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Forward Contracts for Bandwidth

Miklós Reiter and Richard Steinberg

October 2007

Abstract

We develop a pricing game modelling a monopoly and an oligopoly of Inter-
net Service Providers selling bandwidth on two complementary segments of a
multi-provider communication network. We consider pricing behavior when the
oligopolists have previously sold part of their capacity by means of forward con-
tracts, assuming all prices are set simultaneously. We find the equilibria in pure
strategies where they exist. Where they do not exist, we find an equilibrium
allowing the oligopolists to use mixed strategies. This requires solving an ex-
tension of the Bertrand-Edgeworth game with symmetric capacities and asym-
metric contracting levels. Although providers have an incentive to sell forward
contracts to insure against demand uncertainty, contracting also commits them
to lower prices in general. We find that any equilibrium with contracting levels
is asymmetric with a unique provider choosing the lowest level of contracting.
By refraining from signing too many contracts, this provider guarantees a high
general downstream price level at a private cost. An increase in the lowest con-
tracting level results in negative marginal externalities on all other oligopolists.
On the other hand, an increase in any other contracting level causes positive
marginal externalities.

1 Introduction

We develop a model of network operators selling bandwidth on two comple-

mentary segments of a multi-provider communication network by means of con-

gestion pricing (a spot market). The “upstream” segment is provided by a

monopoly, and the “downstream” segment is provided by an oligopoly. The up-

stream network provider can be thought of as a large Internet Service Provider

(ISP) connecting the oligopoly of small downstream ISPs to the Internet back-

bone. Customers must purchase the same amount of bandwidth from both the
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upstream provider and the oligopoly in order to use the network services. We

assume this high level of concentration, since the provision of bandwidth ex-

hibits significant economies of scale and it is unlikely that perfect competition

is sustainable in the long run.1

We model the downstream oligopoly as Bertrand-Edgeworth price compe-

tition with capacity constraints. Edgeworth (1925) showed that the duopoly

case might not have an equilibrium in prices. Levitan and Shubik (1972) an-

alyzed the same problem specifying the rationing rule that we consider here.

They found that prices are competed down to the perfectly competitive level

equal to marginal cost when demand is low; and there is a pure-strategy Nash

equilibrium, a pair of prices such that neither firm can increase his profit by

changing his price, coinciding with the Cournot quantity strategy equilibrium

when demand is high. For the intermediate region of demand, they derived a

Nash equilibrium in mixed (random) strategies. Vives (1986) established the

mixed-strategy equilibrium for the general case of oligopoly with more than two

competitors and proved convergence to the perfectly competitive price as the

number of competitors increases. We extend this model to the case where the

oligopolists have sold forward contracts for diverse fractions of their bandwidth

capacities.

The monopoly would be able to appropriate the entire margin from a per-

fectly competitive downstream industry producing a complementary good. This

may not be the case in the scenario we consider here, where the downstream in-

dustry is a Bertrand-Edgeworth oligopoly. Depending on the market potential,

we find a unique outcome or a bargaining game with multiple outcomes.

We apply the results of the pricing analysis to a multi-provider data net-

work using congestion pricing, where the downstream ISPs fund part of their

investment into bandwidth by forward contracts on the congestion price. The

purchase of forward contracts by the network users has been proposed in An-

derson et al. (2006) as a “Contract and Balancing Mechanism.” Our model

differs by treating the fraction of an ISP’s capacity to be funded by long-term
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contracts as a strategic variable.

Congestion pricing in communication networks is a relatively new idea. An

important early paper is that of Courcoubetis et al. (2000) who consider conges-

tion pricing as a mechanism to recover costs and make a profit. They describe

methods of computing usage charges from simple measurements on the network.

A more recent paper is that of Ganesh et al. (2007) who consider congestion

pricing as a mechanism for sharing bandwidth. They model the interaction

among the users as a game and propose a decentralized algorithm. For further

reading on the topic, see the survey paper of Steinberg (2003), and the books

by Courcoubetis and Weber (2003) and Srikant (2004).

The pricing interaction between the downstream and upstream firms in our

model resembles the analysis by Tyagi (1999) where a strategic upstream sup-

plier’s possible reactions to entry in the downstream industry are classified based

on the derivative of the upstream supplier’s price with respect to the number of

downstream oligopolists. The upstream provider’s price response to a change

in a downstream firm’s contracting level in our model causes a similar “input

cost effect”.

This paper is organized as follows. We first describe a pricing game in §2
to model the interaction between the upstream monopolist and the capacity-

constrained downstream oligopolists competing in prices with each other. We

show in §3 that, for sufficiently low market potential, downstream prices are

competed down to marginal cost, while for sufficiently high market potential,

there may be multiple pure-strategy Nash equilibrium outcomes, with different

divisions of the total industry profit between the upstream and downstream

providers. We assume the large upstream monopolist has all the bargaining

power and can choose which equilibrium will arise. In the region of intermediate

market potential, we find an equilibrium point using mixed strategies for the

downstream oligopolists in §4.

In §5 we use the pricing analysis to investigate the downstream oligopolists’

incentives for using forward contracts to fund their bandwidth. We find that
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an oligopolist choosing a low level of contracting is able to raise the general

downstream price level, allowing its competitors to contract more. A pure-

strategy Nash equilibrium of contracting levels, if it exists, must have a unique

lowest level of contracting. We further prove that an increase in this lowest

level has a negative marginal externality on other oligopolists’ utility, whereas

an increase in any other contracting level creates positive marginal externalities.

In §6, we present conclusions. In order to aid readability, we have relegated the

more technical aspects of the proofs of the first two theorems to three lemmas;

the proofs of the lemmas are provided in the Appendix.

2 Pricing Model

We consider the pricing game played by n + 1 firms supplying bandwidth on

two perfectly complementary network segments: an upstream monopolist M

supplying one segment, and n downstream oligopolistic firms O1, O2, . . . , On,

n ≥ 1, supplying the other segment in Bertrand (price) competition. We are

assuming that M is a large ISP connecting the Oi to the Internet backbone

and has all the bargaining power. Thus, where the pricing game has multiple

equilibria, the equilibrium with largest pM arises. In the special case of n = 1,

O1 is another monopolist and our game describes a bilateral monopoly.

The firms simultaneously choose prices pM, p1, p2,. . . , pn. Where the pricing

game has no pure-strategy Nash equilibrium and prices fluctuate, a realistic

analysis needs to take into account the timescales over which providers are

likely to adjust their prices.

This in turn depends on the technologies used for price updates. While the

downstream providers can directly broadcast their prices to local users con-

nected to their networks every few seconds, this approach does not scale to

a large multi-provider network such as the Internet. The monopolistic transit

provider is more likely to make use of a general pricing system. A natural sugges-

tion for implementing inter-provider pricing by including a price path attribute
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in the Border Gateway Protocol (defined in Rekhter and Li (1995), Rekhter and

Gross (1995)) has been made by Mortier (2001). This system would propagate

price changes over the BGP convergence timescale of several minutes. For this

reason, we assume that the downstream oligopolists’ prices in our pricing game

are updated on a shorter timescale than the monopolist’s price.

The output DM of the monopoly M is the sum of the outputs Di of each

oligopolist Oi serving the complementary market, i.e.,

DM =
n∑

i=1

Di.

We assume the costs of building the firms’ infrastructure are sunk, and zero

marginal costs are incurred during operation of the network. This is a good

approximation for Internet provision. On the other hand, any constant marginal

costs can be normalized to zero by redefining the prices, provided the marginal

costs incurred by the competing oligopolists are equal. Let the firm M’s payoff

be

πM = pMDM.

Suppose each oligopolist Oi has previously sold capacity fi by means of forward

contracts, so his payoff is

πi = pi(Di − fi).

We assume a linear market demand function for simplicity, as used by Lev-

itan and Shubik (1972),

Dmarket(pM + pi) = α− β(pM + pi),

rationed by capacity constraints of k on each oligopolist Oi. The oligopolists’

incentives for choosing their contracting levels fi under demand uncertainty are

to be discussed in § 5. For the pricing model, we suppose simply that the market

potential α and the price sensitivity β are given non-negative constants, and the

contracting levels are given constants with 0 ≤ fi < k for some k.
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Assume the monopolist M is not subject to any capacity constraint, other

than the total capacity nk resulting from the market for the complementary

good. We consider the rationing rule maximizing consumer surplus and chosen

by Kreps and Scheinkman (1983), Levitan and Shubik (1972): demand fills the

cheapest oligopolists’ capacities first and there is no income effect on consump-

tion.

Formally, let us order the oligopolists so p1 ≤ p2 ≤ · · · ≤ pn, and write

i∗ = max{1 ≤ i ≤ n : α− β(pM + pi) > k(i− 1)} (1)

so pi∗ is the highest price yielding a positive market share. Then the output of

each Oi is

Di =





k for pi < pi∗

0 for pi > pi∗

α−β(pM+pi∗ )−k(j∗−1)
m for pi = pi∗ ,

(2)

where there are m downstream providers pj∗ , . . . , pj∗+m−1 pricing at pi∗ . In

the special case when the set in the Definition (1) of i∗ is empty, we define

Di = 0 for every Oi, since market demand is zero even at the lowest total price

p1 + pM.

The output of the monopolist M is then given by

DM =
n∑

i=1

Di = max {α− β(pM + pi∗), k(j∗ + m− 1)}. (3)

Without loss of generality, we shall assume that the contracting levels are

ordered as

0 ≤ f1 ≤ f2 ≤ · · · ≤ fn < k.

3 Pure-Strategy Equilibrium Analysis

The equilibrium outcome of the pricing game depends on the available produc-

tion capacity and the market potential α. The following definition divides the
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set of possible levels of market potential into three regions.

Definition 1 (high, low, intermediate market potential). Let 0 ≤ f < k.

Consider the thresholds

αl(f) = 2(n− 1)k + 2f,

αh(f) = (2n + 1)k − f.

We say that market potential is f -high if

α ≥ αh(f); (4)

that market potential is f-low if

α ≤ αl(f); (5)

and that market potential is f -intermediate if

αl(f) < α < αh(f). (6)

As we will now show, in the region of f1-high market potential network

capacity is exhausted, so the total upstream and downstream price p1 + pM is

the congestion price, the lowest price at which demand can be satisfied. In the

region of f1-low market potential, competition forces the downstream market

price p1 down to marginal cost, which is normalized to zero. In the region of

f1-intermediate market potential, oscillatory price behavior follows, as will be

explored in the next section. The following theorem characterizes the pure-

strategy Nash equilibria in the three regions.

Theorem 1. Pure-strategy equilibria are characterized as follows:

(i) If market potential is f1-high in the pricing game, then there is a range of
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pure-strategy equilibria given by

p1 = p2 = · · · = pn (7)

β(p1 + pM) = α− kn (8)

∀i, fi(p1) ≥ k − βp1 (9)

βpM ≥ kn, (10)

moreover, any f1-high pure-strategy equilibrium is of this form.

(ii) If market potential is f1-low, then there is a pure-strategy equilibrium such

that every oligopolist sets a zero price (pi = 0 for each i) and M sets pM =

α
2β ; moreover, in any f1-low pure-strategy equilibrium, each Oi either sets

zero price or produces zero output (piDi = 0 for each i).

(iii) If market potential is f1-intermediate and n = 1, then there is a unique

pure-strategy equilibrium given by

p1 =
α− 2f1

3β
, pM =

α + f1

3β
. (11)

If market potential is f1-intermediate and n ≥ 2, then there is no pure-

strategy equilibrium.

Some observations may be in order. To begin, note that the general form of

the result only differs between the bilateral monopoly and the true downstream

oligopoly case (n ≥ 2) when market potential is f1-intermediate and competition

results in the non-existence of any pure-strategy equilibrium. However, the

boundaries between the regions depend on the number n of downstream firms.

In the bilateral monopoly case (n = 1), for example, the equilibrium with p1 = 0

arises only if f ≥ α
2 . In the absence of competition to force the downstream

price to zero, this will only happen when market potential is so low that, given

the contracting level f1, provider O1 cannot obtain a positive profit by setting

p1 > 0.
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Observe that none of the results stated in Theorem 1 depend on f2, . . . , fn,

but only on the lowest contracting level f1. In general, any contracting weakens

a downstream provider Oi’s incentive to set a high price in the pricing game,

and the provider O1 with the lowest contracting level will have the strongest

incentive to do so. Under our assumptions, including the condition that M holds

all the bargaining power and, when market potential is f1-high, the equilibrium

with the highest pM arises, the equilibrium price levels are determined by O1

and M, the other oligopolists being able to follow O1’s price p1.

Proof of Theorem 1. We first show that the prices specified for f1-high and f1-

low market potential are in equilibrium. We then proceed by proving two non-

existence results in the regions where market potential is not f1-high and not

f1-low, respectively, allowing us to deduce the unique characterization of the

stated pure-strategy equilibria in the extremal regions and non-existence for f1-

intermediate market potential. Special attention is paid to the case of bilateral

monopoly n = 1.

If market potential is f1-high, this allows the choice of p1, pM satisfying the

outlined conditions. We verify that these moves do indeed form a pure-strategy

Nash equilibrium. Here M serves a market of maximal size nk and he can do

no better by cutting his price. The effect on M’s profit of a rise in pM is

∂πM

∂pM

∣∣∣∣
+

= α− β(p1 + pM)− βpM ≤ nk − βpM ≤ 0,

at the chosen point as well as for any higher value of pM. Therefore, M has no

incentive to change his strategy.

Firm O1’s profit, on the other hand, is

π1 = p1 max{k; α− β(pM + p1)− (n− 1)k} − f1p1.

Since the market share α − β(pM + p1) − (n − 1)k is equal to k at our chosen

point, and f1 ≤ k, O1 cannot gain by cutting his price. Here O1 cannot increase
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his profit by raising his price either. We have shown that the chosen point is

indeed a pure-strategy Nash equilibrium.

If market potential is f1-low, consider the set of strategies pi = 0 ∀i, βpM =

α
2 . The price pM is clearly player M’s best response to the zero strategy played

by the Oi: it is the monopolistic price. Observe that the total market served

is DM = α
2 ≤ (n − 1)k + f1. Therefore, if Oi chooses any other price pi > 0,

his profit is negative. We have established that this set of strategies is indeed a

Nash equilibrium.

The unique characterization for the previous two equilibria follows from the

following lemma, proved in the appendix.

Lemma 1. Let (pM; p1, p2, . . . , pn) be a pure-strategy Nash equilibrium in

prices.

(i) Suppose market potential is not f1-low. Then there exists 1 ≤ i ≤ n such

that player Oi has piDi > 0 in equilibrium.

(ii) Suppose market potential is not f1-high. If n ≥ 2 then every Oi has

piDi = 0 in equilibrium.

When market potential is f1-high, consider any pure-strategy equilibrium

given by the tuple of prices (pM; p1, p2, . . . , pn). We will show that the

equilibrium satisfies (7) to (10). Let i∗ be as specified in (1), which satisfies

pi∗ > 0, Di∗ > 0 by the lemma. Suppose there was some j such that pj > pi∗ .

Then we would have Dj = 0 by the definition of i∗, so player Oj would have an

incentive to set pj equal to pi∗ . Suppose now that there was some j such that

pj < pi∗ . Then player Oj would be able to set any pj < pi∗ while retaining a

market share of k. Since fj ≤ k, he would not decrease his profit by doing so.

Therefore, we have shown that all prices are equal in our equilibrium (7).

Suppose we had D1 < k. Then O1 would be able to increase his market share

to k by cutting his price by any small amount. Hence we must have D1 = k at

equilibrium and the total market served is nk (8).
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Our previous argument shows that (9) and (10) must hold at equilibrium,

so the players O1 and M respectively have no incentive to increase their price.

We have therefore shown that every non-trivial pure-strategy equilibrium is of

the given form.

If market potential is f1-low, n ≥ 2, Lemma 1 shows that every Oi has

piDi = 0. If market potential is f1-low and n = 1, it is easy to see that the

unique pure-strategy equilibrium is given by

p1 = 0, pM =
α

2β
.

Lemma 1 shows that there can be no pure-strategy equilibrium if market

potential is f1-intermediate and n ≥ 2. Finally, if market potential is f1-

intermediate and n = 1, it is easy to see that the unique pure-strategy equilib-

rium is given by (11) This completes the proof of the theorem.

4 Mixed-Strategy Equilibrium Analysis

From Theorem 1, we know that for f1-intermediate market potential there is no

pure-strategy Nash equilibrium when the downstream market is a true oligopoly

(n≥2). Since the oligopolists Oi set their prices on a shorter timescale than the

monopolist M, we assume they use mixed strategies, interpreted as distributions

of fluctuating prices following Levitan and Shubik (1972). The pricing game can

be shown to have an equilibrium point.

Theorem 2. Suppose n ≥ 2 and market potential is f1-intermediate in the

pricing game. Then there exists a unique equilibrium point (pM; p1, . . . , pn)

where the price pM is a pure strategy for M and the prices pi are mixed strategies

for each Oi, respectively, such that pM is locally optimal and each pi is optimal

given the other players’ strategies.

Local optimality of the upstream equilibrium price pM means that the player

M has no incentive to make small-scale deviations. The question of global opti-
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mality of pM is of little importance, since the other players can in any case not

be expected to maintain their strategies if M makes large-scale deviations. This

argument for the stability of local equilibria is made in Rothschild and Stiglitz

(1976). However, an interesting question that remains is whether allowing M to

play a mixed strategy leads to a different equilibrium point. We will consider

this in Theorem 3.

Proof of Theorem 2. The proof of this theorem makes use of a generalization of

the solution of the Bertrand-Edgeworth oligopoly in Levitan and Shubik (1972),

Vives (1986) taking forward contracting into account.

Preliminaries: Reduced Pricing Game. We start by considering the re-

duced pricing game arising between the Oi if M has precommitted to a fixed

price pM. In analogy with Definition 1, the following regions turn out to be

useful.

Definition 2. Let 0 ≤ f ≤ k. We say that market potential is (f, pM)-high if

βpM ≤ α− k(n + 1) + f ; (12)

that market potential is (f, pM)-low if

βpM ≥ α− k(n− 1)− f ; (13)

and that market potential is (f, pM)-intermediate if

α− k(n + 1) + f < βpM < α− k(n− 1)− f. (14)

The form of the equilibrium depends on the level of market potential.

Lemma 2. The reduced pricing game has the following Nash equilibria.
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(i) If market potential is (f1, pM)-high then there is a unique pure-strategy

equilibrium, in which each Oi names almost surely

pi =
α− βpM − kn

β
. (15)

(ii) If market potential is (f1, pM)-low then there is a pure-strategy equilib-

rium, in which each Oi names almost surely

pi = 0. (16)

In every pure-strategy equilibrium, Dipi = 0 for every player Oi.

(iii) If market potential is (f1, pM)-intermediate then the reduced pricing game

has the following unique mixed-strategy equilibrium.

Let

p1
1 ≡

α− βpM − k(n− 1)− f1

2β
(17)

p0 ≡ β(p1
1)

2

k − f1
(18)

h(p) =
p− p0

p(kn− α + β(p + pM))
(19)

Hj(p) = (k − fj)h(p). (20)

We define pi+1
1 ∈ [0, p1

1] to be the unique value satisfying

h(pi+1
1 ) ≡ (k − fi+1)i−1

∏i
j=1(k − fj)

for 2 ≤ (i + 1) ≤ n (21)

pn+1
1 ≡ p0. (22)

For each 1 ≤ j ≤ n, define the function Gj(p) on [p0, pj
1] piecewise as

Gj(p) ≡
(∏

k≤i, k 6=j Hk(p)
(Hj(p))i−2

) 1
i−1

for pi+1
1 ≤ p ≤ pi

1, j ≤ i. (23)
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Then the reduced pricing game has a unique mixed-strategy Nash equi-

librium, in which each Oj plays a random pj ∈ [p0 pj
1) according to the

cumulative density function Gj, and, moreover, O1 plays the value p1 = p1
1

with positive probability 1− k−f2
k−f1

.

The mixed strategies pi (as random variables) almost surely satisfy

max
{

0,
α− kn

β
− pM

}
< pi <

α− k(n− 1)
β

− pM, (24)

and player Oi’s expected payoff over every mixed strategy pj is

Epπi = p0(k − fi). (25)

Moreover, Epmax = Emaxi{pi} is everywhere a continuous function of pM.

It is continuously differentiable in the region of (f1, pM)-intermediate market

potential, but it is not differentiable at the boundary points βpM = α − k(n +

1) + f1 and βpM = α − k(n− 1)− f1 towards (f1, pM)-low and (f1, pM)-high

market potential.

Existence. We now prove existence of the equilibrium point. Let pM be such

that

max{k(n− 1), α− k(n + 1) + f1} ≤ βpM ≤ min
{

kn,
α

2

}
.

It follows that

βpM ≤ α

2
= α− α

2
< α− k(n− 1)− f1,

since α > 2(n− 1)k + 2f1.

Let {pi}i be the mixed-strategy equilibrium of Lemma 2. Then the mixed

strategy pi maximizes Oi’s profit. To prove our theorem, we just need to show

that M’s expected profit is at a local maximum at some pM in this range.

First, suppose that βpM > α− k(n + 1) + f1. Then, almost surely,

α− kn

β
− pM < min{pi} ≤ max{pi} <

α− k(n− 1)
β

− pM,
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so M’s market share DM satisfies

k(n− 1) < DM = α− β(pM + pmax) < kn,

and M’s expected profit is

EπM = pM(α− β(pM + Epmax)),

which is locally maximizes by pM if and only if

pM =
α− βEpmax

2β

⇔ Epmax =
α

β
− 2pM. (26)

At the upper bound of the allowed range for pM, if βpM = kn < α
2 , then

Epmax ≥ α− kn

β
− pM =

α

β
− 2pM,

whereas if βpM = α
2 ≤ kn, then

Epmax ≥ 0 =
α

β
− 2pM.

At the lower bound of the allowed range, if βpM = k(n−1) > α−k(n+1)+f1,

then

Epmax ≤ α− k(n− 1)
β

− pM =
α

β
− 2pM.

Since Epmax is continuous in pM, the Intermediate Value Theorem shows that

there exists a value p∗M ∈ [
k(n− 1), min

{
kn, α

2

}]
such that (26) holds.

On the other hand, at the lower bound βpM = α − k(n + 1) + f1 ≥
k(n− 1) the mixed-strategy equilibrium of pi turns out to be the pure-strategy

equilibrium given by pi = Epmax = α−βpM−kn
β < α

β − 2pM since βpM <

kn. Thus, by the Intermediate Value Theorem, there exists a value p∗M ∈
(
α− k(n + 1) + f1, min

{
kn, α

2

}]
such that (26) holds. Since βp∗M > α−k(n+
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1)+f1, the total demand served by M retains its functional form in some neigh-

borhood of p∗M, and p∗M does indeed locally maximize M’s profit.

Uniqueness. To prove that there is only one equilibrium point with the given

properties, we first need a technical lemma on the variation with the constant

price pM of the expected maximum price named by an Oi.

Lemma 3. Suppose market potential is f1-intermediate. Let the expected maxi-

mum downstream price be Epmax = Epmax (pM, (fi)n
i=1) as specified in Lemma 2.

Let p∗M be the pure strategy followed by M at the equilibrium point constructed

above. Then, at p∗M, the function Epmax satisfies

∂Epmax

∂pM

∣∣∣∣
pM=p∗M

> −2. (27)

Consider any equilibrium point (pM; p1, . . . , pn), where pM is a locally

optimal pure strategy and each pi is an optimal mixed strategy. Suppose, for

a contradiction, that market potential is not (f1, pM)-intermediate. Then, by

Lemma 2, p1, . . . , pn are pure strategies. It is easy to see that the price pM

must in fact be a globally optimal strategy for M, so the equilibrium point is a

pure-strategy Nash equilibrium. This contradicts Theorem 1, so we have proved

that market potential is (f1, pM)-intermediate in any equilibrium point with the

stated properties.

Consider the function

f(pM) = α− 2βpM − βEpmax(pM).

At any equilibrium point satisfying our assumptions, we have f(pM) = 0. We

have already shown the existence of such a point pM = p
(1)
M . It follows from

Lemma 2 that f is continuously differentiable. By Lemma 3

f ′(pM) = −2β − β
∂Epmax

∂pM
< 0.
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Suppose, for a contradiction, that there exists p
(2)
M 6= p

(1)
M with the same

properties. Without loss of generality p
(1)
M < p

(2)
M . It follows from the sign

of the derivative of f that we can find 0 < ε1, ε2 < 1
2 (p(2)

M − p
(1)
M ) such that

f(p(1)
M + ε1) < 0 and f(p(2)

M − ε2) > 0. Since f is a continuous function, the

Intermediate Value Theorem gives p
(3)
M ∈ (p(1)

M + ε1, p
(2)
M − ε2) such that

f(p(3)
M ) = 0.

Inductively, we obtain an infinite sequence p
(1)
M , p

(2)
M , p

(3)
M , . . . of distinct

points in [p(1)
M , p

(2)
M ] such that f(p(1)

M ) = f(p(2)
M ) = · · · = 0. By the Bolzano-

Weierstrass Theorem, this sequence must have an accumulation point pM. Clearly

then f(pM) = 0 and f ′(pM) = 0, which contradicts Lemma 3. We have there-

fore established uniqueness of M’s equilibrium price p
(1)
M . By Lemma 2, the

equilibrium point is unique.

One remaining question is whether allowing the monopolist M to play any

mixed strategy gives rise to a different equilibrium. It turns out that this is

not the case for mixed-strategy Nash equilibria where demand can be served

completely and is sufficient to fill all but one oligopolists’ networks almost surely

(with probability one). When the mixed strategies have no point weights, the

condition that demand fills all but one network is equivalent to specifying that

almost surely no oligopolist has zero output.

Theorem 3. Let market potential be f1-intermediate. Suppose there exists a

mixed-strategy Nash equilibrium in the pricing game such that almost surely

k(n− 1) ≤ α− β(pM + pi) ≤ kn. (28)

Then pM is a pure strategy and the equilibrium is the equilibrium point given in

Theorem 2.
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Proof of Theorem 3. Consider a mixed-strategy equilibrium. Suppose that al-

most surely

k(n− 1) ≤ α− βpM − βpmax ≤ kn. (29)

Let

pM = sup{p : P{pM < p} = 0},

pM = inf{p : P{pM > p} = 0}.

But (29) must still hold almost surely if M plays any pure strategy pM ∈
[pM, pM]. For any such pure strategy, M’s expected profit is

EπM(pM) = pM(α− βpM − βEpmax).

This is a quadratic function with a unique maximum on the domain pM ∈
[pM, pM]. Therefore, M plays a pure strategy.

5 Forward Contracting

We now consider contracting under demand uncertainty in the following two-

stage game, whose second stage subgame is the pricing game described so far.

Suppose the parameter β describing the market’s price sensitivity to pay for

bandwidth is random. In the first stage, the oligopolists simultaneously choose

to sell capacities 0 ≤ fi ≤ k by means of forward contracts.

When some fi = k, we assume the outcome of the second-stage pricing game

is the continuous extension of the pure-strategy equilibrium of Theorem 1 or the

equilibrium of Theorem 2, as appropriate.2

Having analyzed the second-stage pricing subgame, by backward induction

we can now turn our attention to the first stage choice of forward contracting.

Between the two stages, the true value of β is revealed. Assume Oi has the

mixed pricing strategy pi in the second stage and can sell forward contracts for
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bandwidth over its network segment at the risk-neutral expected price, obtaining

first-stage income from the contracts of

Ii = fiEβEppi, (30)

where Ep denotes expectation over the players’ mixed pricing strategies and Eβ

denotes expectation over the random parameter β.

If Oi is risk-averse with a utility function U which is increasing and strictly

concave, its total payoff is

Πi = EβU (Ii + Epπi). (31)

Firm M’s payoff is

ΠM = EβEpπM. (32)

In general, we do not know if there is a pure-strategy Nash equilibrium in

the first-stage choice of contracting levels. However, any such equilibrium must

satisfy the following result.

Theorem 4. Suppose market potential is not 0-low (in the sense of Defini-

tion 1 with f = 0) and the players’ second-stage moves are the ones predicted by

Theorems 1 and 2, assuming the greatest pM when there are multiple equilibria.

Suppose there is a pure-strategy equilibrium of positive first-stage contracting

levels, so without loss of generality

0 < f1 ≤ fi for every i. (33)

Then the lowest contracting level is unique

f1 < fi for every i > 1. (34)

When market potential is not 0-low, any contracting equilibrium where the

oligopolists obtain positive payoffs must be asymmetric. In the special case of
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0-high market potential, it is easy to show that a pure-strategy Nash equilibrium

of contracting levels exists and all but one contracting levels are maximal f2 =

f3 = · · · = fn = k in equilibrium.

Proof of Theorem 4. Clearly market potential is not f1-low, since O1 can achieve

a positive profit by choosing a sufficiently low tariff schedule f1 > 0, subject to

market potential not being 0-low.

Suppose first that market potential is f1-high. The second-stage subgame

has a pure-strategy equilibrium, which is independent of fj , for j ≥ 1. Since

Oj , j > 1, is strictly risk-averse, he has an incentive to choose fj > f1.

Suppose that market potential is f1-intermediate instead. Suppose, for a

contradiction, that f2 = f1. We will show that, if O1 has no incentive to choose

a lower tariff schedule, then he must have an incentive to choose a higher one.

For each β, O1’s profit varies with f1 = f2 according to

d

df1

∣∣∣∣
±

(π1 + I1) = (p0(β)(k − f1) + f1EβEp1)

= −p0 + (k − f1)
dp0

df1

∣∣∣∣
±

+ EβEp1 + f1Eβ
dEp1

df1

∣∣∣∣
±

= −p0 + (k − f1)

(
∂p0

∂f1

∣∣∣∣
±

+
∂p0

∂pM

dEp∗M
df1

∣∣∣∣
±

)

+ EβEp1 + f1Eβ

(
∂Ep1

∂f1

∣∣∣∣
±

+
∂Ep1

∂pM

dEp∗M
df1

∣∣∣∣
±

)
,

where
dEp∗M
df1

∣∣∣∣
±

= − ∂Epmax

∂f1

∣∣∣∣
±

(
2 +

∂Epmax

∂pM

)−1

.

It is easy to check that
∂Ep1

∂f1

∣∣∣∣
−
≤ ∂Ep1

∂f1

∣∣∣∣
+

,

and
∂Epmax

∂f1

∣∣∣∣
−
≤ ∂Epmax

∂f1

∣∣∣∣
+

.
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Trivially
∂p0

∂f1

∣∣∣∣
−

< 0 =
∂p0

∂f1

∣∣∣∣
+

.

Since ∂Ep1
∂pM

< 0 and ∂p0
∂pM

< 0, clearly

d

df1

∣∣∣∣
−

(π1 + I1) <
d

df1

∣∣∣∣
+

(π1 + I1).

This gives

∂

∂f1

∣∣∣∣
+

EβU (π1 + I1) = Eβ

(
U ′(π1 + I1)

∂

∂f1

∣∣∣∣
+

(π1 + I1)

)

> Eβ

(
U ′(π1 + I1)

∂

∂f1

∣∣∣∣
−

(π1 + I1)

)

=
∂

∂f1

∣∣∣∣
−
EβU (π1 + I1).

The right-hand side must be non-negative since O1 has no incentive to decrease

his tariff schedule. Hence the left-hand side is positive, and O1 can increase his

expected utility by raising his tariff schedule slightly. This is a contradiction,

so f2 6= f1 as required.

Theorem 5. Suppose

0 ≤ f1 < f2 ≤ · · · ≤ fn < k, (35)

and the players’ second-stage moves are the ones predicted by Theorems 1 and 2,

assuming the greatest pM when there are multiple equilibria.

If market potential is f1-intermediate, an increase of f1 by O1 results in a

negative marginal externality on the other oligopolists’ payoffs; and an increase

of fj by Oj, for any j > 1, results in a positive marginal externality on the other

oligopolists’ payoffs.

If market potential is f1-high, an increase of f1 by O1 results in a negative

marginal externality on the other oligopolists’ payoffs; and an increase of fj by
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Oj, for any j > 1, results in zero marginal externality on the other oligopolists’

payoffs.

Choosing a low level of contracting f1 is like providing a “public good”3 to

the oligopoly, by raising the general price level, but doing so is privately costly

to O1, as it implies a low level of insurance against demand uncertainty. In the

case of f1-intermediate market potential, the choices of the contracting levels

f2, . . . , fn result in externalities with the opposite sign, so greater levels of

contracting benefit other oligopolists.

Proof of Theorem 5. If market potential is f1-high, every Oi charges price

p1 =
k − f1

β

in the second stage. The theorem is trivial in this case.

If market potential is f1-intermediate, write p∗M for the equilibrium value of

pM, and let

p∗0 = p0(p∗M),

Epp
∗
i = (Eppi)(p∗M).

It is easy to show that

dp∗0
dfi

=
∂p0

∂fi
+

∂p0

∂pM

dp∗M
dfi

=
∂p0

∂fi
− ∂p0

∂pM

∂Epmax

∂fi

(
2 +

∂Epmax

∂pM

)−1

.

When fi > f1, ∂p0
∂fi

= 0, ∂p0
∂pM

< 0 and dp∗M
dfi

> 0. Hence dp∗0
dfi

> 0. On the other

hand, ∂p0
∂f1

< 0 and dp∗M
dfi

> 0, so dp∗0
df1

< 0.
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It is also easy to show that

dEp∗j
dfi

=
∂Epj

∂fi
+

∂Epj

∂pM

dp∗M
dfi

=
∂Epj

∂fi
− ∂Epj

∂pM

∂Epmax

∂fi

(
2 +

∂Epmax

∂pM

)−1

.

In particular, when 1 < i 6= j, ∂Epj

∂fi
≥ 0 and ∂Epj

∂pM
< 0, so we have dEp∗j

dfi
> 0. On

the other hand, if j > 1, ∂Epj

∂f1
≤ 0, so dEp∗j

df1
< 0.

Since Oj ’s profit is the stochastic quantity Ij +πj where Ij = fjEβEpp
∗
j and

πj = p∗0(k − fj), the result follows immediately.

6 Conclusions

We have analyzed a pricing game with an upstream monopoly and a down-

stream oligopoly providing bandwidth on two complementary segments of a

multi-provider communication network, where the oligopolists have previously

sold different proportions of their bandwidth by forward contracts. Our results

are as follows.

When market potential is low, there is a pure-strategy Nash equilibrium with

downstream prices equal to zero or marginal cost. The downstream oligopolists

compete the price down in this case, or, for a single downstream firm operating

as part of a bilateral monopoly, the capacity sold by forward contracts absorbs

all demand.

When market potential is high, there is a range of pure-strategy Nash equilib-

ria with different divisions of the same total network price between the upstream

and downstream industries. Output attains the level of available capacity and

the total price is the congestion price, representing the value of a marginal unit of

capacity. The balance of bargaining power between the firms determines which

equilibrium arises. When the upstream monopolist M has all the bargaining

power, the fraction of the total income obtained by the downstream industry is

a decreasing function of the lowest level of contracting f1, but is independent
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of all other levels of contracting.

For intermediate market potential, there is a pure-strategy Nash equilibrium

only in the case of a bilateral monopoly (and capacity is not exhausted in this

case). For a downstream oligopoly (n ≥ 2), there exists an equilibrium point

consisting of optimal mixed strategies for each oligopolist and a locally optimal

pure strategy for the upstream monopolist.

We can draw some conclusions on the choice of forward contracts in a two-

stage game assuming the market’s price-sensitivity is random and the down-

stream firms are risk-averse. We assume that market potential is not so low

that downstream prices are competed down to zero. We prove that any pure-

strategy Nash equilibrium of positive contracting levels must be asymmetric

and have a unique lowest contracting level, although the existence of such an

equilibrium is only clear for high market potential when a pure-strategy price

equilibrium exists in the second-stage subgame.

Under the same assumptions, we prove that the choice of contracting levels

causes externalities. An increase in the lowest contracting level has a negative

marginal externality on other oligopolists. An increase in any other contract-

ing level has no externality for high market potential, but a positive marginal

externality for intermediate market potential. We can think of the oligopolist

with the least forward contracting as providing a public good to the oligopoly.

Finally, while our model was developed for a wholesale bandwidth market,

it can more generally be seen as an abstract economic model, with conclusions

applicable to the pricing of complementary goods where firms sell part of their

capacities by forward contracting.
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Proofs of the Lemmas

Proof of Lemma 1. (i) Suppose that there exists an equilibrium where every

Oi has piDi = 0. Suppose O1 deviates from his equilibrium strategy by

choosing a low price p1. Then

D1 ≥ α− βpM − k(n− 1) + O(p1).

Using βpM ≤ α
2 , we get

π1 ≥
(α

2
− k(n− 1)− f1

)
p1 + O((p1)2).

Since α > 2(n−1)k+f1, this is positive for p1 > 0 small enough, allowing

O1 to achieve a positive profit. This contradicts our assumption that the

strategies form an equilibrium.

(ii) Consider any pure-strategy equilibrium given by the tuple of prices (pM; p1, p2, . . . , pn).

Suppose some Oi has piDi > 0 in equilibrium. We will show that the equi-

librium satisfies (7) to (10). Let i∗ be as specified in (1), which satisfies

pi∗ > 0, Di∗ > 0 (by our assumptions). Suppose there was some j such

that pj > pi∗ . Then we would have Dj = 0 by the definition of i∗, so

player Oj would have an incentive to set pj equal to pi∗ . Suppose now

that there was some j such that pj < pi∗ . Then player Oj would be able

to set any pj < pi∗ while retaining a market share of k. Since fj ≤ k, he

would not decrease his profit by doing so. Therefore, we have shown that

all prices are equal in our equilibrium (7).

Suppose we had D1 < k. Then O1 would be able to increase his market

share to k by cutting his price by any small amount. Hence we must have

D1 = k at equilibrium and the total market served is nk (8).

Our previous argument shows that (9) and (10) must hold at equilibrium,

so the players O1 and M respectively have no incentive to increase their
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price. We have therefore shown that the pure-strategy equilibrium satis-

fies (7) to (10). But this system of equations has no solution when market

potential is not f1-high, so we have a contradiction and every Oi must

have piDi = 0.

Proof of Lemma 2. (i) At the given prices, capacity is exhausted, and no Oi

has an incentive to lower his price. Since βpi ≥ k− f1 ≥ k− fi, no Oi has

an incentive to raise his price either, so this point is indeed a pure-strategy

equilibrium.

To establish uniqueness, consider any pure-strategy equilibrium. Since

each Oi can achieve a positive profit by playing the strategy above, we

must have one price pi = pj for every Oi, Oj . If pi is larger than the

value given above, then each market share is less than k, and Oi has an

incentive to cut his price by an arbitrarily small amount. If, on the other

hand, pi is smaller than the value given above, then the entire demand is

not served. Therefore, Oi has an incentive to increase his price slightly;

he does not lose any market share. This establishes uniqueness.

(ii) If every downstream network names price zero, then the total demand is

DM = α− βpM ≤ k(n− 1) + f1.

Given that every other Oj names price zero, Oi’s second-stage profit when

naming pi > 0 is

πi(pi) = (k(n− 1) + f1 − βpi − k(n− 1))pi − fipi = (f1 − fi − βpi)pi < 0,

so no Oi has an incentive to play a positive price. This point is indeed a

pure-strategy equilibrium, with Epmax = 0 almost surely.
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Consider any pure-strategy equilibrium. Suppose some Oi has piDi >

0 Without loss of generality, let Oi be the network playing the highest

price who still has a positive market share. If there is any Oj playing

pj > pi, then Oj receives zero market share and Oj has an incentive to

just undercut Oi. Hence at equilibrium every pj ≤ pi. Suppose there are

m > 1 downstream providers playing price pi. The market share obtained

by each is

α− βpM − βpi − k(n−m)
m

<
(m− 1)k + f1

m
< k,

so every such provider has an incentive to just undercut all other providers

playing price pi, and we must have m = 1. Therefore, Oi’s positive market

share is at most α− βpM − βpi − k(n− 1) < f1 ≤ fi. Hence Oi is better

off playing pi = 0, which is a contradiction.

(iii) Let market potential be (f1, pM)-intermediate. The following results are

direct consequences of the definitions stated in the lemma.

(a) We have

0 < p0 < p1
1 <

k − f1

β
.

(b) For p0 ≤ p ≤ p1
1, we have

k(n− 1) < α− β(p + pM) < kn.

(c) The function H1(p) is continuous and strictly increasing on [p0, p1
1],

with H1(p0) = 0, H1(p1
1) = 1.

(d) We have

p0 = pn+1
1 ≤ pn

1 ≤ · · · ≤ p2
1 = p1

1,

where, for 1 < i < n, pi
1 = pi+1

1 if and only if fi = fi+1. Also, pi
1 = p0

if and only if fi = k.

(e) For any j, Gj is a continuous and strictly increasing function on
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[p0, p
j
1]. For any j, it satisfies Gj(p0) = 0. For j > 1, Gj(p

j
1) = 1.

G1(p1
1) = k−f2

k−f1
.

(f) Finally, for p0 ≤ p ≤ pi
1, the cumulative density function of maxj 6=i{pj}

satisfies

G−i(p) ≡
∏

j 6=i, pj>p

Gj(p) = Hi(p).

Given the above facts, we can show that the strategies defined in the

lemma form a Nash equilibrium. Note that Oi’s market share depends on

maxj 6=i{pj}. If this is greater than pi, then Oi’s capacity k is exhausted.

If it is less than pi, then Oi’s market share is the residual after all other

(n− 1) downstream networks Oj have been served. Since the probability

distributions have no point weights at any p0 < p < p1
1, and at least one

Oj with j 6= i has pj > p0 almost surely, the event that maxj 6=i{pj} = p

has zero probability for any p < p1
1.

Thus Oi’s profit, when playing some p0 ≤ p < pi
1, is

Eπi(p) = (1−G−i(p))p(k − fi) + G−i(p)p(α− β(p + pM)− k(n− 1)− fi)

= p(k − fi) + G−i(p)p(α− β(p + pM)− kn)

= p0(k − fi) = Eπi(p0).

Moreover, for O1,

Eπ1(p1
1) = p0(k − f1) = Eπ1(p0).

To establish the equilibrium, we just need to prove that no Oi can do any

better than this, conditional on the other players’ strategies.

Since each Oi can set price p0 and be sure of market share k, setting a

lower price p < p0 leads to lower profits

Eπi(p) = p(k − fi) < p0(k − fi) = πi(p0).
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For O1, p1
1 is the optimal price to set, if the other players’ market shares

are served first. Thus O1 cannot have an incentive to play any price p > p1
1.

Since for i > 1, fi ≥ f1, no Oi has an incentive to play a price p > p1
1

either. Moreover

lim
p→p1

1
−
Eπi(p) ≥ Eπi(p1

1),

so it is sufficient to show that Oi cannot increase his expected profit by

playing any p with pi
1 ≤ p < p1

1.

Suppose pi
1 ≤ pj+1

1 ≤ p ≤ pj
1 ≤ p1

1. Observe that

Gmax(p) =
j∏

l=1

Gl(p)

=

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

h(p)

≥
(

h(pj+1
1 )

j∏

l=1

(k − fl)

) 1
j−1

h(p)

= (k − fj+1)h(p) = Hj+1(p)

≥ Hi(p).

Thus Oi’s profit playing p satisfies

Eπi(p) = p(k − fi) + Gmax(p)p(α− β(p + pM)− kn)

≤ p(k − fi) + Hi(p)p(α− β(p + pM)− kn) = Eπi(p0),

since α− β(p + pM)− kn < 0. This establishes that the given probability

distributions form a mixed-strategy Nash equilibrium.

Conversely, to prove uniqueness, consider any mixed-strategy Nash equi-

librium given by cumulative density functions

Gj(p) = P{pj < p}.
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There are well-defined low- and high-price thresholds for each player

pj
0 = sup{p : Gj(p) = 0},

pj
1 = inf{p : Gj(p) = 1}.

Note that

(a) Every Oj obtains a positive expected profit Eπj in equilibrium.

(b) In equilibrium, there is enough capacity for the total demand at each

low-price threshold, and each Oj ’s market share is positive even at

his high-price threshold.

α− β(pj
0 + pM) ≤ kn,

α− β(pj
1 + pM) > k(n− 1).

It follows that every Oj has the same low-price threshold p0 as in the

equilibrium we have constructed

pj
0 = p0 ∀j;

every Oj has the same expected profit Eπj as in the equilibrium we have

constructed

Eπj = p0(k − fj);

and O1 has the same high-price threshold p1
1 as in the equilibrium we have

constructed, and no high-price threshold exceeds it

p1
1 = p1

1 ≥ pj
1 ∀j.
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Define cumulative density functions for p−j
max = maxi 6=j{pi} as before

G−j(p) =
∏

i 6=j

Gi(p).

For any Oj , it can be shown that there exists an open interval U of pure

strategies containing [p0, p
1
1] such that whenever p ∈ U , we have

G−j(p) ≥ Hj(p);

and, whenever

G−j(p) > Hj(p),

there exists ε > 0 such that

Gj(p− ε) = Gj(p + ε).

(This follows from the equilibrium requirement that Oj should have no

incentive to change his mixed strategy.)

The following is further easily shown.

(a) Each Gj is continuous on (p0, p1
1]. (So the players’ mixed strategies

have no point weights, except possibly at p0 and p1
1.)

(b) If fi < fj , then pj
1 ≤ pi

1.

(c) We have

p2
1 = p1

1 = p2
1.

We are ready to prove that the mixed strategies employed by the players

are indeed those of our constructed equilibrium. As before, let

pn+1
1 = pn+1

1 = p0.

31



Define G̃i
j(p) for pi+1

1 ≤ p ≤ pi
1, i ≥ j, p > p0, as

G̃i
j(p) =

(∏
l≤i, l 6=j Hl(p)

) 1
i−1

(Hj(p))
i−2
i−1

.

The proof of uniqueness follows by induction, with the hypothesis, for each

1 ≤ i ≤ n. We have pi
1 = pi

1, and for p ∈ [pi+1
1 , pi

1], j ≤ i, p > p0, we have

Gj(p) = G̃i
j(p). We have already proved this for i = 1.

Assume the inductive hypothesis holds for some (i−1) < n. We show that

it still holds for i. We first show that the second part holds. If pi+1
1 =

pi
1 then every Gj(p) = Gj(pi

1) = G̃i−1
j (pi

1) = G̃i
j(p

i
1) by the inductive

hypothesis and the definition of pi
1. Suppose pi+1

1 < pi
1. For every pi+1

1 ≤
p ≤ pi

1, if p > p0,

Gj(p) =

(∏
l≤i, l 6=j G−l(p)

) 1
i−1

(G−j(p))
i−2
i−1

.

If G−l(p) = Hl(p) for every l ≤ i then Gj(p) = G̃i
j(p).

Suppose, on the other hand, that there exists some l ≤ i, such that

G−l(p) > Hl(p). Then for every j such that G−j(p) = Hj(p), we have

Gj(p) > G̃i
j(p). For every l satisfying G−l(p) > Hl(p), define

pl = sup{q : G−l(q′) > Hl(q′) ∀p ≤ q′ ≤ q}.

By the inductive hypothesis, the supremum exists and pl ≤ pi
1. If pl < pi

1,

G−l(pl) = Hl(pl)

follows by continuity; while if pl = pi
1, the same follows by the inductive

hypothesis for i. However, for every p ≤ p′ < pl,

G−l(p′) > Hl(p′).

32



Therefore Gl is constant on (p, pl), so by continuity at p and left-continuity

at pl,

Gl(p) = Gl(pl) ≥ G̃i
l(pl) > G̃i

l(p).

We have shown that Gj(p) > G̃i
j(p) for every j ≤ i, whence

G−j(p) =
∏

l≤i, l 6=j

Gl(p) > Hj(p),

for every j ≤ i. Note that the set

{p′ ∈ [pi+1
1 , p] : Gl(p′′) > G̃i

l(p
′′) ∀p′ ≤ p′′ ≤ p, l ≤ i}

is open in [pi+1
1 , p], since each Gl is locally constant at every point inside

it, and each G̃i
l is increasing. It is also equal to the set

{p′ ∈ [pi+1
1 , p] : Gl(p′) = Gl(p)},

which is closed by continuity. But since this set is non-empty, open and

closed, it must be the entire interval [pi+1
1 , p]. Hence, Gl(pi+1

1 ) > G̃i
l(p

i+1
1 )

for every l ≤ i.

If i = n, this contradicts the definition of p0. We deduce that Gl(p) =

G̃i
l(p) for l ≤ i, pi+1

1 < p ≤ pi
1. If i < n, then

G−(i+1)(pi+1
1 ) = G−(i+1)(p) ≥ Hi+1(p) > Hi+1(pi+1

1 ),

which contradicts the definition of pi+1
1 . As before, we deduce that Gl(p) =

G̃i
l(p) for l ≤ i, p > pi+1

1 . This extends to pi+1
1 by continuity. We have

proved the second part of the inductive hypothesis.

As to the first part, we again use the fact that by the definition of pi+1
1 ,
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we must have

G−(i+1)(pi+1
1 ) =

i∏

j=1

Gj(pi+1
1 ) = Hi+1(pi+1

1 ),

which rearranges as

h(pi+1
1 ) =

(k − fi+1)i−1

∏i
j=1(k − fj)

.

The unique solution of this equation is pi+1
1 = pi+1

1 . This completes the

inductive argument. Since Gj(p) = 0 for p ≤ p0 and any j ≤ n, we

have proved that the cumulative density functions specifying the mixed

strategies employed by the Oj in any equilibrium coincide with those in the

equilibrium we have constructed. Hence the mixed-strategy equilibrium

of our game is unique.

Continuous differentiability of Epmax as a function of pM is trivial inside the

regions of (f1, pM)-high and -low market potential. For (f1, pM)-intermediate

market potential, it can be easily shown that p1
1, p0 and pi

1 are continuously

differentiable functions of pM. We can write

Epmax =
∫ ∞

0

(1−Gmax(p))dp

= p0 +
n∑

i=2

∫ pi
1

pi+1
1


1−

(
i∏

l=1

Hl(p)

) 1
i−1


 dp.

Each integral term is continuously differentiable with respect to pM, since the

limits are continuously differentiable with respect to pM, the integrands are

continuously differentiable with respect to pM and with respect to p, and the

derivative with respect to pM of each integrand can be bounded above by an

integrable function independently of pM, for values of pM in some sufficiently

small interval. Therefore Epmax is continuously differentiable for (f1, pM)-

intermediate market potential. Continuity and lack of differentiability is easy

to verify at the boundary points, completing the proof of the lemma.
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Proof of Lemma 3. As we have seen in the proof of Lemma 2, the function

Epmax satisfies the assumptions required for the existence of a continuous deriva-

tive which can be found by differentiating under the integral sign. Using the

symbols defined there, we obtain

∂Epmax

∂pM
=

∂

∂pM

∫ ∞

0

(1−Gmax(p)) dp

=
∂

∂pM


p1

1 −
n∑

j=2

∫ pj
1

pj+1
1

(h(p))
j

j−1

(
j∏

l=1

(k − fl)

) 1
j−1

dp




= −1
2

(
1− k − f2

k − f1

)

−
n∑

j=2

∫ pj
1

pj+1
1

j

j − 1

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

∂h(p)
∂pM

dp. (36)

The proof that this expression is always greater than −2 uses different ap-

proximations for the overlapping regions given by δ < 12
5 (k − f1) and δ >

20
9 (k − f1), where δ = α− 2(n− 1)k − 2f1.

Region of Lower Market Potential. For δ < 12
5 (k − f1), we show that

Q ≡
n∑

j=2

∫ pj
1

pj+1
1

j

j − 1

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

∂h(p)
∂pM

dp <
3
2
. (37)

To establish this equation note that, for j ≥ 2,

j

j − 1
≤ 2,

and

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

≤
(

h(pj
1)

j∏

l=1

(k − fl)

) 1
j−1

= k − fj ≤ k − f1.
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We calculate the partial derivative of h(p) with respect to pM directly

∂h(p)
∂pM

=
∂

∂pM

p− p0

p(kn− α + β(p + pM ))

=
−∂p0

pM
p(kn− α + β(p + pM ))− (p− p0)βp

p2(kn− α + β(p + pM ))2

=
β

(
1− p0

p1
1

)
(p1

1 − p)

p
(

p1
1

p0
β(p1

1 − p0)− β(p1
1 − p)

)2 .

Therefore

Q ≤ 2(k − f1)
n∑

j=2

∫ pj
1

pj+1
1

∂h(p)
∂pM

dp

= 2(k − f1)
∫ p1

1

p0

∂h(p)
∂pM

dp

= 2(k − f1)
∫ p1

1

p0

β
(
1− p0

p1
1

)
(p1

1 − p)

p
(

p1
1

p0
β(p1

1 − p0)− β(p1
1 − p)

)2 dp ≡ Q.

The substitution t = p−p0
p1
1−p0

yields

Q ≤ Q ≡
∫ 1

0

2γ(1− γ)(1− t)
(γ + t(1− γ))(1− γ(1− t))2

dt,

where γ = p0
p1
1
. This can easily be bounded above for appropriate values of γ as

follows.

In equilibrium

pM =
α− βEpmax

2β
. (38)

We use Epmax ≤ p1
1, so

pM ≥ α− βp1
1

2β
,

and

p1
1 ≤

δ + βp1
1

4β
,
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yielding

p1
1 ≤

δ

3β
.

Thus

γ =
p0

p1
1

=
βp1

1

k − f1
≤ δ

3(k − f1)
≤ 4

5
.

Since 0 < γ < 1, we can evaluate the integral

Q = 2γ
(γ − 1)(log γ − log(1− γ)) + (2γ − 1)

(2γ − 1)2
.

Clearly the integral expression exists everywhere on 0 < γ < 1. Although the

evaluated integral is undefined for γ = 1
2 , an application of L’Hôpital’s Rule

shows that it can be extended to this point giving a continuous function of γ

on (0, 1). We show that Q is an increasing function of γ by differentiating it

dQ

dγ
=

2(log γ − 4γ − log(1− γ) + 2)
(2γ − 1)3

.

For γ > 1
2 , this has the same sign as

f(γ) = log γ − 4γ − log(1− γ) + 2,

which has derivative

f ′(γ) = −4 +
1

γ(1− γ)
.

Since f ′(γ) > 0 for γ 6= 1
2 and f

(
1
2

)
= 0, we deduce f(γ) > 0 for γ > 1

2 . Hence

Q is increasing there.

For γ < 1
2 , dQ

dγ has the opposite sign to f(γ). As before, f(γ) is increasing,

so we must have f(γ) < 0 for γ < 1
2 . Then Q is increasing there.

Hence Q is increasing everywhere on 0 < γ < 1. Since Q( 4
5 ) < 3

2 , Q(γ) < 3
2

for any 0 < γ ≤ 4
5 . The lemma follows immediately for δ < 12

5 (k − f1).

37



Region of Higher Market Potential. For δ > 20
9 (k − f1), the following

approximation is straightforward to verify:

∂h(p)
∂pM

≤ ∂h(p)
∂p

+
h(p)

p
. (39)

The first term can be integrated exactly:

n∑

j=2

∫ pj
1

pj+1
1

j

j − 1

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

∂h(p)
∂p

dp

=
n∑

j=2

(
j∏

l=1

(k − fl)
1

j−1

)[
(h(p))

j
j−1

]pj
1

pj+1
1

=
n∑

j=2

(k − fj)j − (k − fj+1)j

∏j
l=1(k − fl)

=
k − f2

k − f1
.

The second term can be approximated as

n∑

j=2

∫ pj
1

pj+1
1

j

j − 1

(
h(p)

j∏

l=1

(k − fl)

) 1
j−1

h(p)
p

dp

≤ 2
p0

n∑

j=2

∫ pj
1

pj+1
1

(h(p))
j

j−1

(
j∏

l=1

(k − fl)

) 1
j−1

dp

=
2
p0

(p1
1 − Epmax)

≤ 2
(

k − f1

βp1
1

− 1
)

< 1.

This last inequality follows for δ(α) > 20
9 (k − f1) because we have

βp1
1 ≥ 2(k − f1)

(
1−

√
1− δ(α)

4(k − f1)

)
>

2
3
(k − f1). (40)

Indeed, substituting Epmax ≥ p0 into (38) yields

pM ≤ α− βp0

2β
,
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whence

p1
1 ≥

α + βp0 − 2k(n− 1)− 2f1

4β
.

Using p0(k − f1) = β(p1
1)

2, we obtain

(p1
1)

2 − 4(k − f1)
β

p1
1 +

δ(k − f1)
β2

≤ 0.

Since the coefficient of (p1
1)

2 is positive, this quadratic may be non-positive

only if p1
1 is at least as large as the smaller root of the quadratic, yielding

immediately (40).

Substituting our approximations into (36), we get

∂Epmax

∂pM
> −1

2

(
1− k − f2

k − f1

)
− k − f2

k − f1
− 1

= −3
2
− 1

2

(
k − f2

k − f1

)
≥ −2.

This establishes the lemma for δ > 20
9 (k − f1).

Notes
1 Several empirical studies of telecommunications cost structures reviewed in Sharkey

(1982) conclude for the most part that economies of both scale and scope are significant.
2 It is easy to show that this extension is well-defined and constitutes an equilibrium.

However, when fi = k the equilibrium may no longer be uniquely characterized as above.
The player Oi is indifferent between two prices if even the higher one guarantees full network
utilization. This leads to the emergence of equilibria where Oi can raise his price without
any loss of second-stage income, violating the law of one price. To exclude such unrealistic
equilibria, our construction explicitly restricts attention to equilibria which are the limit of
equilibria arising when every fj < k.

3A public good is a good which is non-excludable, non-rivalrous and often non-rejectable.
These assumptions mean respectively that it is not possible to exclude someone from using the
good, that one individual’s usage does not prevent another’s, and that an individual cannot
refrain from using it.
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