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Exact Computational Approaches to a Stochastic Uncapacitated
Single Allocation p-Hub Center Problem

Edward Hult, Houyuan Jiang, Daniel Ralph
Judge Business School, University of Cambridge, Trumpington Street, Cambridge CB2 1AG, United Kingdom,

{e.hult,h.jiang,d.ralph@jbs.cam.ac.uk}

The stochastic uncapacitated single allocation p-hub center problem is an extension of the deter-

ministic version which aims to minimize the longest origin-destination path in a hub and spoke

network. Considering the stochastic nature of travel times on links is important when designing a

network to guarantee the quality of service measured by a maximum delivery time for a proportion

of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and

develop exact solution approaches based on cutting planes and Benders’ decomposition. We report

numerical results to show effectiveness of our new reformulations and approaches by finding global

solutions of small-medium sized problems.
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1 Introduction

Transportation of goods and people plays a vital role in the economy. One of the key elements

affecting the efficiency of shipping services is the network structure. Hub and spoke networks are

often employed to balance cost of building and maintaining services between pairs of nodes and

having short routes, in terms of distance or time, between pairs of nodes. The hub and spoke

structure has found wide application, in air and rail transportation, postal mail systems, and

telecommunication networks [1, 6].

Although traffic flows are patently uncertain, with stochastic travel time on links and stochastic

volumes between nodes to name just two sources of uncertainty, the main work in the design of hub

and spoke networks has focussed on deterministic hub location models. In this literature stochastic

data are replaced by averages. This may be sensible in some cases but can suggest network designs

that are far from optimal, on average, in a stochastic environment. This phenomenon has been

recognized in the facility location literature [2, 26] and is an instance of a more general notion,

the so-called flaw of averages [23] which merely says that knowing the average values of stochastic

inputs to a process is not enough to determine its average output.
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The benefit of deterministic network design is the relative tractability of this problem. The

deterministic model underlying our work is the so-called p-center problem which, given a list of N

nodes and number p less than N , is to identify p nodes as hubs in order to minimize the maximum

travel time across the network. Although this is a combinatorial optimization problem, progress

has been impressive. For instance the work of Meyer et al. [20] shows that combining clever integer

linear programming reformulations with hybrid algorithms, in a branch and bound framework, can

achieve globally optimality in reasonable time for networks of up to 400 nodes.

We consider a stochastic version of the uncapacitated single allocation p-hub center problem

equivalent to the formulation proposed by Sim et al. [24]. The challenge is the computational

burden of dealing with the stochastic problem since it is not obvious how to take advantage of

the formulations and methods that are efficient for deterministic problems. For instance in [24],

exact solution seems to be out of the question and even heuristic methods are at their limits when

N = 50. We approach the goal of finding global solutions in reasonable time in three steps. First

we formulate a stochastic model with chance constraints, second we develop a compact integer

linear program (ILP) reformulation of the stochastic model under certain conditions, and thirdly

we adopt and manipulate various methods and techniques such as cutting planes and Benders’

decomposition to find efficient solution procedures.

Although our stochastic model is similar to that in [24], our reformulation is an ILP using

O(N2) binary variables and O(N3) constraints (see Proposition 1). We therefore call it a (2,3) for-

mulation, referring to the number of indices needed to conveniently represent the O(N2) variables

and O(N3) constraints. This formulation is compact relative the (4,4) model of [24]. Nevertheless

computational efficiency benefits considerably from cutting plane and Benders’ decomposition ap-

proaches. Indeed the building blocks of our approach — compact ILP reformulations and hybrids

of branch and bound with higher level algorithms — are standard; our contribution is in part the

development of a new reformulation but mainly to demonstrate the value of exploring generic ILP

tools in the stochastic case.

The paper is organised as follows. We review the hub and spoke literature in Section 1.1.

In Section 2 we present the stochastic p-hub center problem (SpHCP) and establish our compact

integer linear programming reformulation (SpHCPL) . In Section 3, we propose pull (cutting plane)

and push (Benders’ decomposition) methods for solving the ILP reformulation exactly. In Section

4, we report numerical results in which exact solution of the stochastic p-hub problem for up to

N = 50 is routine.
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1.1 Literature review

Sim et at. [24] are the first to consider the single allocation p-hub center problem with stochastic

travel times on each link. They formulate a stochastic mathematical program and then reformulate

the problem into an integer linear program by assuming travel time on links have independent

normal distributions. Since exact solutions to this problem are hard to get the authors focus their

attention on developing several heuristic methods to approximately solve network sizes up to 40

nodes.

In addition to [24] we mention three other hub and spoke papers considering stochastic proper-

ties. Marianov and Serra [19] consider stochastic number of customers at hub airports and model

this as M/D/c queuing system. They setup a capacity constraint on the number of airplanes

needed in the queue to be less than or equal to some probability. This is based on the probability

of how many customers are in the system. They develop a heuristic based on tabu search to ap-

proximately solve network sizes of 30 nodes. Yang [27] looks at an air freight hub location problem

where demand and the associated discount factors on hub-hub links are stochastic. The model

is separated into two stages where first stage determines the number and location of hubs taking

into account stochasticity that appears in the second stage flight routing problem. [27] assumes

a discrete probability distribution involving only three possible scenarios on demand. The paper

includes a case study of a 10 node air freight network in Taiwan and China. Contreras et al. [7]

study the uncapacitated multiple allocation hub location problem and include stochastic properties

of both demand and transportation cost. For the rather special case in which a single random pa-

rameter affects the transportation cost on all links equally, they show that their stochastic model is

equivalent to the deterministic problem in which all random variables are replaced by their average

values, i.e., there is no flaw of averages. For independent transportation costs, however, where the

uncertainty of a link cost is independent of all other links in the network, the same cannot be done.

They therefore move on to approximately solve the later problem for network sizes up to 50 nodes

using Monte-Carlo simulation coupled with Benders’ decomposition.

Although the literature on stochastic hub and spoke networks is small, there is a relatively

larger pool of research done on deterministic problems. Hub location became a recognised field of

study in the late 1980s. The state-of-the-art for the research in hub location can be found in two

review papers [1, 6]. Attention has focussed on two themes: proposing mathematical models such

as median, center and covering hub problems to approximate the real-world business challenges,

and developing efficient numerical approaches for solving these proposed mathematical models.
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Computational methods dominate the hub location literature. Unsurprisingly, as the number of

nodes in the network grows, exact methods are more prone to computational difficulties — such as

excessive time or memory requirements — than are heuristics.

Campbell [5] is the first to introduce and study the p-hub center problem in the hub literature.

This includes the deterministic version of the problem we study (Section 2) which is motivated by

a hub system involving perishable or time sensitive items in which cost refers to time.

Campbell [5] defines the uncapacitated single allocation p-hub center problem (USApHCP) as

a quadratic programming problem and proposes a linear programming reformulation using O(N4)

variables where, as above, N is the number of nodes in the network. The same problem has been

studied by several different authors aiming to speed up the computational efficiency. Kara and

Tansel [17] present an equivalent reformulation using O(N2) variables and O(N3) constraints. An

additional improvement on the computational performance of the USApHCP was found by Ernst

et al. [10] by reformulating it using what they call the radius approach, which requires only O(N2)

variables and O(N2) constraints. The radius approach can solve test problems that have up to 200

nodes in the network. Recently a new 2-phase method combines a branch and bound algorithm

and the radius approach is introduced by Meyer et al. [20] and can solve test examples that have

up to 400 nodes. Jutte et al. [16] give a polyhedral analysis on the hub center problem based on

the radius approach.

The other two standard problems in the hub literature are the p-hub median problem and the

hub covering problem which both follow the same trend with different researchers trying to either

improve on the original formulation computationally or to study extensions and/or variations to

the problem. The p-hub median problem, which is to minimize the total cost of all flows between

all OD pairs over the network, has received more attention in the literature. Transportation costs

between hub nodes are usually discounted by a factor to reflect economies of scale. O’Kelly [21]

is the first to formulate a hub location problem mathematically. Campbell [4, 5] later produces

the first integer linear programming formulations for single and multiple allocation p-hub median

problems. Skorin-Kapov et al. [25] reformulate the linear formulation to produce exact solutions in

quicker times. Ernst and Krishnamoorthy [11] present a very efficient (3,3) reformulation. Recent

advances for the hub median problems can be found in [8, 22].

The third standard problem is the hub covering problem, first mathematically formulated by

Campbell [5]. The motivation is to find a set of hubs so that the cost of opening hubs or the number

of hubs to use is minimized subject to delivering a certain service. We refer the interested reader

to Alumur and Kara [1] for additional details on hub covering.
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2 The Stochastic Hub Center Problem and a Reformulation

Here we present the stochastic p-hub center problem (SpHCP for short) after Sim et al. [24] and, in

the deterministic case, Campbell [5]. This is a quadratic program which has O(N2) binary variables

and O(N4) constraints. In Proposition 1 we show it has a (2,3) representation as an integer linear

program.

Consider a network consisting of N nodes, denoted by N and options to link any pair of nodes.

The designer wants to select p hubs in N and to assign each node in N to exactly one hub. If k

and m are hub nodes and nodes i and j are allocated to k and m, respectively, then the path for

delivering the goods from node i to node j is i → k → m → j. Assume that Dij represents random

travel time between nodes i and j with an average travel time of dij and a standard deviation of

σij . Assume α ∈ (0, 1) is the discount factor for travel times over hub arcs (links between hub

nodes). The total travel time along the path i → k → m → j is Tijkm = Dik + αDkm + Dmj .

Let β be the nominal maximum travel times between all OD pairs in the network. Assume

γ ∈ [0, 1] is the service level. Then the service level guarantee means that for any nodes i and j,

with probability of γ, the travel time for the goods delivered from i to j will not exceed β. For

instance if β = 24 hours and γ = 0.95, then the service level guarantee requires that the travel time

from i to j will not exceed 24 hours for 95% of journeys. This type of service level guarantee is

often employed in call centers and other telecommunication services [14, 15]. Clearly, the designer

prefers a smaller value for β and a larger value for γ. However, these two parameters usually act

against each other. For example, a large value of γ often results in a relatively large value of β.

Define Xik to be a binary variable such that Xik = 1 if and only if k is a hub node and node i

is assigned to k. SpHCP is defined by the following nonlinear stochastic program:

(SpHCP) min β (1)

s.t. γ ≤ Pr(β ≥ (Dik + αDkm + Dmj)XikXjm), ∀i, j, k,m ∈ N (2)∑
k∈N

Xik = 1, ∀i ∈ N (3)

Xik ≤ Xkk, ∀i, k ∈ N (4)∑
k∈N

Xkk = p, (5)

Xik ∈ {0, 1}, ∀i, k ∈ N . (6)

In the above formulation, the objective is to minimize the nominal maximum travel time between

all OD pairs in the network. Constraint (3) indicates that each node is allocated to exactly one hub.
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Constraint (4) shows that if node i is allocated to hub k, then node k must be a hub. Constraint

(5) specifies that exactly p hubs are established. Constraint (6) states that Xik is a binary variable.

The most complicated is constraint (2), which defines the service level: The probability such that

the travel time on each OD path is less than or equal to β is greater than or equal to γ. Note

that when either Xik = 0 or Xjm = 0, i → k → m → j is not a valid travel path between nodes i

and j. In this case, constraint (2) still holds because Pr(β ≥ 0) = 1 and this constraint becomes

redundant.

A few remarks are made in order. Firstly, if the travel times on all links are deterministic, then

constraint (2) is equivalent to the following constraint:

β ≥ (dik + αdkm + dmj)XikXjm,

and SpHCP is equivalent to the p-hub center problem studied by Campbell [5]. This shows that

SpHCP is an extension of the traditional deterministic p-hub center problem. Secondly, SpHCP is

equivalent to the stochastic p-hub center problem investigated by Sim et al. [24], where four-index

binary variables yijkm is used and yijkm = 1 is implied by Xik = Xjm = 1.

It is easy to define and understand SpHCP. Also, up to this this point, we have not needed

specific assumptions on either the probability distribution of link travel times Dik, or on the rela-

tionship between these random travel times for different links. However, this formulation involves

both integer variables and the stochastic constraint (2). These features make the above formu-

lation computationally intractable. In the sequel, we aim to convert the above formulation into

a computationally tractable deterministic integer linear program based on two techniques: lin-

earizing quadratic terms, and replacing probabilistic expressions by equivalent deterministic coun-

terparts. To this end, we make one more assumption which states that, first, Dij is normally

distributed and, second, is mutually and stochastically independent of Dk` for any nodes i, j, k, `

with (i, j) 6= (k, `). Based on this assumption, the total travel time Tijkm = Dik + αDkm + Dmj

along the path i → k → m → j is also normally distributed with a mean of tijkm = dik +αdkm+dmj

and a standard deviation of δijkm =
√

(σik)2 + α2(σkm)2 + (σmj)2.

The fact that Tijkm has a normal distribution shows that the stochastic constraint (2) is equiv-

alent to a deterministic and quadratic constraint:

β ≥ (tijkm + zγδijkm)XikXjm, ∀i, j, k,m ∈ N ,

where zγ is the z-value for a standard normal distribution and satisfies equation Pr(Z ≤ zγ) = γ

and Z is a standard normally distributed random variable. Now we can apply some standard tricks

for reformulating a quadratic inequality as a linear inequality.
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Evidently, the optimal value for β is nonnegative. Because Xik is a binary variable, it is easy

to verify that constraints β ≥ (tijkm + zγδijkm)XikXjm for all i, j, k,m ∈ N can be collectively

replaced by constraints:

β ≥ (tijkm + zγδijkm)(Xik + Xjm − 1), ∀i, j, k,m ∈ N .

Furthermore, constraint β ≥ (tijkm + zγδijkm)XikXjm or constraint β ≥ (tijkm + zγδijkm)(Xik +

Xjm− 1) is redundant if either Xik = 0 or Xjm = 0. In view of constraint (3), for any fixed i, j, m,

constraints β ≥ (tijkm + zγδijkm)(Xik + Xjm − 1) for all k are equivalent to a single constraint

β ≥
∑
k∈N

(tijkm + zγδijkm)(Xik + Xjm − 1), ∀i, j, m ∈ N . (7)

By the above two reformulation techniques, we have obtained an equivalent deterministic integer

linear program for the SpHCP.

Proposition 1 Assume that for all i, j ∈ N , Dij are mutually and stochastically independent

and normally distributed. Then the stochastic optimization problem SpHCP defined by (1)-(6) is

equivalent to the following integer linear program:

(SpHCPL) min β
s.t. (3), (4), (5), (6), (7).

Having introducing SpHCP and its deterministic counterpart SpHCPL, we make three remarks

in addition to the two made earlier in this section. First, Sim et al. [24] derive a deterministic

counterpart from their stochastic optimization problem and the deterministic counterpart is also an

integer linear program. However, the deterministic formulation in Sim et al. [24] has N4+N2+N+1

constraints and N4+N2 binary variables, whereas our SpHCPL has only N3+N2+N+1 constraints

and N2 binary variables. The (2,3) representation SpHCPL seems computationally more promising

in terms of both computer memory and CPU times. Second, the appendix of [24] gives an alternative

(2,4) ILP representation that requires under an extra assumption on the stochastic variables, a kind

of stochastic triangle inequality. Third, when randomness of travel times is removed, SpHCPL is

similar to the integer linear programming formulation studied in Kara and Tansel [17]. The only

difference is in the constraint (7) for defining the lower bound β on the objective function, which

in [17] is given by β ≥
∑

k∈N (dik + αdkm)Xik + dmjXjm, for each i, j and m in N .

It is important to note that the same approach can be applied for any distribution of the

travel time between nodes provided that the percentiles TD
ijkm are known in advance, where TD

ijkm

satisfies the equation Pr(Dij + αDkm + Dmj ≤ TD
ijkm) = γ. If, unlike the normal distribution,

these percentiles cannot be computed directly, then they can be found by sampling or simulation

techniques which can be carried out independently from and prior to solving SpHCPL.
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3 Solution Methods

Looking ahead to Section 4, our preliminary computational experience in applying CPLEX to

SpHCPL indicates that this combination of model and software is adequate for problems up of

to 25 nodes (Table 1). However N = 25 is small for the standard dataset of test problems,

the Australian Post (AP) [12], where deterministic problems of hundreds of nodes can be solved

exactly [20], reasonably quickly. Therefore, in the following two subsections, we investigate two

computational approaches for solving SpHCPL more efficiently. These are called pull and push

approaches, respectively.

In the pull approach, we aim to remove redundant constraints related to (7) and to add some

valid cuts. The push approach is a particular application of the well-known Benders’ decomposition

[3] in which we start with no or a few constraints of type (7) and we gradually add more such

constraints if required. It is worthwhile to mention that Camargo et al. [9] solve the uncapacitated

multiple allocation problem using the Benders’ decomposition approach, which allows them to solve

test examples with a network size of up to 200 nodes.

3.1 SpHCP-Pull, cutting planes

Suppose that βU and βL are upper and lower bounds for the optimal objective function value for

SpHCPL or equivalently SpHCP. We give a lemma that uses these bounds to identify valid cuts and

redundant constraints for SpHCPL; its proof is elementary and appears in the Appendix. Then we

suggest a way to generate valid upper bounds.

Lemma 1

(a) If for given j,m, 2djm + zγ

√
2σjm > βU , then Xjm = 0 is a valid cut for SpHCPL.

(b) If for given i, j, m, minN
k=1(tijkm + zγδijkm) > βU , then Xjm = 0 is a valid cut for SpHCPL.

(c) If for given i, j, m, maxN
k=1(tijkm + zγδijkm) < βL, then constraint (7) is redundant for the

given i, j, m and can be removed.

(d) Assume the triangular inequality property holds over dij, i.e. dij + dim ≥ dim and the travel

time is symmetric: i.e., Dij and Dji have the same probability distribution. If for given j,m,

djm + zγσjm + α maxN
`=1 dm` > βU , then Xjm = 0 is a valid cut.

(e) If Xjm = 0 is a valid cut, then for any i and the corresponding j,m, constraint (7) is redundant

for SpHCPL.
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Based on Lemma 1, if an upper bound and/or a lower bound for SpHCPL are available, then we

can obtain a better integer linear program than SpHCPL by adding some additional cuts and by

removing some redundant constraint. We call this modified integer linear programming formulation

SpHCPL-Pull. The exact format of SpHCPL-Pull depends on the test example and available upper

and lower bounds.

Next we design a heuristic method for deriving an upper bound.

Define d̃ik = dik + zγσik. It is easy to verify that Pr(Dik ≤ d̃ik) = γ, which represents the

service level on the link between i and k. Based on d̃ik, we construct a new network whose network

structure is identical to the existing network, but the direct stochastic travel time Dik between i

and k is replaced by the deterministic travel time d̃ik. For this new network, we follow Ernst et

al. [10] to propose the radius-based formulation:

(Heuristic) min β

s.t. rk ≥ d̃ikXik,∀i, k ∈ N
β ≥ rk + rm + αd̃km, ∀k,m ∈ N

(3), (4), (5), (6).

Here rk represents the radius of hub node k. When k is not a hub node, rk = 0 holds automatically.

If for all i, k, Dik is a random variable with a single pulse, then Dik = d̃ik = dik and the above

formulation reduces to the radius-based formulation proposed in Ernst et al. [10]. In terms of com-

putational times, the radius-based formulation is the state-of-the-art integer linear programming

formulation for the single allocation p-hub center problem. The optimal solution for (Heuristic)

gives a feasible solution for SpHCP, which in turn generates an upper bound for SpHCP.

3.2 SpHCP-Push, Benders’ decomposition

In this subsection we focus on the so-called push approach SpHCPL-Push, which is an applica-

tion of Benders’ decomposition [3]. SpHCPL-Push consists of two separate components: so-called

restrictive master problems and, to check their optimality, subproblems. A restrictive master prob-

lem is a modification of SpHCPL by ignoring some constraints of type (7). A subproblem is to

check whether or not the most recent restrictive master problem indeed gives an optimal solution

to SpHCPL or SpHCP. This can be done by checking whether or not any constraint of type (7)

violates if β in (7) is replaced by the optimal objective function value of the most recent restrictive

master problem. If not, an optimal solution for SpHCPL is obtained. Otherwise, such violating

constraints are added to the most recent master problem to form an updated restrictive master

problem.
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Due to the special structure of SpHCPL, we only need to check constraint violations for some

selected ones of type (7). Suppose X∗
ik and β∗ are the optimal solution and the optimal objective

function value for the most recent restrictive master problem, respectively. If X∗
jm = 0, then for any

i and the corresponding j,m, {X∗
ik} satisfies constraint β∗ ≥

∑N
k=1(tijkm +zγδijkm)(X∗

ik +X∗
jm−1)

automatically, which implies that there is no need to check constraint violations for any i and the

corresponding j, m. If X∗
jm = 1 and constraint β∗ ≥

∑
k∈N TD

ijkmX∗
ik is violated, then for any i

and the corresponding j,m, constraint (7) is added to the most recent restrictive master problem.

Note that for any j, there is exactly one m such that X∗
jm = 1. Therefore, we add at most N2

constraints of type (7) to the new restrictive master problem. The above argument also shows

that the subproblem can be solved in polynomial time: checking if Xjm = 0, and checking if

β∗ ≥
∑N

k=1(tijkm + zγδijkm)X∗
ik is violated when Xjm = 1.

The SpHCPL-Push approach cycles iteratively between restrictive master problems and sub-

problems and terminates when an optimal solution for SpHCPL is found. Because there are exactly

N3 constraints of type (7) and at least one new and different constraint of type (7) is added to the

restrictive master problem, an optimal solution for SpHCPL can be found in at most N3 iterations

between the restrictive master problem and the subproblem. The SpHCPL-Push approach as well

as some related results is outlined below.

SpHCPL-Push:

Step 1 Generate an initial restrictive master problem: Modifying SpHCPL by removing all the

constraints of type (7).

Step 2 Solve the most recent restrictive master problem. Let X∗
ik and β∗ be its optimal solution

and optimal objective function value, respectively.

Step 3 Solve the subproblem by checking constraint violations for (7) based on the procedure

described above. If there is no constraint violation, terminate and an optimal solution for

SpHCPL is obtained. Otherwise, go to Step 4.

Step 4 Add newly violating constraints to the most recent restrictive master problem to form a

new restrictive master problem. Go to Step 2.

Proposition 2

(a) The subproblem in SpHCPL-Push is polynomially solvable.
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(b) An optimal solution for SpHCPL can be obtained after at most N3 iterations between the

restrictive master problem and the subproblem.

4 Numerical Results

In this section, we test the computational performance of the approaches proposed in the previous

sections using well-known test examples from two libraries of test problems, (CAB) [13, 21] and

(AP) [12]. Our code is written in C++, integer linear programs are solved using ILOG CPLEX

Version 12.1, and all of the numerical experiments are carried out on a HP Pavilion laptop with an

Intel(R)Core(TM)2 CPU processor with 3.00 GB RAM.

The standard CAB and AP test examples are designed for the deterministic p-median hub

location problem. Recall that Dik is assumed to be normally distributed with a mean of dik and

a standard deviation of σik. In our test examples, we assume that dik takes the value given in the

(deterministic) test libraries and σik = νdik, for a constant ν called the coefficient of variation. In

our runs we set ν = 1 and γ = 0.95 for all test examples and later check the sensitivity of the CPU

times with respect to both γ and ν.

We test three approaches: SpHCPL, SpHCPL-Pull, and SpHCPL-Push and let each run for a

maximum of 1 CPU hour (3600 CPU seconds). Note that the problem (Heuristic) introduced in

section 3.1 is used for finding an upper bound for SpHCPL-Pull. Numerical results are shown in

the tables below. For each test problem, we report:

Prob problem name (for CAB examples, a name has a format of N.p.q such that q = 10 ∗ α, with

the exception of q = 1 than q = α, and for AP examples, a name has a format of N.p and

α = 0.75),

Obj optimal objective function value,

Upper objective function value of the feasible solution generated from (Heuristic) which provides

an upper bound to Obj,

SpHCPL CPU time of running SpHCPL,

SpHCPL-Pull CPU time of running SpHCPL-Pull,

SpHCPL-Push CPU time of running SpHCPL-Push, and

Iter number of iterations for SpHCPL-Push.
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For network sizes of 25 nodes or fewer (Table 1), all methods perform relatively well. In

comparison to the test runs in Sim et al. [24] — where the computational demands of the (4,4)

formulation of [24] meant that only heuristic approaches could be usefully employed — our standard

SpHCPL formulation appears to be very promising because CPLEX produces globally optimal

solution for all problems within a few minutes. Moreover, the difference between SpHCPL-Pull and

SpHCPL-Push is very small for network sizes of 25 nodes or fewer as can be seen in Tables 1 and 2.

For network sizes of 40 nodes or more (Table 2), however, we can no longer solve the test

problems using SpHCPL with one exception, 40.2, or solve networks of sizes 50 nodes using SpHCP-

Pull within 1 CPU hour. What is interesting is that SpHCPL-Push performs very well for the test

examples with 40 or 50 nodes.

Prob γ ν Obj SpHCPL SpHCPL-Pull SpHCPL-Push Upper Iter
5.3.1 0.95 1 2078.44 0.08 0.02 0.02 2276.84 2
5.3.6 0.95 1 1736.03 0.08 0.02 0.04 1788.54 2
10.2.1 0.95 1 3937.62 0.61 0.13 0.04 3986.21 2
10.2.2 0.95 1 2896.63 0.59 0.08 0.05 2896.63 2
10.2.4 0.95 1 3207.72 0.6 0.17 0.21 3207.72 3
10.2.6 0.95 1 3576.5 0.76 0.16 0.14 3811.55 3
10.2.8 0.95 1 3811.55 0.92 0.07 0.06 3811.55 2
10.3.1 0.95 1 3829.18 0.66 0.06 0.05 3881.41 2
10.3.2 0.95 1 2425.73 0.44 0.05 0.04 2425.73 2
10.3.4 0.95 1 2425.73 0.47 0.05 0.04 2425.73 2
10.3.6 0.95 1 2807.9 0.37 0.05 0.04 2807.9 2
10.3.8 0.95 1 3361.34 0.49 0.05 0.04 3386.14 2
10.4.1 0.95 1 3829.18 0.4 0.21 0.25 4676.7 4
10.4.2 0.95 1 1707.95 0.45 0.06 0.04 1707.95 2
10.4.4 0.95 1 1921.89 0.41 0.03 0.03 1921.89 2
10.4.6 0.95 1 2800.5 0.4 0.04 0.06 2806.02 3
10.4.8 0.95 1 3361.34 0.38 0.06 0.09 3741.36 3
15.2.1 0.95 1 5420.99 3.31 0.69 0.35 5655.94 4
15.2.2 0.95 1 4126.04 2.07 0.54 0.57 4126.04 5
15.2.4 0.95 1 4430.18 2.45 0.66 0.53 4681.75 5
15.2.6 0.95 1 4785.7 2.11 0.45 0.24 4798.08 3
15.2.8 0.95 1 5184.13 2.3 0.45 0.16 5257.06 3
15.3.1 0.95 1 5092.54 2.49 1.44 1.58 6890.21 7
15.3.2 0.95 1 3647.14 1.98 0.26 0.18 3789.68 3
15.3.4 0.95 1 3813.75 2.54 0.53 0.36 3813.75 4
15.3.6 0.95 1 4009.01 2.35 0.14 0.08 4009.01 2
15.3.8 0.95 1 4702.49 2.3 1.1 0.28 5512.17 4
15.4.1 0.95 1 5092.54 1.72 1.39 1.6 6890.21 7
15.4.2 0.95 1 2782.98 1.72 0.25 0.08 2782.98 2
15.4.4 0.95 1 2949.82 2.71 0.13 0.06 2949.82 2
15.4.6 0.95 1 4009.01 3.28 0.41 0.2 4134.12 3
15.4.8 0.95 1 4702.49 2.72 0.69 0.31 5512.17 4
20.2.1 0.95 1 5420.99 13.92 2.55 0.84 5655.94 5
20.2.2 0.95 1 4101.59 9.57 1.14 0.14 4101.59 2
20.2.4 0.95 1 4284.84 9.86 2.25 1.29 4681.75 5
20.2.6 0.95 1 4785.7 9.62 2.07 0.74 4928.59 4
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20.2.8 0.95 1 5089.27 13.36 2.6 0.81 5420.99 5
20.3.1 0.95 1 5092.54 14.74 9.07 4.04 6890.21 8
20.3.2 0.95 1 3075.01 6.11 0.85 0.14 3075.01 2
20.3.4 0.95 1 3688.54 8.04 2.32 0.8 3813.75 4
20.3.6 0.95 1 4004.81 21.09 0.49 0.11 4032.51 2
20.3.8 0.95 1 4671.23 28.1 6.46 0.69 5171.19 4
20.4.1 0.95 1 5092.54 14.65 6.46 6.77 6890.21 8
20.4.2 0.95 1 2830.12 16.17 1.3 0.44 2922.82 3
20.4.4 0.95 1 3028.72 12.47 0.77 0.2 3028.72 2
20.4.6 0.95 1 4001.28 19.58 0.77 0.33 4060.07 3
20.4.8 0.95 1 4671.23 16.15 5.06 1.26 5406.61 5
25.2.1 0.95 1 5629.69 100.35 1.52 0.19 5646.17 2
25.2.2 0.95 1 4517.81 33.71 6.95 1.61 4617.72 5
25.2.4 0.95 1 4814.33 26.98 10.32 6.18 4895.53 7
25.2.6 0.95 1 5117.46 32.42 2.43 0.63 5117.46 4
25.2.8 0.95 1 5362.94 110.05 1.98 0.21 5362.94 2
25.3.1 0.95 1 5455.94 148.55 3.21 1.22 5982.31 5
25.3.2 0.95 1 3880.84 34.35 5.67 0.89 4105.16 3
25.3.4 0.95 1 4407.47 60.15 15.43 5.66 4439.91 6
25.3.6 0.95 1 4624.12 101.85 4.57 0.36 4624.12 2
25.3.8 0.95 1 5048.59 92.58 0.84 0.14 5060.09 2
25.4.1 0.95 1 5455.94 119.88 18.55 5.96 6911.02 7
25.4.2 0.95 1 3216.94 56.39 2.46 0.71 3216.94 3
25.4.4 0.95 1 3813.75 96.97 2.34 0.5 3813.75 3
25.4.6 0.95 1 4449.14 192.99 14.59 3.3 4617.72 6
25.4.8 0.95 1 5048.59 109.1 5.16 0.87 5342.62 4

Table 1: Numerical results for CAB examples.

To visualize the relative performance among all three numerical methods, we plot the ratio of

the CPU time for each method against the best CPU time among the three methods. This relative

performance of CPU times is given in Figure 1, which shows that SpHCPL-Push is a clear winner.

We remark that the graphs are truncated at the performance ratios of 20 and 80 for the CAB and

AP datasets, respectively.

Some additional observations can be made. First, additional tests in which we applied our

proposed methods to the deterministic single-allocation p-hub center problem showed that they are

more efficient than the methods of [18] but less efficient than the radius method of [10] that itself

is dominated by the more recent advance of [20] in which problems of hundreds of nodes can be

routinely solved. This gives an idea of the gap between tractability of stochastic and deterministic

hub center problems. Second, it is clear from constraint (7) in SpHCPL that the objective value is

increasing in the discount factor α, the coefficient of variation ν, and the service level parameter γ

since increasing any of these will most often increase the right hand side of (7) for all i, j, m ∈ N .

The exceptions being if β is bound by a path where k = m or by a path with a single pulse,

than respectively increasing α or ν and/or γ no more so as to keep β bound by the same path,
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Table 2: Numerical results for AP examples.
Prob γ ν Obj SpHCPL SpHCPL-Pull SpHCPL-Push Upper Iter
5.2 0.95 1 60402 0.08 0.02 0.05 61525.2 3
5.3 0.95 1 60402 0.07 0.03 0.06 65123.5 3
10.2 0.95 1 87498.2 0.69 0.11 0.04 87498.2 2
10.3 0.95 1 73634.5 0.69 0.1 0.09 75413.2 3
10.4 0.95 1 70902.5 0.53 0.04 0.04 70902.5 2
10.5 0.95 1 70902.5 0.33 0.09 0.15 75086.6 3
20.2 0.95 1 99570.1 8.3 3.13 0.24 99570.1 3
20.3 0.95 1 93111.2 17.91 0.97 0.25 94036.9 3
20.4 0.95 1 90871.9 13.23 2.65 1.75 100351 5
20.5 0.95 1 90871.9 16.5 2.54 1.23 100351 5
20.10 0.95 1 90871.9 4.74 2.47 1.47 100351 5
25.2 0.95 1 114205 51.99 6.2 0.63 115289 3
25.3 0.95 1 109781 53.8 30.53 7.44 120714 6
25.4 0.95 1 109781 30.97 9.17 6.08 120714 7
25.5 0.95 1 109781 37.74 12.36 6.75 120714 7
25.10 0.95 1 109781 16.27 8.86 7.42 120714 14
40.2 0.95 1 131626 1904.91 58.54 2.41 133652 3
40.3 0.95 1 121203 * 278.7 19.19 126088 6
40.4 0.95 1 114571 * 901.98 107.36 131814 7
40.5 0.95 1 114571 * 85.27 125.44 131814 9
40.10 0.95 1 114571 * 150.62 253.41 131814 9
50.2 0.95 1 133722 * * 196.88 141971 6
50.3 0.95 1 120783 * * 70.16 124513 5
50.4 0.95 1 117921 * * 2651.61 131557 10
50.5 0.95 1 117921 * * 1192.33 134376 11
50.10 0.95 1 117921 * * 739.38 134376 19
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Figure 1: Performance of CPU times for SpHCPL, SpHCPL-Pull, and SpHCPL-Push: The top panel for
the CAB dataset and the bottom panel for the AP dataset.

will not affect the objective value. However it is not as clear how this may affect the CPU times.

We therefore conduct a sensitivity analysis on a single test problem, AP 25.2, for a fixed value of

γ = 0.95 and ν = 1 respectively. We check sensitivity of the CPU times of the three methods as

functions of ν (γ, resp.) and observe that the CPU times are not very sensitive to either service

level γ or coefficient of variation ν as can be seen in figure 2.

5 Conclusion

In this paper we introduce a new formulation (Proposition 1) for the stochastic uncapacitated single

allocation p-hub center problem together with two solution procedures for finding globally optimal

solutions based on a cutting plane approach and Benders’ decomposition.

The combination of modelling and optimization techniques allows us to solve small to medium-

sized problems in reasonable time. This is in contrast to the original formulation of the problem in
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Figure 2: Sensitivity results of the CPU times in coefficient of variation ν and service level parameter γ for
test example AP 25.2.

Sim et al. [24] where computational difficulties led to the use of heuristics for even small problems.

Of note is the Benders’ decomposition approach where the subproblem is polynomially solvable,

requiring at most N3 iterations. The combination of the new model formulation and Benders’

decomposition outperforms the cutting plane method and is able to solve test examples up to 50

nodes in size.

Appendix

Proof of Lemma 1. (a) Suppose that Xjm = 1. Let j = i and m = k. Then constraint (7)

reduces to β ≥ tjjmm + zγδjjmm = 2djm + zγ

√
2σjm, which implies that a feasible solution with

Xjm = 1 gives a worse objective function value than the current available upper bound βU . Hence,

Xjm = 0 is a valid cut for SpHCPL.

(b) Suppose that Xjm = 1. Then constraint (7) reduces to

N∑
k=1

(tijkm + zγδijkm)Xik ≥
N

min
k=1

(tijkm + zγδijkm)
N∑

k=1

Xik =
N

min
k=1

(tijkm + zγδijkm),

which is greater than βU according to the assumption. This shows that any feasible solution with

Xjm = 1 gives a worse objective function value than βU . Therefore, Xjm = 0 is a valid cut for

SpHCPL.

(c) Suppose that Xjm = 1. Then constraint (7) reduces to

β ≥
N∑

k=1

(tijkm + zγδijkm)Xik ≤
N

max
k=1

(tijkm + zγδijkm)
N∑

k=1

Xik =
N

max
k=1

(tijkm + zγδijkm) < βL,

which is redundant for the given i, j, m.
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(d) Suppose that Xjm = 1 and assume dmi = maxN
`=1 dm` and Xin = 1. It follows from

constraint (7) and the triangle inequality property that

β ≥ (tijnm + zγδijnm)
= din + αdnm + dmj + zγ

√
(σin)2 + α2(σnm)2 + (σmj)2

≥ αdim + dmj + zγσmj

= dmj + α maxN
`=1 dm` + zγσmj

> βU .

This shows that any feasible solution with Xjm = 1 gives a worse objective function value than βU .

Hence Xjm = 0 is a valid cut.

(e) When Xjm = 0, the right-hand side of constraint (7) for any i and the corresponding j,m

is non-positive. Clearly, this constraint is redundant for SpHCPL.
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