition 5.4 Suppose R1, . . . ,Rn are continuous random variables over (0,+∞) with a

finite support, and mutually and statistically independent, and α∗ is an optimal solution of the

LD (13). Then the Karush-Kuhn-Tucker (KKT) conditions of the LD at α∗ hold:
n∑

j=1

d̄jP (X>
j ∩ Yj)Aj +

n∑
j=1

d̄jP (X>
j ∩ Zj)

n∑
`=1

Qj
`P (X>

` )A`

+
n∑

j=1

d̄jP (X=
j ∪ X<

j )
n∑

`=1

Qj
`P (X>

` )A` + λ = x,

λ>α∗ = 0,

λ ≥ 0.

Proof. The result follows from the standard KKT conditions for constrained optimization

problems and calculations of the gradients of V LR
t (x, α).

We are now ready to present the asymptotic optimality property of the bid-price policy based

on the LD.

Theorem 5.1 For any fixed available capacity x, suppose the expected demand of the θ-scaled

problem is θd̄ and
d(θ)
θ

converges to d̄ in distribution. Then the bid-price policy based on the

LD (13) is asymptotically optimal, i.e., in distribution,

ULD
t (x, d(θ))

θ
→ V PMP

t (x) (16)

and

lim
θ→∞

Φt(x, θ)
θ

= V PMP
t (x) (17)
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where ULD
t (x, d(θ)) is the total revenue generated from the bid price based on the LD and Φt(x, θ)

is the optimal expected revenue of the θ-scaled problem of the DP’.

6 Unbiased Estimate of the Gradient of the RLP

Recall that Vt(x) can be approximated by V RLP
t (x) = IE[V RLP

t (x, d)]. It is proved in [19]

that under certain conditions, for the traditional capacity management problem without buy-

up, IE[V RLP
t (x, d)] is continuously differentiable with respect to x and IE[ ∂

∂xV RLP
t (x, d)] =

∂
∂x IE[V RLP

t (x, d)]. Therefore the opportunity cost of IE[V RLP
t (x, d)] can be approximated by

sample averages of the optimal dual solution of the RLP:

∂

∂x
IE[V RLP

t (x, d)] ≈ 1
N

N∑
i=1

α(x, di)

where α(x, di) is an optimal dual solution of the RLP (x, di) and N is the sample size.

The above result can be extended to the buy-up model. Similar to [19], the proof is based

on Lemma 5.1. To this end, define a Lagrangian relaxation problem of the RLP, which we call

the RLR, by dualizing the capacity constraints A(y +
∑n

`=1 z`) ≤ x of the RLP. Suppose the

objective function value of the RLR is denoted by V RLR
t (x, d, α) for any given demand scenario

d and a nonnegative Lagrangian multiplier α ∈ IRm. For any fixed x ∈ IRm and d ∈ IRn, a

Lagrangian dual of the RLR is the so-called RLD, which is

min V RLR
t (x, d, α)

s.t. α ≥ 0.
(18)

By the strong duality theorem, if α∗ is an optimal solution of the RLD, then V RLR
t (x, d, α∗) =

V RLP
t (x, d) and α∗ is always a subgradient of V RLP

t (x, d) with respect to x. Furthermore, if α∗

is a unique solution of the RLD (18), then, by Theorem 6.3.3 in [1], V RLP
t (x, d) is continuously

differentiable with respect to x, which is what we need according to Lemma 5.1. Another

condition required in Lemma 5.1 is the Lipschitz continuous property of V RLP
t (x, d) with respect

to x. This can be proven by simply showing that for any integer ∆θ ≥ 0

V RLP
t (x, d) ≤ V RLP

t (x + ∆θei, d) ≤ V RLP
t (x, d) + ∆θ max{rj}

where ei ∈ IRm is a vector with all zero elements except for its i-th element which is equal to

one. The left hand side inequality is obviously true and the right-hand side inequality can be

proven by contradiction by noting that a unit increase on xi results in at most an additional

increase of revenue, max{rj}, to the objective function value.
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By Lemma 5.1, we only need to prove that the RLD (18) has a unique solution with proba-

bility one with respect to demand d. Analogous to Proposition 5.2, we have

V RLR
t (x, d, α) =

n∑
j=1

dj max{(rj −A>j α)+,
n∑

`=1

Qj
`(r` −A>` α)+}+ α>x. (19)

Let α∗(x, d) (or α∗ for ease of notation) be an optimal solution of the RLD for any given x and

d. With a given feasible direction ∆α of α∗ and sufficiently small positive t, define several index

subsets of {1, 2, . . . , n}:

E> = {j : rj −A>j α∗ >
n∑

`=1

Qj
`(r` −A>` α∗)+}

E= = {j : rj −A>j α∗ =
n∑

`=1

Qj
`(r` −A>` α∗)+}

E< = {j : rj −A>j α∗ <
n∑

`=1

Qj
`(r` −A>` α∗)+}

H0 = {j : rj > A>j α∗}

H1 = {j : rj = A>j α∗, rj −A>j α∗ − tA>j ∆α > 0}

H2 = {j : rj = A>j α∗, rj −A>j α∗ − tA>j ∆α ≤ 0}

F1 = {j ∈ E= ∩ (H0 ∪H1) : −(∆α)>Aj > −
∑

`∈H0∪H1

Qj
`(∆α)>A`}

F2 = E= ∩ (H0 ∪H1) \ F1.

By (19) and careful calculations, it is easy to obtain the following

V RLR
t (x, d, α∗ + t∆α)− V RLR

t (x, d, α∗)

= t(∆α)>x−
∑
j∈E>

t(∆α)>djAj −
∑
j∈E<

∑
`∈H0∪H1

Qj
`t(∆α)>djA`

+
∑

j∈E=∩(H0∪H1)

dj max{−t(∆α)>Aj ,−
∑

`∈H0∪H1

Qj
`t(∆α)>A`}.

Rewriting the above equation, we arrive at

V RLR
t (x, d, α∗ + t∆α)− V RLR

t (x, d, α∗)

= t(∆α)>

x−
∑
j∈E>

Ajdj −
∑

j∈E=∩(H0∪H1)∩F1

Ajdj

−
∑

j∈E=∩(H0∪H1)∩F2

(
∑

`∈H0∪H1

Qj
`A`)dj −

∑
j∈E<

(
∑

`∈H0∪H1

Qj
`A`)dj


= t(∆α)>[x−

n∑
j=1

Ājdj ]

(20)
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where Āj is a vector of n-dimension with nonnegative elements, and

V RLR
t (x, d, α∗ + t∆α)− V RLR

t (x, d, α∗)

= t(∆α)>

x−
∑

j∈E>∩H2

djAj

−
∑

j∈E>∩(H0∪H1)

(dj +
∑

`∈E=∩(H0∪H1)∩F2

Q`
jd` +

∑
`∈E<

Q`
jd`)Aj

−
∑

j∈E=∩(H0∪H1)∩F1

(dj +
∑

`∈E=∩(H0∪H1)∩F2

Q`
jd` +

∑
`∈E<

Q`
jd`)Aj

−
∑

j∈E=∩(H0∪H1)∩F2

(
∑

`∈E=∩(H0∪H1)∩F2

Q`
jd` +

∑
`∈E<

Q`
jd`)Aj

−
∑

j∈E<∩(H0∪H1)

(
∑

`∈E=∩(H0∪H1)∩F2

Q`
jd` +

∑
`∈E<

Q`
jd`)Aj


= t(∆α)>[x−

n∑
j=1

DjAj ]

(21)

where Dj is a random variable which is a linear combination of random variables d1, d2, . . . , dn

with nonnegative coefficients.

Proposition 6.1 Suppose (a) If x =
∑

j∈S δjAj, then {Aj : j ∈ S} is of rank m; (b) The

demand random variable dj is continuous for all products j. Then V RLP
t (x, d) is continuously

differentiable with respect to x and

∂

∂x
IE[V RLP

t (x, d)] = IE[
∂

∂x
V RLP

t (x, d)] = IE[α(x, d)]

where α(x, d) is the optimal solution of the RLD (18).

Proof. This proof should be the same as that of [19] and is done by contradiction. By the

comments in the third paragraph of this section and Lemma 5.1, we need only show that the

RLD (18) has a unique solution with probability one over the random variable d for any given

x. Assume this is not true. Then there exist ∆α 6= 0 such that for all sufficiently small t > 0

and with a positive probability over d

V RLR
t (x, d, α∗ + t∆α)− V RLR

t (x, d, α∗) = 0.

Condition (21) shows that with a positive probability over d, either x =
∑n

j=1 DjAj or (∆α)>x =

0, (∆α)>Aj = 0 for all j. According to Condition (b) of this proposition, P (x =
∑n

j=1 DjAj) =

0. So the above expression can hold only if (∆α)>x = 0 and (∆α)>Aj = 0 for all j. For

Lemma 3 of [19] and Condition (a) of this proposition, the latter implies ∆α = 0 and we obtain

a contradiction.
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Some simple examples are given by Talluri and van Ryzin [19] to illustrate that ∂
∂x IE[V RLP

t (x, d)]

does not exist there there is no buy-up. In the nondifferentiable case, the authors further discuss

calculations of subgradients and directional derivatives of IE[V RLP
t (x, d)].

7 Additional Structural Properties

In this section, we establish some analytical results for the DP, the PNLP and the opportunity

cost-based approximation. The first result below states that for any fixed capacity, the closer

one is to the departure time the less revenue can be generated, and for any fixed time period, a

smaller capacity results in a smaller value of revenue.

Proposition 7.1 In a network setting, it holds that

(a) Vt(x) is non-decreasing in t for any fixed x.

(b) Vt(x) is non-decreasing in x for any fixed t.

Proof. (a) This has been proven in (2).

(b) This can be proven by induction. The result clearly holds when t = 0. Assuming that

Vt−1(x) ≥ Vt−1(x − Ak) for all x and k = 1, . . . , n, we want to prove that Vt(x) ≥ Vt(x − Ak).

Again by (2), for any k, we obtain

Vt(x) =
n∑

j=1

λtj max{rj + Vt−1(x−Aj),

n∑
`=1

qj
t` max[r` + Vt−1(x−A`), Vt−1(x)] + qj

t0Vt−1(x)}+ λ0
tjVt−1(x)

≥
n∑

j=1

λtj max{rj + Vt−1(x−Aj −Ak),

n∑
`=1

qj
t` max[r` + Vt−1(x−A` −Ak), Vt−1(x−Ak)] + qj

t0Vt−1(x−Ak)}+ λ0
tjVt−1(x−Ak)

= Vt(x−Ak)

which implies the result.

In a single-leg setting, some stronger results have been established on the marginal cost of

Vt(x). In particular, it is proved in [27] that ∆Vt(x) is non-decreasing in t for any fixed x, and

∆Vt(x) is non-increasing in x for any fixed t. One would hope to extend those fine analytical

properties to the network setting with buy-up. However, this is not the case because extensions

are invalid even without buy-up. See [4] for counterexamples.
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Our next result studies the relationship between the OC based approximations and the DLP.

Consider two versions of the DLP at time t denoted by P1 and P2, where the remaining capacities

are x and x − Aj for P1 and P2 respectively. Assume α, β and γ1, . . . , γn is an optimal dual

solution of P1, and α̃, β̃ and γ̃1, . . . , γ̃n is an optimal dual solution of P2. Let BPj(x, t) = A>j α

and BPj(x−Aj , t) = A>j α̃ be the bid prices of product j for P1 and P2 respectively. Recall that

OCLP
j (x, t) = V DLP

t (x) − V DLP
t (x − Aj) denotes an approximate opportunity cost of product j

at time t when the remaining capacity is x.

Proposition 7.2 For any t, x, j, we have

BPj(x, t) ≤ OCLP
j (x, t) ≤ BPj(x−Aj , t).

Proof. By duality theory,

V DLP
t (x) = α>x + d̄>β +

n∑
`=1

d̄`(Q`)>γ`,

V DLP
t (x−Aj) = α̃>(x−Aj) + d̄>β̃ +

n∑
`=1

d̄`(Q`)>γ̃`.

Note that both α, β and γ1, . . . , γn and α̃, β̃ and γ̃1, . . . , γ̃n are feasible solutions to the dual

problem (8) of both P1 and P2. It shows that

V DLP
t (x) ≤ α̃>x + d̄>β̃ +

n∑
`=1

d̄`(Q`)>γ̃`.

V DLP
t (x−Aj) ≤ α>(x−Aj) + d̄>β +

n∑
`=1

d̄`(Q`)>γ`.

This further implies that

OCLP
j (x, t) ≤ α̃>x + (d̄>β̃ +

n∑
`=1

d̄`(Q`)>γ̃` − [α̃>(x−Aj) + (d̄>β̃ +
n∑

`=1

d̄`(Q`)>γ̃`]

= α̃>Aj

= BPj(x−Aj , t)

and

OCLP
j (x, t) ≥ α>x + (d̄>β +

n∑
`=1

d̄`(Q`)>γ` − [α>(x−Aj) + (d̄>β +
n∑

`=1

d̄`(Q`)>γ`]

= α>Aj

= BPj(x, t).

This completes the proof.
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It is known that the objective function of the PNLP for the traditional network capacity

management problem is concave and separable. Those fine properties pave the way for using

some specialized nonlinear programming algorithms to solve the PNLP more efficiently [13].

In general we cannot prove that the objective function of the PNLP is concave with respect

to either y or z1, . . . , zn unless some strong assumptions are imposed as demonstrated in the

proposition below.

Proposition 7.3 Suppose that each product `, r` ≥
∑n

j=1 Q`
jrj. Then the objective function of

the PNLP is concave with respect to y, z1, . . . , zn.

Proof. To prove concavity of the objective function of the PNLP, we need only prove that its

integrand
n∑

j=1

rj min(yj , dj) +
n∑

`=1

n∑
j=1

rj min{z`
j , Q

`
j(d` −min(y`, d`))}

is concave. The above integrand can be rewritten as
n∑

j=1

[rj −
n∑

`=1

r`Q
j
` ]min(yj , dj) +

n∑
`=1

n∑
j=1

min{rjz
`
j + r`Q

j
` min(yj , dj), rjQ

`
jd`}.

The concave property of the integrand follows from the following facts: rj ≥
∑n

`=1 r`Q
j
` ;

the min-function of finitely many concave functions is still concave; the linear combination of

several concave functions is still concave if coefficients are nonnegative. Therefore, the objective

function of the PNLP is concave with respect to y, z1, . . . , zn.

The following example shows that in general the objective function of the PNLP is not

concave. Suppose there are two classes of products in a single-leg network. Assume that r1 =

100, r2 = 1, Q2
1 = 1, and that the demand for both products is fixed at 10 and 100 respectively.

Consider (y1, y2, z
2
1) to be three points u1 = (1, 0, 2), u2 = (1, 100, 2) and u3 = (1, 200, 2).

Clearly, u2 is the middle point of the line segment [u1, u3]. If the objective function f of the

PNLP were concave, then f(u2) ≥ 1/2(f(u1) + f(u3)) would hold. However, it is easy to check

by simple calculations that this is not the case. Therefore, f is not concave.

8 Numerical results

In this section, we present some numerical experiments for several booking schemes proposed in

Section 3. Our main purpose was to test, for each booking scheme, how much the buy-up model

enhances revenue performance compared with the non-buy-up model. All numerical experiments

were carried out in MATLAB [14] on a Pentium M-1300 MHz PC. All linear programs were solved

using linprog.m in MATLAB.
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The numerical experiments were conducted on four different test examples. The first two

airline examples T1 and T2 are from Higle and Sen [11]. In T1, the airline network consists

of 7 cities and 7 legs with 8 itineraries. For each itinerary, there are two fare classes which

result in 16 products in total. Test example T2 is similar to T1 but with a different network.

In particular, T2 is a hub-spoke network with one hub, 20 spoke cities and 20 legs, and it has

two fares and 50 itineraries (and hence 100 products). Additional information on revenue, mean

demand, the coefficient of variation (which is equal to mean divided by standard deviation), leg

capacities, and detailed network structures can be found from [11].

The last two test examples T3 and T4 are drawn from [6]. Example T3 is a hub-spoke

network with one hub, 5 spoke cities and 10 legs, and it has two fares and 30 itineraries (and

hence 60 products). Example T4 is a hub-spoke network with two hubs, 4 spoke cities and 10

legs, and it has two fares and 30 itineraries (and hence 60 products). For additional information

on revenue, mean demand, leg capacities, and detailed network structures, see [6].

The simulation procedure we follow is described in Talluri and van Ryzin [19]. For each

test example, we simulated the booking process 1000 times. In each simulation run, booking

requests are randomly generated in two steps. In step 1, the number of requests for each product

is randomly generated while in step 2, booking arrival times for each product are randomly

generated. We used two different ways to simulate the booking process. In T1 and T2, the

number of requests for each product is randomly generated according to a truncated normal

distribution (left truncated at zero) with the given expected demand and the given coefficient

of variation. Bookings start from 180 days prior to the flight departure time. Demand forecasts

for all products are updated on day 180, 120, 60, 30, 14 prior to the departure time. Those

five days are used to divide the booking horizon into 5 booking periods. A fixed percentage

of demand as specified in [11] is assumed in each booking period for each product. In step 2,

booking arrival times in each of 5 booking periods for each product are randomly generated

according to a uniform distribution. In T3 and T4, the booking process is modelled as a non-

homogeneous Poisson process, where the arrival intensity at time t has a beta distribution and

the total number of arrivals has a gamma distribution. The booking is divided into 1000 units.

Demand forecasts are updated on time 1000, 600, 400, 200 and 100 prior to the departure time.

Higher fare customers arrive more often close to the end of the booking horizon while lower fare

customers arrive more often early in the booking horizon. A detailed description of the booking

process, used in T3 and T4, can be found in [6].

For all test examples, there are exactly two fare classes: high fare and low fare, for all
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itineraries. We assume that customers requesting a low-fare product only buy up for the

corresponding high-fare product in the same itinerary, and customers requesting a high-fare

product have a zero buy-up probability. Also we assume that the buy-up probability remains

constant throughout the whole booking period in our main numerical experiments.

In each of 1000 simulation runs, all booking requests for each test example as generated above

are processed (acceptance or rejection) based on a booking scheme. We have implemented the

following five booking schemes:

• BLDLP: Partitioned booking limit policy based on the DLP; see Section 3.

• BPDLP: Bid-price policy based on the DLP; see Section 3.

• ABLDLP: Aggregated partitioned booking limit policy based on the DLP. In detail, a

partitioned booking limit uj for product j is obtained by aggregating yj and
∑n

`=1 z`
j .

When a booking request for product j arrives, it is accepted if and only if the number of

existing bookings of product j (including both initial and buy-up requests) is not more

than uj − 1. A buy-up request from product ` to product j is accepted if and only if the

number of existing bookings of product j (including both initial and buy-up requests) is

not more than uj − 1.

• BPRLP: Bid-price policy based on the RLP. Similar to [19], the bid price is equal to the

average of 30 samples of the dual prices of the RLP.

• OCDLP: Opportunity cost policy based on the DLP.

Neither the partitioned booking limit policy nor the bid-price policy based on the PNLP is

implemented because computationally it is expensive to solve nonlinear programs and its revenue

performance is not much better than BLDLP in the traditional network revenue management

without buy-ups.

It is known [21] that revenue performance can often be enhanced through so-called re-

optimization: resolve approximate problems with updated capacities and future demand, and

then update either the partitioned booking limits or the bid prices. Following a similar line of

thought, we reran approximation models five times, once at the beginning of each of five booking

periods. Note that the RLP is re-optimized much more often than five times in [19] and one

would expect that higher revenue values could be obtained with more frequent re-optimization.

This is also generally true for the policy OCDLP; see [4].

In order to evaluate effects of buy-ups, we ran each booking scheme with different buy-up

probabilities: 0, 0.1, 0.3, 0.5 and 0.8. When the buy-up probability is zero, the buy-up model
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reduces to the traditional network RM model without buy-ups. We should expect that as the

buy-up probability increases, the revenue performance of the buy-up model should improve. The

average total revenue over 1000 simulation runs for each booking scheme is used as the chief

performance indicator in our experiments.

Tables 2, 3, 4 and 5 summarize average revenue and its 95% confidence interval with dif-

ferent buy-up probabilities for test examples T1, T2, T3 and T4 under five booking schemes.

By comparing those tables, we make the following observations. No scheme completely outper-

forms other schemes across all buy-up probabilities and test examples, though BPRLP appears

to be the best on average. This partially confirms the conclusion in [19]. ABLDLP consis-

tently outperforms BLDLP (combinations of different buy-up probabilities and test examples).

BPRLP consistently outperforms BPDLP except for p=0 in T2. BPRLP consistently out-

performs ABLDLP except for p = 0, 0.1 in T1 and p = 0 in T2. OCDLP is sometimes as

competitive as BPRLP (for example in T3), but it frequently produces much lower average rev-

enues than other schemes. We conjecture that performance of OCDLP can improve drastically

when re-optimization is done much more frequently.

The aim of our experiments is not to seek the best booking scheme, but to show that the

buy-up model should improve the revenue performance of the traditional model without buy-up

when buy-up does happen. This intuition is confirmed by our numerical results. Tables 2, 3,

4 and 5 demonstrate that for all five booking schemes and for test examples T1, T2, T3 and

T4, the average revenue increases as the buy-up probability increases. This trend can be seen

more easily from Figures 1, 2, 3, 4 and 5 where increase of average revenue in percentage of

each buy-up booking scheme over the same scheme with zero buy-up probability is presented.

The increment speed may vary depending on booking schemes and test examples. However, the

overall trend of revenue increment is very similar and the revenue increment is significant which

should not be ignored in practice. We note in passing feature that the revenue increment for T3

is quite often larger than T1, T2 and T4.
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p BLDLP ABLDLP BPDLP BPRLP OCDLP

0 292502 292503 270686 275315 255878

[291215, 293789] [291216, 293790] [268864, 272508] [273664, 276966] [254021, 257734]

0.1 302029 308895 279895 291303 279237

[300698, 303360] [307539, 310251] [278073, 281717] [289574, 293032] [277358, 281116]

0.3 335299 348506 334580 355100 327146

[333734, 336864] [346837, 350175] [332634, 336526] [352893, 357307] [325113, 329179]

0.5 401487 422321 439028 442893 417019

[399488, 403486] [420121, 424521] [436667, 441389] [440550, 445236] [414757, 419281]

0.8 501079 512162 505621 513267 474962

[499155, 503003] [510260, 514054] [503694, 507548] [511440, 515094] [472269, 477655]

Table 2: Revenue and 95% confidence interval for T1.

p BLDLP ABLDLP BPDLP BPRLP OCDLP

0 1379612 1379617 1387494 1361241 1316397

[1376747, 1382474] [1376752, 1382481] [1383797, 1391191] [1357156, 1365326] [1311475, 1321319]

0.1 1428403 1467428 1421038 1476620 1404506

[1425436, 1431370] [1464510, 1470346] [1417050, 1425025] [1472728, 1480512] [1399279, 1409732]

0.3 1604918 1685913 1705952 1788660 1714125

[1601685, 1608151] [1682496, 1689330] [1702252, 1709652] [1784541, 1792780] [1709924, 1718325]

0.5 1917496 2029622 2112544 2121054 2093707

[1913758, 1921234] [2025338, 2033905] [2108228, 2116861] [2116706, 2125401] [2089275, 2098140]

0.8 2259302 2343747 2363097 2377306 2285507

[2255596, 2263008] [2339958, 2347536] [2359358, 2366837] [237378, 2380827] [2280876, 2290139]

Table 3: Average revenue and 95% confidence interval for T2.

p BLDLP ABLDLP BPDLP BPRLP OCDLP

0 414551 414551 416487 418288 334513

[414110, 414992] [414110, 414992] [416028, 416946] [417798, 418779] [333791, 335235]

0.1 418980 424411 420427 425069 404880

[418494, 419465] [423943, 424879] [419973, 420881] [424538, 425601] [403984, 405775]

0.3 498912 522782 540191 540191 540191

[498093, 499732] [521819, 523746] [539174, 541207] [539174, 541207] [539174, 541207]

0.5 663263 691873 709359 709359 709359

[662314, 664212] [690761, 692984] [708205, 710513] [708205, 710513] [708205, 710513]

0.8 920471 943096 958068 958295 954829

[919318, 921624] [941906, 944287] [956928, 959207] [957147, 959443] [933731, 955927]

Table 4: Average revenue and 95% confidence interval for T3.
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p BLDLP ABLDLP BPDLP BPRLP OCDLP

0 516689 516689 518207 518723 515085

[516027, 517352] [516027 517352] [517448 518966] [517959 519496] [514279 519496]

0.1 557208 568906 577815 585095 565541

[556455, 557961] [568178, 569634] [576744, 578886] [584134, 586057] [564335, 566746]

0.3 665556 676613 684717 684769 658555

[664985, 666126] [675977, 677248] [684038, 68536] [684067, 685471] [657466, 659644]

0.5 755373 766760 775056 775465 761422

[754721, 756024] [766055, 767465] [774264, 775847] [774671, 776259] [760324, 762520]

0.8 891358 902664 843900 912504 902963

[890598, 892117] [901848, 903480] [843071, 844729] [911625, 913383] [902934, 903893]

Table 5: Average revenue and 95% confidence interval for T4.

Figure 1: Revenue increment for BLDLP.

To generate more insights into the buy-up model, we analyze the results for T1 using the

following metrics:

• How do load factors change when the buy-up probability increases?

• How do partitioned booking limits in the first period of the booking horizon change when

the buy-up probability increases?

• How do buy-up acceptance ratios change when the buy-up probability increases? Here the

buy-up acceptance ratio for a product is equal to the percentage of the booking requests

which are initially rejected, then elect to buy up and are consequently accepted.

• How does the non-uniform buy-up probability affect performance of the buy-up model?

Regarding load factors, we did not observe any significant shifts when buy-up probabilities

change. Therefore we do not present any table of results to illustrate this.
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Figure 2: Revenue increment for ABLDLP.

Figure 3: Revenue increment for BPDLP.

Figure 4: Revenue increment for BPRLP.
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Figure 5: Revenue increment for OCDLP.

Product Buy-up Probability

0.0 0.1 0.3 0.5 0.8

1 50 57.22 77.86 119.84 205

2 100 114.44 160 200 155

3 10 10 10 28.05 50

4 20 20 20 70 100

5 5 5 5 23.36 45

6 20 22.22 28.57 59.21 100

7 20 23.33 37.14 70 55

8 5 10 20 30 45

9 135 127.78 107.14 60.32 0

10 75 55.56 0 0 0

11 50 50 50 13.89 0

12 100 100 100 0 0

13 50 50 50 13.29 0

14 80 77.78 71.43 21.58 0

15 75 66.67 42.86 0 0

16 0 0 0 0 0

Table 6: Aggregated partitioned booking limits for the first period of T1.

Aggregated partitioned booking limits for the first period of test example T1 are shown in

Table 6. It is not surprising to observe that the aggregated partitioned booking limit increases

for all higher-fare products as the buy-up probability increases except for products 2 and 7 when

the buy-up probability increases from 0.5 to 0.8. Intuitively, as the buy-up probability increases,

more seats should be reserved for higher-value customers and lower-value customers who elect

to buy up. In contrast and also as a complementary consequence, the aggregated partitioned

booking limit decreases for all lower-fare products as the buy-up probability increases.

The buy-up acceptance ratio of ABDLP for test example T1 is displayed in Table 7. It

shows that this ratio increases for most products as the buy-up probability increases. Note that
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booking requests for products 1, 2, · · · , 8 are lost forever when they are initially rejected since

they are the most expensive products in their corresponding itineraries. Similar observations

are obtained for other booking schemes for T1.

Product Buy-up Probability

0.0 0.1 0.3 0.5 0.8

9 0.4 0.5 0.61 0.94

10 0.72 0.96 1 0.83

11 0.14 0.14 0.58 0.95

12 0.15 0.19 0.98 0.96

13 0.13 0.1 0.55 0.91

14 0.32 0.36 0.66 0.93

15 0.37 0.57 0.93 0.66

16 0.98 0.95 0.93 0.88

Table 7: The buy-up acceptance ratio of ABDLP for T1.

Finally we consider variable buy-up probabilities over time. But we still assume that the

buy-up probability remains a constant in the same booking period for all lower-fare customers.

In various approximation models (e.g. the DLP), we have to use a uniform buy-up probability

Q`
j . Suppose there are N booking periods and the buy-up probability for lower-fare customers

is qt (t = 1, · · · , N where N is the index for the last booking period prior to the departure time).

Then we approximate the average buy-up probability q̄t from booking period t to booking period

N using the following formula:

q̄t =
∑N

τ=t qτ d̄τ∑N
τ=t d̄τ

, t = 1, · · · , N (22)

where d̄t ∈ IRn is the mean demand from booking period t onwards for the products in ques-

tion. We make two remarks. Firstly when
∑N

τ=t d̄τ = 0, we may assume that q̄t = 1 or any

other probability as it does not matter when no booking request of such a product arrives.

Secondly it turns out that buy-up probabilities for all lower-fare customers are the same for

test example T1 as all lower-fare customers in T1 have the same mean demand distribution:

0.05, 0.25, 0.75, 0.0, 0.0.

In our experiments, we assume that the variable buy-up probabilities are (q1, q2, q3, q4, q5)

= (0, 0.1, 0.3, 0.5, 0.8). By formula (22), the new average approximate buy-up probabilities

(q̄1, q̄2, q̄3, q̄4, q̄5) = (0.245, 0.25789, 0.3, 0.65, 0.8). Therefore, the overall average approximate

buy-up probability for the whole booking horizon is 0.245 for all lower-fare customers. Table 8

summarizes the difference of revenue performance with a constant buy-up probability 0.245 and
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variable buy-up probabilities (0, 0.1, 0.3, 0.5, 0.8) for T1. A moderate revenue gain can be ob-

served by replacing the constant buy-up probability by variable buy-up probabilities. Therefore,

we would recommend using variable buy-up probabilities if variations are relatively large.

BLDLP ABLDLP BPDLP BPRLP OCDLP

(I) 3245134 336229 320849 333779 310133

[323041, 325987] [334676,337783] [318987,322711] [331858,335699] [308124,312142]

(II) 327879 341397 321216 343959 310579

[326370, 329388] [339792, 343003] [319178, 323254] [341805, 346113] [308268, 312889]

Table 8: Revenue performance and confidence interval under a constant buy-up probability (I)

and variable buy-up probabilities (II) for T1.

9 Concluding remarks

In this paper, we have proposed a buy-up model which allows us to explore the impact of

customers’ buy-up behavior. The buy-up model is defined using the dynamic programming

formulation and approximated by various mathematical programming formulations which are

much easier to solve. We have shown asymptotical optimality of both the partitioned booking

limit policy and the bid-price policy that are based on various approximations. We have also

shown why the bid price based on the RLP makes a sensible booking policy. We have numerically

demonstrated through simulation that the buy-up model and its various approximations can

generate significantly higher revenue than the traditional network revenue management models.

In the future, we would like to enhance our study by considering other issues. Firstly, in

some airlines, overbooking is always treated as part of the inventory control process. It should be

straightforward to include overbooking in our buy-up model though analysis may be relatively

tedious. Secondly, it is known that virtual nesting control [24, 23] is another popular booking

policy in addition to the partitioned booking limit policy and the bid-price policy. Therefore

extending virtual nesting control for the buy-up model would merit further examination.
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