
 
 
 

 

 
 
 
 
 

 

Working Paper Series 
 
10/2008 
 
Uncapacitated single and multiple allocation  
p-hub center problems 
 
Ernst, A.T., Hamacher, H., Jiang, H., 
Krishnamoorthy, M. and Woeginger, G. 
 
Forthcoming in Computers & Operations Research 



 
 
 

 

 
 

 

  
These papers are produced by Judge Business School, University of Cambridge.  
They are circulated for discussion purposes only. Their contents should be 
considered preliminary and are not to be quoted without the authors’ permission. 
 
 
Corresponding author contact details are as follows: 
 
Houyuan Jiang 
Judge Business School 
University of Cambridge 
h.jiang@jbs.cam.ac.uk  

   

 
 
Please address enquiries about the series to: 
 
Research Support Manager 
Judge Business School  
Trumpington Street 
Cambridge CB2 1AG, UK 
Tel: 01223 760546 Fax: 01223 339701 
Email: research-support@jbs.cam.ac.uk 
 



Uncapacitated Single and Multiple Allocation p-Hub Center

Problems

Andreas T. Ernsta, Horst Hamacherb,

Houyuan Jiangc, Mohan Krishnamoorthya, Gerhard Woegingerd

a CSIRO Mathematical and Information Sciences, Private Bag 10, Clayton South MDC,
Clayton, VIC 3169, Australia

b Fachbereich Mathematik, Universitaet Kaiserslautern, Postfach 3049, D-67653 Kaiser-
slautern, Germany

c Judge Business School, University of Cambridge, Trumpington Street, Cambridge CB2
1AG, United Kingdom

d Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE En-
schede, The Netherlands

Abstract

The hub median problem is to locate hub facilities in a network and to allocate non-hub
nodes to hub nodes such that the total transportation cost is minimized. In the hub center
problem, the main objective is one of minimizing the maximum distance/cost between origin
destination pairs. In this paper, we study uncapacitated hub center problems with either
single or multiple allocation. Both problems are proved to be NP-hard. We even show
that the problem of finding an optimal single allocation with respect to a given set of hubs
is already NP-hard. We present integer programming formulations for both problems and
propose a branch-and-bound approach for solving the multiple allocation case. Numerical
results are reported which show that the new formulations are superior to previous ones.

Keywords: Facility planning and design, Hub center, NP-hard, heuristic.

1 Introduction

Hubs form critical elements in many airline, transportation, postal and telecommunications
networks. They are centralized facilities in these networks whose functions are to consolidate,
switch and sort flows. Flow concentration and consolidation on the arcs that connect hub
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nodes (“hub arcs”) allow us to exploit transportation flow economies. It is also possible to
eliminate many expensive direct connection arcs between origin destination pairs.

Typical applications of hub location include airline passenger travel [2], telecommunication
systems [7] and postal networks [11]. Reviews of the hub location literature including theory
and applications can be found in [1, 4]. Two major classes of objective functions are considered,
median and center objectives.

The hub median problem is to locate hub facilities in a network and to allocate non-hub nodes
to hub nodes such that the total transportation cost is minimized. It is applicable, for instance,
in airline and telecommunication systems. This model of hub network design can sometimes
lead to unsatisfactory results when worst-case origin-destination distances are excessively large.
In order to avoid this drawback, hub center problems may be a better suited model. Here the
main objective is to minimize the maximum distance or cost between origin-destination pairs.
This objective is particularly important for the delivery of perishable or time sensitive items.

While the hub median problem has been well studied in the literature - including several prob-
lem variants like the latest arrival hub location problem by Kara and Tansel [19] - the hub
center problem has attained much less attention. It was introduced in [24, 3]. Campbell [3]
formulates it as a quadratic program and reformulates it as a linear program. Several lin-
earizations of the quadratic program are proposed by Kara and Tansel [18], who also provide
an NP-completeness proof for the single allocation case and numerical comparisons for the
linearizations. A single-relocation algorithm with tabu search is developed for a hub center
problem considering flow volumes in Pamuk and Sepil [25] where extensive numerical exper-
iments are also carried out. Based on a previous version of our paper from 2002, Hamacher
and Meyer [16] proposed a solution approach for the hub center problem which consists of an
iterative solution of hub covering problems. A polyhedral analysis of the hub center polytope
can be found in [17].

In this paper we study the uncapacitated single allocation p-hub center problem (USApHCP)
and uncapacitated multiple allocation p-hub center problem (UMApHCP) defined on a complete,
symmetric network G = (N , E) with node set N = {1, 2, . . . , N} and arc set E . Each arc [i, j]
has infinite capacity and cost cij = cji satisfying the triangle inequality. We also assume that
cij ≥ 0 and often cii = 0 though this is not required. Both USApHCP and UMApHCP require
the selection of a complete subnetwork of p hubs where each hub has infinite node capacity for
flow collection, transfer and distribution. The cost of flow between hub nodes is discounted
by a factor α ∈ [0, 1], such that the cost on arcs [m, k] connecting two hub nodes is reduced
to αcmk. Note that in general there will be multiple equivalent optimal solutions since only
the length of the longest path matters for the objective and hence there are often multiple
choices for paths between other i and j pairs. However we will generally assume that in this
case the optimal solution is chosen to keep path lengths as short, eg by not including more
than two hubs even if a third or fourth hub could be included between some pairs of nodes in
the optimal solution.

In USApHCP, each non-hub node is allocated to a unique hub, whereas in UMApHCP, non-
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hub nodes can be allocated to more than one hub. Once the hub nodes have been selected,
transportation between origin-destination pairs [i, j] can only take place via allocated hub
nodes. Hence any transportation path has the form (i, k, l, j), where i is allocated to hub k

and j is allocated to hub l.

The goal in the hub center problem is to minimize the discounted cost of the largest origin-
destination path, i.e.

min max
i,j∈N

(cik + αckm + cmj),

where k and m are the hub nodes allocated to i and j, respectively. This represents the
situation where the performance of the network is to be optimised (eg the amount of time to
move goods between any pair of points in a mail network or supply chain). The discount on
hub arcs in this case represents the fact that faster links, for example faster planes or higher
throughput telecommunication links, can be employed between major hubs than would be
economical to use over the other edges.

Depending on the application the costs could measure travel time or monetary costs. We use
cost or path length interchangeably in this paper.

Some authors have commented in the context of p-hub median problems that the use of a com-
pletely interconnected hub network, where discounts apply only on inter-hub arcs, is somewhat
unrealistic. Alternative models are possible. See for example [5, 26]. The virtue of the p-hub
center model presented here is that it provides a simple model that allows alternative ap-
proaches and solution methods to be investigated.

In this paper, we present integer programming formulations for USApHCP and UMApHCP in
Sections 2 and 3 respectively. The former is based on the innovative concept of hub radius and
yields a two-index formulation with a linear objective function. For UMApHCP, which had
not been studied before in the literature, we give two alternative three-index formulations. In
Section 4, we prove that both problems are NP-hard and that the single allocation problem
with respect to a given set of hubs is already NP-hard. We describe a shortest path based
branch and bound method for solving UMApHCP in Section 5. Extensive numerical tests
with regard to all formulations and the new branch-and-bound algorithm are presented in
Section 6. They show that the proposed solution approaches are very efficient and outperform
existing approaches by an order of magnitude. The results of our paper are summarized in the
concluding Section 7.

2 The uncapacitated single allocation p-hub center problem

Define a binary variable Xik such that Xik = 1 if and only if node i is allocated to hub k, and
Xkk = 1 if and only if k is a hub node. Let z be the maximum transportation cost between all
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origin-destination pairs. USApHCP is defined as a quadratic integer program in Campbell [3]:

min max
i,j,k,m∈N

(cik + αckm + cmj)XikXjm

s.t.
N∑

k=1

Xik = 1, i = 1, . . . , N

Xik ≤ Xkk, i, k = 1, . . . , N

N∑
k=1

Xkk = p

Xik ∈ {0, 1}, i, k = 1, . . . , N.

Here, the objective is to minimize the maximum transportation cost between all origin–
destination pairs, the first constraint states that each node is allocated to exactly one hub, the
second says that node k must be a hub if a node i is allocated to it, the third indicates exactly
p hubs to be established, and the last constraint specifies Xik to be binary.

Let sijkm be a binary variable such that sijkm = 1 if and only if i is allocated to k and j to m.
A linearization of USApHCP based on sijkm is proposed in Campbell [3] and is not reproduced
here.

Kara and Tansel [18] consider a few linear programming versions of the quadratic formulation
for USApHCP. They also introduce the following two-index linear programming formulation.

min z

s.t. z ≥
N∑

k=1

(cik + αckm)Xik + cmjXjm, i, j,m = 1, . . . , N

N∑
k=1

Xik = 1, i = 1, . . . , N

Xik ≤ Xkk, i, k = 1, . . . , N

N∑
k=1

Xkk = p

Xik ∈ {0, 1}, i, k = 1, . . . , N.

This formulation has fewer variables than other known linear programming formulations. More-
over, it is reported in Kara and Tansel [18] that this formulation is more efficient in terms of
computational effort required to solve it, thus making possible the solution of relatively large
sized problems.
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We propose next a new two-index formulation for USApHCP based on a concept which we
call the radius of hub k. The latter is defined as a nonnegative variable rk representing the
maximum distance (cost) between hub k and the nodes that are allocated to it. Using this
concept, USApHCP can be formulated as the following mixed integer linear program:

min z (1)

s.t.
N∑

k=1

Xik = 1, i = 1, . . . , N (2)

Xik ≤ Xkk, i, k = 1, . . . , N (3)
N∑

k=1

Xkk = p (4)

rk ≥ cik Xik, i, k = 1, . . . , N (5)

z ≥ rk + rm + αckm k ≤ m = 1, . . . , N (6)

Xik ∈ {0, 1}, i, k = 1, . . . , N (7)

Here, z is a free variable to represent the objective. The objective of USApHCP is to minimize
the maximum of the total unit costs between any pair of nodes i and j. Constraints (2), (3),
(4) are standard. Constraint (5) states that the radius of a hub is greater than or equal to the
cost of going to any node which is allocated to this hub, and that the radius of a non-hub node
can be as small as zero (see below). Constraint (6) ensures that the objective is no less than
the travel cost between any pair of nodes allocated to hubs k and m, since rk and rm give the
distance to the furthest node allocated to k and m respectively.

Note that rk is not necessarily zero in an optimal solution if k is not a hub node. However, for
any optimal solution (X∗

ik, r
∗
k, z

∗), we can construct a new optimal solution (X+
ik, r

+
k , z+) such

that X+
ik = X∗

ik for any i and k, z+ = z∗, r+
k = r∗k for any hub node k, and r+

k = 0 for any
non-hub node k. Furthermore, the constraint (6) is still valid even if either or both nodes k

and m are non-hub nodes because of the triangular inequality assumption and the fact that
α ≤ 1.

Our new model has N2 +N +1 variables of which N2 are binary, and 3N2 +N +1 constraints.
It has N more continuous variables than the one proposed in Kara and Tansel [18], but our
model has fewer constraints. This reduction in the number of constraints is computationally
significant for solving large-scale problems (when N is large). This observation is confirmed
by the computational results to be presented in Section 6.

Constraint (6) can be strengthened by the following constraint, for k, l = 1, 2, . . . , N

z ≥ rk + rl + αckl + (1− α)(1−Xkk) min
i:i6=k

cik + (1− α)(1−Xll) min
i:i6=l

cil (8)

It is obvious that constraint (8) is stronger than (6). On the other hand, we need to check
that (8) does not eliminate any optimal solution of our two-index formulation. When both
k and l are hub nodes, (8) and (6) are identical. When both k and l are non-hub nodes,
rk = rl = 0, Xkk = Xll = 0, and the left-hand side of (8) is bounded above by

α(cka(k) + ca(k)a(l) + ca(l)l) + (1− α)ca(k)k + (1− α)ca(l)l = cka(k) + αca(k)a(l) + ca(l)l,
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which is clearly bounded by the optimal value z∗ in the two-index formulation. Here a(k) and
a(l) are assumed to be the hubs for k and l respectively. When exactly one of k and l is a hub
node, we can similarly show that (8) does not eliminate any optimal solution of our two-index
formulation.

If the hub set is given in USApHCP, then we only need to allocate all nodes to hubs. This
subproblem is called the hub center single allocation problem (HCSAP). Although seemingly
much simpler than USApHCP, HCSAP is proved to be NP-hard in Section 4.

3 The uncapacitated multiple allocation p-hub center problem

Since in UMApHCP a node can be allocated to several different hubs, the binary variable Xik

needed in USApHCP is no longer required. Subsequently, we give a four-index formulation
for UMApHCP. Let yijkm be a binary variable such that yijkm = 1 if and only if for the flow
between i and j, i is allocated to k and j to m. Let Zk be a binary variable defined by Zk = 1
if and only if node k is selected to be a hub. Then UMApHCP is to find an optimal solution
of the following optimization problem:

min z (9)

s.t.
N∑

k=1

Zk = p (10)

N∑
k=1

N∑
m=1

yijkm = 1, i, j = 1, . . . , N, (11)

N∑
k=1

yijkm ≤ Zm, i, j,m = 1, . . . , N (12)

N∑
m=1

yijkm ≤ Zk, i, j, k = 1, . . . , N (13)

z ≥
N∑

k=1

N∑
m=1

yijkm(cik + αckm + cmj), i, j = 1, . . . , N (14)

Zk, yijkm ∈ {0, 1}, i, j, k, m = 1, . . . , N. (15)

Constraint (10) indicates that exactly p hubs are chosen. Constraint (11) together with (15)
shows that there is a unique path between each origin-destination pair. Constraints (12)
and (13) imply that a node must be selected to be a hub if another node is allocated to
it. Constraint (14) defines the lower bound for the objective function z, which represents
the maximum transportation cost between all origin-destination pairs. We remark that some
tighter constraints than (12) and (13) have been proposed in [6, 15, 21].

In the above formulation, the (0, 1) property of the variables yijkm enforces a unique path
between each pair of origin-destination nodes, although nodes can be allocated to several hubs
for collection, transfer and distribution of flows. If we drop the integrality constraint on the

6



y-variables, multiple paths may be allowed for each origin-destination pair. The next result
states, however, that even in this situation an integral solution can easily be obtained from
the optimal solution of the mixed integer program version of (9 - 15).

Proposition 3.1 For any optimal solution of UMApHCP formulation (9 - 15), where the
integrality of the variables yijkm is relaxed to yijkm ≥ 0 , there exists an optimal solution such
that y is integral.

Proof. Any optimal solution y defines a flow of minimal cost and of value 1 between nodes i

and j. Either it uses for all i, j only single shortest ij-paths, thus making y a binary vector,
or it uses for some pairs (i, j) different paths (i, k, m, j) and (i, k′,m′, j) with 0 < yijkm < 1
and 0 < yijk′m′ < 1. Optimality implies that in this case both paths must be shortest paths.
Hence the flow can be accumulated along a single shortest path, since the capacities on all arcs
are unbounded. The latter single path flow is clearly another optimal flow. In this way we get
an alternative optimal solution for (9 - 15) with integer-valued y.

The equivalence of the pure and mixed integer formulation of (9 - 15) has the advantage of a
more flexible modelling. It is worth mentioning that this equivalence should not be confused
with the fact that USApHCP and UMApHCP are different problems.

Traditional four-index formulations for hub median problems similar to (9 - 15) have a poor
computational performance. This is also true from our computational experiments. Some much
improved four-index formulations for hub median problems with multiple allocation have been
proposed in [6, 10, 20]. We next propose a more compact formulation for UMApHCP.

With respect to any origin-destination pair (i, j) let U ik
·j and V i·

lj be two binary variables defined
by U ik

·j = 1 if and only if i is allocated to hub k, and V i·
lj = 1 if and only if j is allocated to

hub l. Moreover, let Cmax = maxi,j∈N cij . Then a three-index formulation for UMApHCP is
given by

min z (16)

s.t.
N∑

k=1

Zk = p (17)

U ik
.j ≤ Zk, i, j, k = 1, . . . , N, (18)

V i.
lj ≤ Zl, i, j, l = 1, . . . , N, (19)

N∑
k=1

U ik
·j = 1, i, j = 1, . . . , N, (20)

N∑
l=1

V i·
lj = 1, i, j = 1, . . . , N, (21)

z ≥
N∑

k=1

(cik + αckl)U ik
·j +

N∑
n=1

cnjV
i·
nj − α(1− V i·

lj )Cmax, i ≥ j, l = 1, . . . , N, (22)

Zk, U
ik
·j , V i·

lj ,∈ {0, 1}, i, j, k, l = 1, . . . , N. (23)
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Constraints (17), (18), (19) and (23) are self-explanatory. Constraints (20) and (21) specify
that for any origin-destination pair (i, j), i is allocated to exactly one hub k and j to exactly
one hub l.

Finally it is easy to verify that Constraints (22) and (16) define the objective function value of
UMApHCP. If l = n, the right-hand side of (22) is equal to cik + αckl + clj which shows that z

is at least as large as the maximum of the transportation costs between all origin-destination
pairs. If l 6= n, then V i·

lj = 0 and the right-hand side of (22) is equal to cik +αckl + cnj−αCmax

and thus cik +αckl + cnj −αCmax ≤ cik + cnj ≤ cik +αckn + cnj . This shows that the minimum
value of z satisfying (22) does not exceed the maximum of the transportation costs between
all origin-destination pairs.

Constraints (18) and (19) can be replaced by

N∑
i=1

N∑
j=1

U ik
.j ≤ N2Zk, k = 1, . . . , N,

and
N∑

i=1

N∑
j=1

V i.
lj ≤ N2Zl, l = 1, . . . , N,

respectively. This results in a smaller number of constraints, but - as our experiments showed
- not in smaller solution times.

In a situation where a hub set is already given in UMApHCP, we only need to allocate all
nodes to hubs for all origin-destination pairs. This subproblem is called the hub center multiple
allocation problem (HCMAP). Unlike the analogous problem HCSAP in the single allocation
case, HCMAP can be solved in polynomial time by solving N2 shortest path problems in the
hub network, one for each origin-destination pair.

4 Computational complexity

4.1 Complexity of p-Hub center problems

In the last two sections, we have formulated USApHCP and UMApHCP as (mixed) integer
programs. In this section we show that both, USApHCP and UMApHCP are NP-hard. The
first result is known from Kara and Tansel [18] who use a transformation from the dominating
set problem. We present in the following a very simple proof which also shows the relation
between hub center and general (non-hub) other problems and which can be generalized to a
second version of hub problems.

Proposition 4.1 USApHCP and UMApHCP are NP-hard, even if α = 0.

Proof: The optimal objective value of USApHCP for α = 0 is twice the distance of the
furthest node from any hub (representing the path from that node to itself via a hub). Hence
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USApHCP is equivalent to the vertex p-center network problem which is known to be NP-hard
[9].

In order to prove the NP-hardness of UMApHCP we show that for α = 0 UMApHCP and
USApHCP are equivalent in the sense that any optimal solution for USApHCP implies an
optimal solution for UMApHCP and vice versa. Clearly any feasible solution for USApHCP
is also feasible for UMApHCP and has the same cost. Now suppose H is a feasible set of hubs
for UMApHCP. Because α = 0, the transportation cost from node i to j is given by cik + clj

for some hubs k, l ∈ H. For the optimal solution k and l must be the closest hubs to i and j

respectively as otherwise a cheaper allocation would exist. Since this holds for any i and j there
exists an optimal solution in which all non-hub nodes are allocated to the closest hub only.
Hence (at least one of) the optimal solution(s) of UMApHCP is feasible for USApHCP. And
this optimal solution is also optimal for the corresponding USApHCP problem as UMApHCP
is a relaxation of USApHCP.

In some applications, like passenger transportation hubs, it may be of interest to consider
alternative hub center models where the travel time (cost) of going from a node to itself is
always zero, rather than requiring a round trip via a hub. We denote the corresponding
single and multiple allocation variants by USApHCP’ and UMApHCP’, respectively. For
the problem considered in this paper, the path length between nodes i and j is defined by
dij = cia(i) + αca(i)a(j) + ca(j)j , where a(i) and a(j) are hub nodes for i and j respectively.
However, for this new variant, the path length dii = 0 although the formula for calculating dij

remains unchanged when i 6= j. While we do not treat this problem variant subsequently, we
can use the previous result to establish that also these problem variants are NP-hard.

Proposition 4.2 The modified hub center variants, USApHCP’ and UMApHCP’, are NP-
hard, even if α = 0.

Proof: We show that any polynomial time algorithm for USApHCP’ can be used to solve the
corresponding USApHCP in polynomial time. Consider HCP on a graph G = (N , E) with costs
cij . We construct a new problem graph G′ = (N ′, E ′) by duplicating each node and adding
identical length arcs so that for i 6= j

cij = ci′j′ = ci′j = cij′ ,

where i′ and j′ are the duplicates of nodes i and j in the original graph respectively. Fur-
thermore we set cii′ = 0 for all nodes i and their duplicates i′ in G′. There exists at least one
optimal solution to USApHCP’ in G′ where the i and i′ have the same allocation as they have
identical distances to all other nodes. Also the optimal solution will only ever have one of k

and k′ selected as hub (as ckk′ = 0 and p ≤ |N ′|/2). Hence the optimal solution of USApHCP’
corresponds to a feasible solution of USApHCP in graph G. However, the set of paths between
all pairs of non-identical nodes on G′ includes the path between i and i′ corresponding to a
non-zero length path from a non-hub node to itself. Hence the cost of the optimal solution of
USApHCP’ in G′ is identical to the corresponding solution of USApHCP in G. Furthermore
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any feasible solution for the original problem can be mapped to a corresponding feasible solu-
tion of USApHCP’ in G′. This shows that an optimal solution of USApHCP’ yields an optimal
solution of the original problem.

Obviously we can replace in all previous arguments ”single” by ”multiple” allocation such that
the NP-hardness of UMApHCP’ follows in the same way.

4.2 Complexity of the single allocation problem

As a special case we now consider hub center problems for which the location of the hubs is
fixed, that is only the allocation of non-hub nodes to hubs has to be decided. These allocation
problems with respect to given hub sets are denoted HCMAP and HCSAP for the multiple
and single allocation case, respectively.

HCMAP can easily be solved in polynomial time by finding for each pair i, j of origin-
destination nodes a shortest path in the hub network. In contrast, HCSAP turns out to
be NP-hard. In order to prove the NP-hardness of HCSAP, we first define the concepts of
independent sets, independent transversals and the 3-colouring problem.

Definition 4.1 Given a graph G = (V,E), a set I ⊆ V is called an independent set (or stable
set), if and only if there are no arcs (i, j) ∈ E such that i ∈ V and j ∈ V .

Definition 4.2 Given a graph G1 = (V1, E1) and subsets W1, . . . ,Wk of V1 (these sets are not
necessarily pairwise disjoint), the independent transversal problem can be defined as finding
an independent set I ⊆ V1 that intersects every set Wi for i = 1, . . . , k.

Definition 4.3 Given a graph G2 = (V2, E2), the 3-colouring problem is to partition V2 into
three independent sets (one for each colour).

The 3-colouring problem is known to be NP-hard (see, for instance, [8]). We now prove that
HCSAP is NP-hard, see the appendix for a proof.

Proposition 4.3 HCSAP is NP-hard.

Corollary 4.1 HCSAP does not possess a polynomial time approximation algorithm with
worst case guarantee strictly better than 4

3 .

Proof. Referring to the previous proof, such an approximation algorithm could distinguish
between max cost at most 3 and max cost at least 4.
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5 A branch and bound approach for UMApHCP

There is some similarity between the uncapacitated multiple allocation p-median problem
(UMApHMP) and UMApHCP. Both are NP-hard problems, and their allocation problems
can be solved in polynomial time by solving a series of the shortest path problems (see the
last paragraph of Section 3). Ernst and Krishnamoorthy [13] propose an efficient branch and
bound algorithm for solving UMApHMP by implicitly exploring all possible hub combinations
in the node set N . When the number of hubs is small, the method only needs to solve a small
number of allocation problems. In this section, we give an outline of a similar branch and
bound algorithm for solving UMApHCP. More details can be found in [13].

5.1 Regions and scenarios

A subset of the node set N is called a region or cluster. Let {C1, . . . , Cr} be a partition of N
such that Ci is a region for all i. Let hi be the number of hubs contained in region Ci. Note
that hi can be zero. hi is called the hub-content of region Ci. Then

∑r
i=1 hi = p must hold for

partition {C1, . . . , Cr}.

Define S = {(Ci, hi), i = 1, . . . , r} to be a scenario for a given partition {C1, . . . , Cr} and the
corresponding hub-contents {h1, . . . , hr}. Scenarios provide a way of indicating the approxi-
mate position of hubs. For a given scenario the position of hubs is limited to the regions with
positive hub content without specifying exactly which nodes are to be hubs, though of course
if for all regions either hi = |Ci| or hi = 0 then we have exactly specified the hub locations in
that scenario.

For any scenario S a lower bound can be calculated on the UMApHCP cost of any solution
that matches the scenario (ie has as many hubs in each region as the hub-content specifies).
The lower bound is given by

max
i∈N,j∈N

min
k∈Cs:hs≥1

l∈Ct:ht≥2or t6=s

dik + α dkl + dlj (24)

That is for each node pair i, j we calculate the shortest path between i and j assuming that
any node in a region with positive hub content can be a hub (except that a path can use only
one hub in regions with ht = 1). The longest such path determines the objective bound. Note
that by using an all pairs shortest path approach this lower bound can be calculated in O(np2

S)
operations, where pS is the total number of nodes in regions with positive hub content.

Based on the shortest path solution there are now three possibilities for scenario S:

(a) a feasible solution to UMApHCP is found (pS = p);

(b) no better solution can be found from this scenario than the best known feasible solution
to UMApHCP (ie the lower bound exceeds the upper bound); or

(c) scenario S needs to be further explored.
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Below we describe how to branch in order to further narrow down the possible locations of the
hubs.

5.2 Branching strategy

When branching we select the region with the most number of nodes per hub (ie selecting region
i = arg maxk |Ck|/hk). For the region Ci two child regions are created as follows: choose two
nodes s and t such that the cost between s and t is the diameter of the parent region Ci. Then
two regions Cs

i and Ct
i are formed by assigning each node in the parent region to the closer

node among s and t.

New scenarios are now created for all possible ways of allocating the hi hubs to the two regions
Cs

i and Ct
i . This creates hi + 1 child scenarios each with Ci replaced by Cs

i and Ct
i and hub

contents hs
i = 0, . . . , hi, ht

i = hi − hs
i .

Unlike traditional branch and bound methods, the described method does not start with a
single root node, but with a set of root nodes. According to the numerical experiences reported
in [13], this strategy has significantly improved computational efficiency for UMApHMP. Of
course we could simply start with a scenario S = {(N, p)} (that is a single region with all
of the hub nodes) but clearly this would give a very weak bound. Hence it is better to start
at some lower point in this conceptual branch and bound tree, so that we have a branch and
bound forest. The root nodes of this forest cover all possible options for location of the hubs.

The root nodes of the branch and bound forest are created as follows. Define the diameter
of a region as the maximum distance between any two nodes in the region. Suppose that the
number of regions to be generated at the root level is r. The original r regions are generated
as follows.

(i) Let each node be a region by itself.

(ii) Combine any two regions such that the diameter of the new combined region is no larger
than that obtained by joining any other two current regions.

(iii) If the number of regions is r, terminate. Otherwise, go to (ii).

In our implementation we use r = N/4. Another possible value for r is p as suggested in [13].
For the generated r regions, we can construct various scenarios by appropriately assigning
hub-contents hi to each region.

Each node of the branch and bound forest is fully specified by a scenario S. We solve the
subproblem associated with scenario S. If a feasible solution to UMApHCP is found, or if
no better solution can be found from this scenario than the best known feasible solution to
UMApHCP, backtrack of the search tree for S is undertaken. Otherwise, perform further
branching in a depth first manner. This process continues until no further backtrack or no
further branching is possible and all nodes in the forest are explored.
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5.3 Obtaining an upper bound

In order to reduce the size of the branch and bound forest, it is desirable to find a good feasible
solution to UMApHCP before starting to explore the forest.

A simple heuristic method for a feasible solution to UMApHMP is implemented in [12]. This
method is slightly modified below to find a feasible solution to UMApHCP.

The heuristic method proceeds as follows.

(i) Randomly select a hub set H containing p nodes.

(ii) For any given hub, optimal solutions to HCMAP can be found using an all pairs shortest
path algorithm. If a better solution to UMApHCP is found, record it as the current best
solution. Otherwise, go to (iii).

(iii) Generate a different H′ by replacing one member in H by a node from N \H. If no such
H′ can be generated, terminate. Otherwise, go to (ii).

This heuristic can be repeated several times by selecting a different random hub set H in (i).
In the tests reported in Section 6, the number of repetitions used in the above heuristic was
equal to the greatest integer not more than (N × p)/20.

5.4 Alternative approaches for obtaining upper bounds

There are many ways to find approximate solutions to UMApHCP, which can be used to obtain
an upper bound for the branch and bound method discussed in this section. It is interesting
to investigate their performance guarantee. We start from a random heuristic. As a matter of
fact, we can prove the same result for both USApHCP and UMApHCP.

Proposition 5.1 (i) Let y and yopt be the objective function values of a feasible solution and
an optimal solution of USApHCP respectively. Then y ≤ (1 + 2

α)yopt. Furthermore, this
bound is tight.

(ii) Let z and zopt be the objective function values of a feasible solution and an optimal solution
of UMApHCP respectively. Then z ≤ (1 + 2

α)zopt. Furthermore, this bound is tight.

Proof. (i) Let i → k → m → j be a transportation path for the origin-destination pair
(i, j) in a feasible solution for USApHCP. Then by analysing different scenarios on how a
transportation path could be formed in the network, it can be shown that the transportation
cost on this path must be equal to one of the following:

2cik, cik + αckm + cmj , cik + αckm, αckm + cmj , αckm, cmj , cik + ckj , cik.

For any nodes or hubs i and j, let i → k∗ → m∗ → j be the transportation path between i

and j in an optimal solution for USApHCP. It is obvious that the transportation cost on this
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path is not greater than yopt. Then it follows from the triangle inequality property that

cij ≤ cik∗ + ck∗m∗ + cm∗j ≤
1
α

yopt.

It is easy to see that (1 + 2
α)yopt is an upper bound for any of the following numbers

2cik, cik + αckm + cmj , cik + αckm, αckm + cmj , αckm, cmj , cik + ckj , cik.

Therefore, the desired inequality holds.

The network example displayed in Figure 1 shows that the above bound is tight. The network
comprises eight nodes and 4 hubs are to be located. The network is fully connected although
some connections are omitted in the graph. The lengths of some edges are shown in the graph
where A and B are constants, ε and δ are positive parameters, and ε, δ are sufficiently small.
A feasible solution is shown in Figure 1(a). Assume that four hubs are allocated to the nodes
1, 2, 3, 4. Further assume that 5 is allocated to 3, 6 to 4, 7 to 2 and 8 to 1. Then the objective
function value of this 4-hub center problem is the total cost between 7 and 8 which is equal to

y := 2(A + ε) +
√

B2 + δ2 + α(2A + B) + 2(A + ε) +
√

B2 + δ2.

On the other hand, in an optimal solution as shown in Figure 1(b), the four hubs are located
at the nodes 3, 4, 5, 6, and 1 is allocated to 3, 2 to 4, 7 to 5, and 8 to 6. The optimal objective
function value is

yopt := A + ε + α
√

B2 + δ2 + A + ε.

It is easy to see that when ε → 0, A → 0 and δ → 0, then
y

yopt
→ 1 +

2
α

.

Therefore the upper bound is tight.

(ii) The bound can be established in a similar way to (i) though the feature of multiple
allocations must be taken into account. We omit details. Let us consider USApHCP for the
same network. It was proved for (i) that for any positive ε, we can find a counterexample of
USApHCP such that

y ≥ (1 +
2
α

)yopt − ε

where y and yopt are the objectives of a feasible solution and an optimal solution to this
counterexample. Let zopt be the optimal objective of the same counterexample in the version
of UMApHCP. It is trivial to observe that the optimal value for UMApHCP provides a lower
bound for the optimal value for USApHCP, i.e., yopt ≥ zopt. This shows that

y ≥ (1 +
2
α

)zopt − ε

Note that y is also a feasible solution for the same counterexample in the version of UMApHCP.
This implies that the above bound is also tight for UMApHCP.

The worst bounds presented in Proposition 5.1 can be improved if some smarter searches are
introduced. The following is such an example.

Heuristic 1
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Figure 1: A feasible (a) and optimal (b) hub locations for a network example
that demonstrate the USApHCP bound in Proposition 5.1 is tight.

Step 1. Solve UMApHCP optimally with p = 1.

Step 2. Assume there is a feasible solution for UMApHCP with q hubs (q < p).

– Select the longest path in the existing solution. Choose a non-hub node, say
k, in this path and insert it into the existing solution.

– Solve HCMAP optimally using the given q + 1 hubs.

Step 3. Go to Step 2 if q < p. Otherwise, terminate.

Below we state a performance guarantee result for Heuristic 1 without a proof because the
proof is relatively easy and similar to that for Proposition 5.1.

Proposition 5.2 Suppose z and zopt are the objective function values of the solution obtained
from Heuristic 1 and the optimal objective of UMApHCP respectively. Then z ≤ 2

αzopt.

We remark that a method similar to Heuristic 1 for USApHCP can be proposed and a similar
result to Proposition 5.2 can be obtained. The detail is omitted.

6 Numerical experiments

We tested our algorithms for both USApHCP and UMApHCP with the CAB data set [14, 23]
and with the AP data set [12]. The CAB data set is generated from the Civil Aeronautics
Board Survey of 1970 passenger data in the United States. The AP data set is derived from
the real-world application of a postal delivery network.

In test problem a.b.c of CAB, there are a nodes and b hubs, and c represents the economic
discount factor for the cost of transfer of flow between hub nodes ranging from 0.2 to 1.0. In
test problem a.b of AP, there are a nodes and b hubs. The economic discount factor for the
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cost of flow transfer between hub nodes was always 0.75 for all problems in the AP data set
(and we ignore the non-unit collection and distribution cost factors traditionally used for the
AP data).

All of the numerical experiments were carried out on a DEC Alpha machine and algorithms
were coded in C/C++. All integer programs were solved using Ilog CPLEX Version 9.11 using
the default parameter settings except that the optimality gap tolerance was set to 2× 10−6%.

We tested the formulation of Kara and Tansel and the new radius formulation for USApHCP
presented in (1)–(7). Numerical results for USApHCP are shown in Tables 1 and 2. For each
test problem, we report:

Prob for the problem name;

Obj for the optimal objective;

Gap the gap between the relaxed LP solution and the optimal solution (except for the heuris-
tic gap which is the percentage difference between the heuristic upper bound and the
optimum);

Nodes the number of branch and bound nodes; and

CPU the CPU time in seconds required for solving the formulation with CPLEX.

Prob Optimal Heur. Radius Formulation KT Formulation
Obj. Gap Gap Nodes CPU Gap Nodes CPU

10.2.2 1425.58 31.47% 75.24% 24 0.34 29.96% 7 0.56
10.2.4 1627.52 35.74% 56.63% 28 0.12 29.92% 17 0.75
10.2.6 1759.13 41.20% 39.81% 22 0.09 21.97% 13 0.62
10.2.8 1759.13 43.51% 19.74% 0 0.06 9.68% 3 0.33
10.2.1 1839.65 54.66% 4.07% 5 0.06 2.87% 0 0.12
10.3.2 1119.54 62.11% 68.47% 0 0.29 36.13% 14 0.56
10.3.4 1185.07 47.59% 40.43% 1 0.07 24.27% 27 0.58
10.3.6 1387.00 50.20% 23.66% 6 0.08 16.19% 24 0.54
10.3.8 1588.94 50.23% 11.15% 9 0.04 8.02% 17 0.46
10.3.1 1790.55 44.09% 1.44% 9 0.04 1.43% 7 0.39
10.4.2 830.25 67.47% 57.49% 20 0.09 32.75% 13 0.51
10.4.4 968.20 49.75% 27.09% 0 0.04 20.15% 3 0.44
10.4.6 1146.19 60.22% 7.62% 10 0.03 7.52% 0 0.33
10.4.8 1454.44 52.27% 2.93% 16 0.04 2.93% 2 0.24
10.4.1 1764.79 40.40% 0.00% 0 0.01 0.00% 0 0.08
15.2.2 2005.02 49.70% 74.06% 25 0.77 28.23% 41 4.92
15.2.4 2160.75 38.91% 51.87% 20 0.35 26.71% 57 5.54
15.2.6 2214.09 35.57% 29.54% 18 0.32 13.89% 70 5.19
15.2.8 2423.80 23.84% 14.18% 23 0.29 6.80% 11 3.60

1Brief testing of the formulation on a Linux machine with a 3GHz Intel Xeon processor and CPLEX 11.0

indicated that very little improvements in run time could be achieved with the newer version of the solver

though it seemed to generate fewer branch and bound nodes and more cuts.
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Prob Optimal Heur. Radius Formulation KT Formulation
15.2.1 2609.18 16.18% 0.35% 17 0.21 0.05% 0 0.71
15.3.2 1749.04 28.62% 70.27% 16 0.40 37.89% 134 8.19
15.3.4 1760.15 27.81% 40.91% 33 0.35 25.49% 54 4.46
15.3.6 1844.92 21.93% 15.44% 20 0.22 10.32% 8 5.07
15.3.8 2166.54 8.43% 3.99% 11 0.21 3.17% 2 2.23
15.3.1 2600.08 2.13% 0.00% 1 0.11 0.00% 0 0.71
15.4.2 1340.96 56.03% 61.22% 76 0.43 35.54% 64 4.28
15.4.4 1434.38 45.86% 27.49% 38 0.25 19.64% 166 5.88
15.4.6 1754.51 19.25% 11.08% 36 0.16 10.50% 25 3.53
15.4.8 2080.06 9.16% 0.00% 17 0.17 0.00% 0 0.80
15.4.1 2166.54 8.43% 3.99% 11 0.21 3.17% 2 2.23
20.2.2 1892.99 26.35% 72.53% 38 0.94 24.00% 77 30.23
20.2.4 2160.75 20.47% 51.87% 42 1.29 26.76% 162 47.62
20.2.6 2274.67 29.04% 31.42% 44 0.81 15.80% 131 26.48
20.2.8 2501.93 34.31% 16.86% 18 0.65 9.27% 121 38.93
20.2.1 2609.18 45.08% 0.35% 16 0.48 0.05% 0 5.84
20.3.2 1551.25 38.60% 66.48% 113 1.11 31.45% 209 30.64
20.3.4 1760.15 27.84% 40.91% 153 1.10 25.50% 195 39.21
20.3.6 1997.79 35.38% 21.91% 66 0.85 15.34% 186 32.11
20.3.8 2263.54 29.48% 8.11% 73 0.74 6.04% 23 16.81
20.3.1 2600.08 30.12% 0.00% 6 0.32 0.00% 0 5.88
20.4.2 1355.41 49.79% 61.63% 124 0.99 36.53% 379 39.58
20.4.4 1472.71 44.58% 29.38% 165 1.09 19.88% 143 32.47
20.4.6 1834.83 30.23% 14.98% 89 0.75 12.33% 60 23.94
20.4.8 2153.00 27.75% 3.39% 162 0.79 3.27% 43 15.68
20.4.1 2600.08 16.12% 0.00% 4 0.24 0.00% 15 35.69
25.2.2 2131.20 24.23% 74.42% 23 2.64 28.78% 176 151.43
25.2.4 2402.55 30.80% 54.62% 45 1.88 26.66% 549 236.51
25.2.6 2558.74 61.09% 36.08% 141 2.35 17.58% 146 137.67
25.2.8 2714.93 71.05% 19.68% 70 1.68 9.74% 131 85.97
25.2.1 2827.16 68.09% 3.59% 42 1.52 2.60% 10 62.56
25.3.2 1923.12 11.49% 71.65% 94 2.08 36.59% 706 219.86
25.3.4 2100.47 22.83% 48.09% 94 2.77 28.25% 2050 705.10
25.3.6 2340.25 55.05% 30.12% 377 3.23 18.84% 248 292.12
25.3.8 2554.13 79.22% 14.62% 239 2.29 8.93% 260 116.30
25.3.1 2758.39 71.08% 1.18% 56 1.58 0.95% 13 216.50
25.4.2 1619.48 9.48% 66.34% 36 1.49 38.39% 2929 446.36
25.4.4 1884.84 26.60% 42.16% 204 2.59 27.80% 516 296.83
25.4.6 2182.49 31.73% 25.07% 214 3.03 17.72% 332 235.23
25.4.8 2454.35 49.32% 11.15% 195 2.54 7.96% 335 172.09
25.4.1 2726.28 51.22% 0.02% 24 1.32 0.02% 231 266.98
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Prob Optimal Heur. Radius Formulation KT Formulation
Table 1: Numerical results of USApHCP for CAB problems.

The heuristic gaps are generally very large, however they take almost no time to compute (no
more than 0.01 seconds for all of the CAB problems), so we have passed them as initial upper
bounds to CPLEX. Generally these do not have a significant impact on the solution times of
the MILPs. From the results in Table 1 one can see that the new formulation is not necessarily
tighter than that of Kara and Tansel. In fact for most of the problems it starts with a larger
gap. However the LP relaxations are much faster to solve and on average it requires less nodes
than the Kara and Tansel formulation leading to improvements of an order of magnitude for
the small problems and up to two orders of magnitude for the larger problems.

The performance of both formulations for the AP problems (see Table 2) was similar to that for
the CAB problems. Clearly, the new formulation is superior to Kara and Tansel’s formulation.
Kara and Tansel’s formulation failed to solve all large problems with n ≥ 40 within 1000
seconds CPU time - in fact for many of these larger problems CPLEX could not even solve
the root node within 1000 seconds. Evidently it becomes much more difficult to find optimal
solutions using Kara and Tansel’s formulation when the size of test problems becomes large
because the number of constraints in Kara and Tansel’s formulation grows rapidly. Optimal
solutions were found by the new formulation within the CPU time limit (1000 seconds) for all
AP problems except some of the large 100 node AP problems. In order to test the formulations
more rigorously on these large problems we tried solving the 100 node instances without CPU
time limit but found that the KT Formulation ran out of memory before solving them, while
our formulation took a very large amount of CPU time particularly for 100.3 as reported in
Table 2.

Prob. Optimal Radius Formulation KT Formulation
Obj. Gap Nodes CPU Gap Nodes CPU

10.2 40382.7 28.96% 0 0.07 14.31% 2 0.50
10.3 34772.4 17.50% 1 0.04 9.97% 2 0.51
10.4 32574.2 11.94% 0 0.04 9.35% 14 0.61
10.5 32531.2 11.82% 40 0.06 11.82% 18 0.65
20.2 45954.2 17.60% 16 0.44 8.07% 41 21.91
20.3 43400.4 12.75% 58 0.68 10.52% 21 24.98
20.4 38607.3 1.91% 55 0.71 1.91% 96 40.46
20.5 37868.1 0.00% 7 0.39 0.00% 170 34.13
20.10 37868.1 0.00% 0 0.08 0.00% 0 4.98
25.2 53207.5 14.39% 2 0.96 6.97% 49 96.62
25.3 46608.3 2.27% 93 1.58 2.27% 2 38.37
25.4 45552.5 0.00% 180 1.96 0.00% 0 44.35
25.5 45552.5 0.00% 0 0.24 0.00% 70 108.65
25.10 37868.1 0.00% 7 0.39 0.00% 170 34.13
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Prob. Optimal Radius Formulation KT Formulation
40.2 61682.5 18.36% 16 8.93 11.14% * >1000.00
40.3 58192.8 14.52% 118 14.05 18.46% 32 1663.36
40.4 52265.3 4.83% 61 9.20 22.92% * >1000.00
40.5 49741.2 0.00% 26 10.35 * * >1000.00
40.10 49741.2 0.00% 0 0.44 0.00% 20 1822.11
50.2 65523.4 22.61% 97 52.71 * * >1000.00
50.3 60132.1 15.67% 775 98.91 * * >1000.00
50.4 52905.8 4.15% 210 48.48 * * >1000.00
50.5 50707.9 0.00% 79 34.90 * * >1000.00
50.10 50707.9 0.00% 38 3.33 2.22% * >1000.00
100.2 65914.8 21.32% 945 610.67 *** *** ***
100.3 60658.9 14.51% 32840 15672.00 *** *** ***
100.5 54243.5 4.39% 979 1259.79 *** *** ***
100.10 51860.0 0.00% 33 68.36 *** *** ***

Table 2: Numerical results of USApHCP for AP problems.
*** Indicates that the forumlation could not be solved with
CPLEX due to insufficient memory.

We tested the 3- and 4-index formulations for UMApHCP. Initial experiments showed that
both formulations are inefficient even for small problems. Numerical results for UMApHCP
for a few small CAB test problems are shown in Table 3 with the same performance measures
as for the other formulations.

The three index formulation is clearly not useful for solving even small UMApHMP problems.
However the four index formulation, due to its greater tightness can at least solve small prob-
lems in a reasonable amount of time, though it is clearly not competitive with our branch and
bound method. For larger CAB problems with 15 nodes the four index formulation still solves
but run times increase to over 100 seconds on average.

Heuristic 1 did not perform well in terms of solution quality although its CPU time requirement
is negligible. On average, the Heuristic 1 upper bound is about 30% larger than the optimal
objective value. The corresponding heuristic for USApHCP also performed poorly. Therefore,
we do not publish numerical performance of these heuristics.

We tested the shortest path based branch and bound method for UMApHCP. Numerical results
for UMApHCP are shown in Tables 4 and 5. For each test problem, we report the heuristic
gap Obj′−Obj

Obj × 100.0 where Obj’ represents the objective of the solution obtained from the
simple euristic described in Section 5.3. Also the Total CPU is the runtime in seconds for
both the heuristic and the branch and bound.

Optimal Heur. Branch & Bound
Problem Obj. Gap CPU Nodes Total CPU

10.2.2 1421.88 0.00% 0.00 9 0.00
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Problem Obj. Gap CPU Nodes Total CPU

10.2.4 1548.37 0.00% 0.00 9 0.00
10.2.6 1749.04 0.13% 0.00 21 0.00
10.2.8 1749.04 0.00% 0.00 11 0.00
10.2.1 1764.79 0.00% 0.00 9 0.00
10.3.2 1119.54 0.00% 0.00 19 0.00
10.3.4 1181.37 0.00% 0.00 22 0.00
10.3.6 1308.85 0.00% 0.00 29 0.00
10.3.8 1502.14 4.60% 0.00 35 0.00
10.3.1 1764.79 0.00% 0.00 13 0.00
10.4.2 809.36 37.41% 0.00 23 0.00
10.4.4 968.20 0.00% 0.00 23 0.00
10.4.6 1146.19 0.00% 0.00 28 0.00
10.4.8 1411.83 3.02% 0.00 37 0.00
10.4.1 1764.79 0.00% 0.00 13 0.00
15.2.2 2005.02 0.00% 0.00 15 0.00
15.2.4 2027.69 0.00% 0.00 18 0.00
15.2.6 2081.04 0.00% 0.00 13 0.00
15.2.8 2335.82 0.00% 0.00 12 0.00
15.2.1 2600.08 0.00% 0.00 8 0.00
15.3.2 1716.14 1.29% 0.00 116 0.00
15.3.4 1738.32 0.00% 0.00 26 0.00
15.3.6 1823.10 0.00% 0.00 63 0.00
15.3.8 2141.83 0.00% 0.00 19 0.00
15.3.1 2600.08 0.00% 0.00 11 0.00
15.4.2 1287.78 0.00% 0.00 59 0.00
15.4.4 1395.88 0.00% 0.00 47 0.00
15.4.6 1751.45 0.00% 0.00 43 0.01
15.4.8 2080.06 0.00% 0.00 12 0.00
15.4.1 2600.08 0.00% 0.00 12 0.00
20.2.2 1892.99 0.00% 0.00 20 0.00
20.2.4 2027.69 0.00% 0.00 21 0.00
20.2.6 2248.13 0.00% 0.00 27 0.00
20.2.8 2335.99 8.32% 0.00 65 0.00
20.2.1 2600.08 0.00% 0.00 17 0.00
20.3.2 1551.25 10.65% 0.00 116 0.01
20.3.4 1738.32 0.00% 0.00 40 0.01
20.3.6 1916.16 0.00% 0.00 225 0.01
20.3.8 2195.22 0.00% 0.00 159 0.01
20.3.1 2600.08 0.00% 0.00 14 0.01
20.4.2 1287.78 0.00% 0.01 105 0.01
20.4.4 1472.71 0.00% 0.01 230 0.02
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Problem Obj. Gap CPU Nodes Total CPU

20.4.6 1808.70 0.80% 0.01 1906 0.06
20.4.8 2128.11 1.17% 0.01 291 0.02
20.4.1 2600.08 0.00% 0.01 17 0.01
25.2.2 2049.48 0.00% 0.00 26 0.01
25.2.4 2402.55 0.00% 0.00 52 0.01
25.2.6 2558.74 0.00% 0.00 51 0.01
25.2.8 2714.93 0.00% 0.00 75 0.01
25.2.1 2739.22 0.00% 0.00 54 0.01
25.3.2 1911.60 0.17% 0.01 217 0.02
25.3.4 2064.67 1.28% 0.01 174 0.02
25.3.6 2243.77 0.00% 0.01 181 0.02
25.3.8 2515.58 0.00% 0.01 184 0.02
25.3.1 2725.79 0.00% 0.01 17 0.01
25.4.2 1619.48 7.05% 0.02 446 0.04
25.4.4 1774.45 0.00% 0.02 523 0.05
25.4.6 2127.13 0.00% 0.02 1204 0.08
25.4.8 2437.71 0.37% 0.02 1267 0.08
25.4.1 2725.79 0.00% 0.02 23 0.02

Table 4: Numerical results of UMApHCP for CAB problems.

Optimal Heur. Branch & Bound
Problem Obj. Gap CPU Nodes Total CPU

10.2 39922.11 1.15% 0.00 32 0.00
10.3 32713.94 0.00% 0.00 52 0.00
10.4 31577.96 0.00% 0.00 79 0.00
10.5 30371.32 0.00% 0.00 100 0.00
20.2 45954.15 0.00% 0.00 16 0.00
20.3 40909.59 6.09% 0.00 51 0.01
20.4 38320.25 0.00% 0.01 105 0.01
20.5 37868.15 0.00% 0.01 12 0.01
20.10 37868.15 0.00% 0.05 67 0.05
25.2 51533.30 0.00% 0.00 15 0.00
25.3 45552.50 8.67% 0.01 24 0.01
25.4 45552.50 0.00% 0.02 31 0.02
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3 index forumlation 4 index formulation
Prob. Obj. Gap Nodes CPU Gap Nodes CPU

10.2.2 1421.88 35.55 114 5.22 26.39 12 6.45
10.2.4 1548.37 39.14 488 12.71 22.26 10 3.77
10.2.6 1749.04 44.29 7224 110.43 21.17 21 4.13
10.2.8 1749.04 45.45 144348 921.38 12.38 18 3.54
10.2.1 1764.79 47.96 12110 314.95 0.00 12 16.96
10.3.2 1119.54 40.59 3304 65.87 32.31 19 3.88
10.3.4 1181.37 34.36 770 21.58 19.97 20 4.91
10.3.6 1308.85 35.45 2070 36.25 11.35 20 3.30
10.3.8 1502.14 40.88 2292 62.50 6.01 13 5.99
10.3.1 1764.79 48.29 263 26.65 0.00 0 4.41
10.4.2 809.36 39.19 144 13.85 30.56 13 2.23
10.4.4 968.20 28.64 2475 45.05 19.47 19 2.49
10.4.6 1146.19 27.03 1835 35.64 7.62 4 3.63
10.4.8 1411.83 37.04 1990 37.31 0.00 5 4.08
10.4.1 1764.79 48.29 1646 69.28 0.00 0 0.88

Table 3: Numerical results of UMApHCP MILP formulations for a few small CAB problems

Problem Obj. Gap CPU Nodes Total CPU

25.5 45552.50 0.00% 0.03 40 0.03
25.10 45552.50 0.00% 0.13 193 0.14
40.2 61140.80 0.00% 0.02 45 0.03
40.3 56309.88 0.37% 0.05 186 0.08
40.4 51279.14 5.06% 0.11 170 0.14
40.5 49741.20 0.00% 0.17 12 0.18
40.10 49741.20 0.00% 0.98 51 1.00
50.2 61179.03 0.00% 0.04 46 0.05
50.3 56729.94 0.00% 0.11 185 0.16
50.4 52905.77 0.00% 0.20 327 0.28
50.5 50707.87 0.00% 0.50 26 0.52
50.10 50707.87 0.00% 2.15 27 2.17
100.2 63197.10 0.95% 0.44 66 0.56
100.3 57925.66 0.00% 1.48 99 1.67
100.5 53949.33 0.76% 5.91 17131 22.52
100.10 51860.03 0.00% 38.07 213 39.04
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Problem Obj. Gap CPU Nodes Total CPU

200.3 62945.55 0.00% 25.77 1252 35.37

Table 5: Numerical results of UMApHCP for AP problems.

Even though the heuristic described in Section 5.3 does not have any theoretical performance
guarantee it performed much better (in terms of solution quality achieved in small amounts of
CPU time) than the heuristic method for UMApHCP described in Section 5.4. From Tables 4
and 5 we can see that optimal solutions of all test problems are found. For all but a few large
problems with larger p, the CPU time was less than one second, and the number of branch
and bound nodes explored is not large at all. It is notable however that the CPU times for
AP50.10, AP100.5, AP100.10 and AP200.3 are very large compared with other test problems
and clearly grow exponentially with problem size. This is mostly due to large values of p.
We remark that in most practical applications, the benefits of hub network configurations are
largest when p is small.

Compared with the shortest path based branch and bound method, performance of both the
three and four-index formulations (see Table 3 above) was poor. Even when we used in CPLEX
the upper bound derived from the heuristic method (see 5.3), the CPU times for both the three
and four-index formulations were improved by at most half. In conclusion, the three and four-
index formulations are not competitive.

As proved theoretically in Section 4, for the same test problem, the computational results
show that the optimal objective value for UMApHCP is no greater than that for USApHCP.
It is interesting to note that these two values do coincide for quite a few test problems (for
example, Problem 10.3.2). It may be possible to exploit this feature for developing more
efficient algorithms for USApHCP, see [22] for one approach.

7 Conclusions

In this paper we have studied USApHCP and UMApHCP. We have developed a new mixed
integer programming formulation for USApHCP and two integer programming formulations
for UMApHCP. Both problems are proved to be NP-hard even when the economic discount
factor is zero. We also showed that the allocation sub-problem of USApHCP is NP-hard. A
shortest path based branch and bound method is proposed similar to that developed in [13]
for UMApHMP.

We have carried out numerical experiments using well-known test datasets in the literature
for both USApHCP and UMApHCP. The numerical results showed that the new formulation
for USApHCP is clearly superior to the best known formulation from Kara and Tansel [18] in
terms of computational time by 1-2 orders of magnitude. The numerical experiments demon-
strated that the shortest path based branch and bound method is extremely efficient for solving
UMApHCP. By contrast the four index formulation only offers viable computational perfor-
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mance for small problems and even then is orders of magnitude slower than our branch and
bound method. The three index formulation - while smaller than the four index formulation -
performs very badly computationally.
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Proof of Proposition 4.3.

The proof will be in two stages. In the first stage, we will show that 3-colouring is polyno-
mially reducable to the independent transversal problem, thus showing that the independent
transversal problem is NP-complete. In the second stage we reduce independent transversal
to HCSAP thus establishing that HCSAP is NP-hard.

Given an instance (V2, E2) of 3-colouring, we construct an instance (V1, E1) of independent
transversal as follows (see Figure 2 for an example).

• For every vertex v ∈ V2, create three new vertices (v, 1), (v, 2), (v, 3) ∈ V1. These three
vertices form the subset Wv.

• For every v ∈ V2, connect (v, 1), (v, 2), (v, 3) by a triangle in E1.
• If there is an edge [u, v] ∈ E2, then connect (u, i) and (v, i) by an edge in E1 for i = 1, 2, 3.

Figure 2: Example illustrating the construction of an independent transver-
sal problem corresponding to a simple graph with two vertices
joined by a single edge in (V2, E2) = ({v, u}, {(v, u))}.

Since a vertex (v, i) in the independent set for (V2, E2) corresponds to colouring the vertex v

in V1 by colour i, the graph (V2, E2) is 3-colourable if and only if there exists an independent
set in the newly constructed graph that intersects all the sets Wv.

Next we prove that the independent transversal problem polynomially reduces to HCSAP,
establishing that the latter problem is, indeed, NP-complete.

Consider an instance (V1, E1) with subsets W1, . . . ,Wk of independent transversal. We now
create a corresponding hub center problem (V3, E3) as follows (see Figure 3):

• For every v in V1 create a hub hv. If u and v are connected by an edge in E1, then the
cost between hubs hu and hv is 2. Otherwise, the cost between hu and hv is 1. Then, a
subset of the hubs is independent if and only if they can reach each other by distances of
length 1.

• For every subset Wi create a non-hub fWi . The cost between non-hubs fWi and hubs hv

are as follows: If v is contained in Wi, then the cost is 1. If v is not contained in Wi, then
the cost is 2.

Since all costs are 1 or 2, they automatically satisfy the triangle inequality. In the rest of the
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Figure 3: Example of a simple transversal problem and the corresponding
hub center network construction from the proof of Proposition 4.3

proof, we show that there exists an assignment of HCSAP for (V3, E3) with the optimal value
at most 3 if and only if (V1, E1) has an independent transversal with respect to W1,W2, . . . ,Wt.

Let w1, w2, . . . , wt be an independent transversal for (V1, E1) with respect to W1,W2, . . . ,Wt

such that wi ∈ Wi. Then {w1, w2, . . . , wt} is an independent set of (V1, E1). For every Wi,
assign fWi to hub hwi with wi ∈ Wi. Then both the collection and distribution cost between a
non-hub node and a hub node is 1. Because {w1, w2, . . . , wt} is an independent set of (V1, E1),
the transportation cost between non-hub nodes fWi and fWj is 3 (or just 2 in the special case
where all the Wi intersect in a single node). Note that the cost of any other transportation
path is not more than 3. Hence we have obtained a solution for HCSAP with the optimal
value at most 3.

Conversely, suppose HCSAP of (V3, E3) has a solution with a cost of at most 3. Then every
non-hub node fWi must be assigned to a hub node hv such that v ∈ Wi. Otherwise, the
transportation cost from fWi would be 4, which is greater than 3. Let wi be the hub to which
fWi is assigned. Then {w1, w2, . . . , wt} is an independent transversal of (V1, E1) with respect
to W1,W2, . . . ,Wt. Firstly, wi ∈ Wi by the construction of (V3, E3). Secondly, for any i, j

with wi 6= wj , wi and wj are not connected in (V3, E3). Otherwise, the transportation cost of
HCSAP between fWi and fWj would be 1 + 2 + 1 = 4 > 3, a contradiction.
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