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Abstract  

Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas 

emissions and fuel consumption to prevent negative climate change impacts and protect the environment. 

However, making such predictions is made difficult due to the uncertainties associated with the anticipated 

developments of the technology and fuel situation in road transportation, which determine the total fuel use 

and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future 

vehicles, fuels‟ emissions, availability of alternative fuels, demand, as well as market deployment of new 

technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the 

U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment 

model that takes detailed technological and demand inputs. This model stochastically calculates the probability 

density functions for fuel use and emissions over time by propagating and calculating the effect of input 

uncertainties throughout fleet calculations. The fleet turn over  is tracked based on the calendar year, vehicle 

model year, the market penetration rate of advanced technologies and fuels, and the scrappage rate of vehicles 

on the road. Full life-cycle emissions of fuels are projected and tracked in this model. Three carefully chosen 

illustrative examples are assessed using the developed methodology in this paper. The results show the 

probability distribution of the total light-duty vehicle fleet fuel use and emissions out to year 2050, including 

the mean, mode, standard deviation, spread, and confidence interval of these outputs in the near to long term. 

The major contributors to the fleet fuel use and emissions are also identified and ranked. These include vehicle 

scrappage rate, new vehicle sales, emphasis on reducing fuel consumption, and fuel consumption of naturally 

aspirated spark ignition vehicles. The major contributing variables and uncertainties to fuel use and emissions 

change over the time period 2020 to 2050.  The findings in this paper show that uncertainties in the future fleet 

fuel use and emissions are significant and need to be taken into consideration when choosing amongst 

alternative fuel and emissions reduction pathways, in the light of their possible consequences.  

Keywords: Stochastic modelling, decision theory, numerical decision making, transport GHG emissions and 

fuel use, light-duty vehicle fleet, uncertainty, STEP 
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1 Introduction 

 Light-duty vehicles are responsible for about 44% of the total U.S. and 10% of the world oil consumption 

(Davis, 2007).    There are about 240 million light-duty vehicles (LDV) in the U.S., which consists of about 

40% cars and 60% pick-up trucks, SUVs, and vans. The total fuel consumption from LDVs was about 528 

billion litre in 2005 (Davis, 2007, Transportation, 2008). LDVs produced 1,260 million metric tons of CO2 

emissions in 2005, which account for 22% of the total U.S. GHG emissions with an estimated growth rate of 

1.3% per year (EIA, 2007). Road-transport fuel consumption and emissions have become an important issue 

on the nation‟s policy agenda with ever increasing concerns about impacts of climate change and energy 

security issues.  

  The U.S. Corporate Average Fuel Economy (CAFE) program has enforced fuel economy standards on light 

duty vehicles for more than forty years. The new regulations have mandated a significant increase in fuel 

economy for an average vehicle to 34.1 miles per gallon (MPG) by 2016 (Davis, 2007).  Stricter regulations 

are also under consideration for the mid and longer term. The automotive industry is expected to play an 

important role in reducing the total fleet fuel use though technology improvements. While most automakers 

claim to be taking action to reduce their carbon footprint and energy consumption, whether voluntarily or 

under regulatory pressure, the anticipated result of these actions is unknown due to a number of uncertainties. 

Such uncertainties include performance of future vehicles, emissions and availability of alternative fuels, 

demand, and market deployment of new technologies.  

 In an effort to get a better picture of what the future of road transportation might look like, various vehicle 

fleet models have been developed and employed in scenario analysis. Discrete deterministic scenarios, 

however, are unable to identify the range of possible outcomes that may result from choosing a particular 

emissions reduction pathway, as well as the associated likelihood of each outcome. This is a critical shortfall 

given the inherent real-world uncertainties in vehicle technology and fuel development over time. Assessing 

the impact of these uncertainties is further made difficult given the interactions amongst variables and that 

each variable affects the outputs in a different direction.  Therefore, merely averaging and summing up those 

effects, without proper stochastic modelling of the vehicle fleet risks misrepresenting the likely future impacts 

of policy choices.  Accordingly, this paper develops a stochastic fleet model that quantifies the impact of 

uncertainty on the U.S.  light-duty vehicle fleet fuel use and GHG emissions. This model provides a 

mathematical framework to help decision makers choose among a set of alternatives, given not only their 

“average” outcome but the full spectrum of possible consequences given the uncertainties in the inputs.  

 In some fields, such as climate change, the distinction between deterministic scenario analysis and 

stochastic modeling has been clearly established: major analyses used in IPCC assessments are based on 

probabilistic studies (M.L. Parry, 2001, M.L. Parry, 2007). However, in the transport sector the distinction 

remains somewhat blurry, and scenario analysis is sometimes considered as an alternative for dealing with 

uncertainties. Scenario analysis, however, identifies what the “average” outcome would be given a set of 

deterministic inputs. Simply changing the average scenario thus does not provide one with a range of possible 

outputs because each scenario has a different set of underlying assumptions and is thus equivalent to taking 

different pathways in the real-world, let‟s say to reduce emissions. Further, deterministic scenarios cannot 

quantify the likelihood associated with the possible range of outcomes. In contrast, the aim of this paper is to 

provide a methodology that quantifies the uncertainties in the outputs: it provides the decision maker with a 
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more complete picture showing the range of possible outcomes and the probability associated with each 

outcome, given a chosen fuel and emissions reduction pathway. 

 Although scenario analysis can be useful, it does not tell decision makers what the range of possible 

outcomes and their associated likelihood would be if a certain pathway is taken. This has a significant practical 

importance as policy makers are restricted to choose one pathway that best addresses their objectives, and thus 

would need to understand the risk profile of the outcomes and the chances of hitting a certain target, under a 

consistent set of assumptions and given the input uncertainties.  

 This paper introduces a stochastic technology and fleet assessment framework, STEP (Stochastic Transport 

Emissions Policy Model), which determines the integrated impact of uncertainty on the light-duty vehicle fleet 

fuel use and emissions, as well as the major contributing variables and their relative importance in determining 

the outcomes out to year 2050. The significance of the results in the context of emissions mitigation and 

transport policy planning are discussed.    

2 Literature Review 

This work builds on the vehicle fleet modelling literature in transport research and stochastic modelling 

techniques in the climate change literature. This study makes a methodological contribution in transport 

research literature and provides a policy tool to help decision makers in the transport sector analyze the future 

of light-duty vehicle fleet given real-world uncertainties. 

2.1 U.S. Vehicle Fleet Models  

A number of fleet models have been designed in the past few years to explore the future of road transport in 

the U.S. using scenario analysis. Some of the prominent studies include the MIT fleet model by Bandivadekar 

et al, LEVERS model by Yang et al , fleet scenarios by Greene and Plotkin 2011 study, NEMS model by 

Morrow et al , and the CGE-MARKAL Hybrid Model by Schafer and Jacoby  (Bandivadekar, 2008, Yang, 

2009, David L. Greene. Howard H. Baker, 2011, Morrow, 2010, Schäfer A., 2006, McCollum, 2009). The 

studies by Marrow, and Schafer et al are pursued in a macro-economic context, whereas the MIT model, 

LEVERS, and Plotkin et al are based on bottom-up technology and fuel models developed to examine in detail 

the fleet turn over, demand, and technology improvements and deployment, and their impact on the total fuel 

consumption and emissions in the next couple of decades. A number of models with engineering and 

technological details have also been developed by the Argonne National Laboratory, including the GREET, 

Autonomie, PSAT, GC Tool, and VISION(R. Vijayagopal, 2011, Argonne, 2010). These models have been 

drawn upon in various analyses pursued by the U.S. Department of Energy, U.S. Department of Transport, 

automotive industry, and academic researchers to better understand the impact of proposed CAFE standards on 

the future fleet and the automakers.  

2.2 Stochastic Modelling  

Stochastic modelling is widely used in climate change research. A number of integrated assessment models 

(IAM) have been developed worldwide to investigate the impact of uncertainty in climate change policy 

making. These include DICE by Nordhaus (1994), PAGE (1993) by Hope et al, ICAM by Dowlatabadi and 

Morgan (1993, 1995), SLICE by Kelly and Kolstad (1997a), AS/ExM by Lempert , MIT (1994), and FUND 

by Tol et al (1995) (Nordhaus, 1994, Hope C, 1993, Dowlatabadi, 1993, Morgan, 1995, David L. Kelly, 1998, 

MIT, 1994, R. Tol, 1995, R.J. Lempert, 1994, R. Mendelsohn, 1994). Some of the prominent IAMs have been 
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cited in  assessments for stochastic cost benefit analysis of various climate polices. Examples include the 

PAGE2002 mode, which was used in the Stern Review and the Working Group II report of the IPCC Fourth 

Assessment (M.L. Parry, 2001, M.L. Parry, 2007). IAMs are considered the only credible method for cost 

benefit analysis of climate change mitigation policies given the uncertainties in climate change science and 

economics (Stern, 2007). These models  inform policy makers of the range of possible outcomes of their 

decisions using stochastic modelling and numerical decision making.  

2.3 Regulations Modelling  

The U.S. government uses a number of models to support the rule making process for the CAFE program 

(DOT, 2010)
. 
 Some of these models draw upon the detailed technological simulations developed by Argonne 

National Laboratory, and others include the U.S. DOT CAFE model (Argonne, 2010, NHTSA, 2009). These 

models are used to investigate, using scenario analysis, the impact of the proposed fuel economy standards on 

the fleet fuel use and emissions reduction in the short and long term. 

3 The Model 

This section describes the methodology and structure of the STEP model.   

3.1 Methodology  

The model uses similar techniques to those developed for Integrated Assessment Modelling to provide a 

forward looking numerical framework to explore the impact of uncertainty on the future U.S. light-duty 

vehicle fleet fuel use and emissions. Numerical modelling is used to help decision making by calculating 

outputs based on the user‟s degree of belief about the likely values of the input variables.  A probability 

distribution is thus assigned to input variables based on “up-to-date knowledge” in the engineering and LDV 

markets (Lindley, 1985). This model stochastically calculates the probability density functions for GHG 

emissions and fuel use outputs over time by propagating and calculating the effects of input uncertainties 

throughout fleet calculations. Figure 1 shows an overview of the Stochastic Transport Emissions Policy Model 

stochastic (STEP). The fleet turn over  is tracked based on the calendar year, vehicle model year, the market 

penetration rate of advanced technologies and fuels, and scrappage rate of vehicles on the road. The fuel 

economy of each powertrain as well as the Well-to-Tank (WTT) and Tank-to-Wheel (TTW) efficiencies of 

conventional and alternative fuels are tracked to account for the full life-cycle GHG emissions of fuels. 

Vehicle weight reduction impact is further taken into account through powertrain fuel consumption 

improvements over time. The main features of the STEP model are described in section 3.2 and the equations 

details can be found in the Appendix. 
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Figure 1-STEP Model Overview 

 

The basic calculation logic that is used to compute the fleet fuel use and emissions here follows the MIT fleet 

calculations logic (Bandivadekar, 2008) 
 
which allows sensible and robust tracking of bottom-up details that 

characterize the fleet. Data is drawn from various sources, including the Transportation Energy Data Book 

(TEDB) (Davis, 2007), EPA Light-Duty Automotive Technology and Fuel Economy Trends report 

(Heavenrich, 2006), and the U.S. Department of Transportation report (compiled by NHTSA for CAFE 

compliance)
 
(NHTSA, 2008) , to calculate fleet fuel use and life-cycle GHG emissions.  
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Figure 2-Fuel use and GHG emissions calculations logic
 

 As Figure 1shows the uncertainties in the inputs are captured as a set of probability distributions and fed 

into the STEP model. The model then uses Latin Hypercube Sampling (an advanced form of Monte Carlo 

simulation) to calculate the outputs, fuel use and emissions, as a stochastic distribution over time out to year 

2050. Typically the model is run 10,000 times. Values are randomly sampled from input distributions in each 

run and the outputs are calculated based on the aggregated result of these runs.  The most influential 

contributors to the outputs are also identified and ranked using multivariate linear regression and displayed as 

tornado diagrams. These analyses thus identify what drives the uncertainties in the outputs to inform priorities 

in transport policy making under uncertainty.  

 This methodology adopts a decision theory framework. Decision theory is designed to distinguish between 

a set of alternatives, where each alternative faces uncertain states of the world that can be represented by 

probability distributions (Lindley, 1985). Subjective probability is used to estimate the underlying uncertainty 

in the inputs based on expert assessments. These probabilities are subjective because they depend on the 

experts‟ judgement, which is likely to vary based on the information they each have available (Lindley, 1985). 

These subjective assessments will be subject to representativeness, availability and anchoring effects identified 

by Tversky and Kahneman leading to predictable biases (Tversky, 1974). For instance, anchoring leads to a 

bias in the uncertainty range by the experts, which are likely to be stated as narrower  than can be justified by 

the experts‟ knowledge (Tversky, 1974, Alpert, 1969, Holstein, 1971, Winkler, 1967). To reduce such biases, a 

range of different sources were consulted to determine the probability distribution in the inputs represented in 

this paper, and  probability elicitation techniques were followed  using direct probability assessment techniques 

to obtain probability estimates while minimizing bias and overconfidence (Morgan, 1990, Henrion, 1991).
 
 

These techniques, which are well-established  in climate change modelling
 
(M. Granger Morgan, 2009), 

involve interactions with prominent experts in the field. First, experts are briefed on why the study is 

conducted, then a clear understanding is reached on what the quantities mean and their units of measure. The 

experts are then asked to estimate the upper and lower bounds for each parameter, to minimize anchoring and 

overconfidence biases. The interviewer then proposes more extreme values and asks the experts whether there 

is a reason for such values to occur. Then, if there is a sensible explanation, the expert is asked to extend the 
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bounds. The rest of the distribution is then similarly completed in consultation with the expert (Morgan, 1990).  

 Figure 3 illustrates the logic of the methodology for determining the inputs for STEP . A survey of US road 

transport literature shows a number of different underlying assumptions used in exploring technological and 

fuel development, demand, and market deployment rates. We suggest that the wide range in these differing 

assumptions is indicative of the underlying uncertainty in the variables. Further, a number of engineering and 

vehicle simulations and market behavioural models are used here to inform the uncertainty in the input 

variables. Finally, ranked and weighted screening of inputs is used to inform preliminary judgements on the 

possible ranges of each input variable. The probability elicitation techniques, mentioned earlier (Henrion, 

1991, Morgan, 1990) are then used with  experts in the field to determine a realistic set of  input distributions, 

discussed in the authors‟ 2011 study (Bastani, 2011).   

 

Figure 3- Process for determining the inputs probability distributions 

 

  This methodology therefore contributes to closing the gap between a snap shot analysis of future road 

transport using discrete deterministic scenarios, and a more complete picture of the future vehicle fleet 

characteristics given uncertainties, using a stochastic model that shows the probability distribution of fuel 

consumption and emissions over time out to year 2050. Moreover, using the tornado diagrams in this paper, 

one can answer questions such as: what is the sensitivity of fuel use and emissions to their major contributors, 

given technological and fuel uncertainties in the near to long term? Which factors are dominant in determining 
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the outputs and how do they change over time?  Given technological and behavioural uncertainties, is a 5% 

change in vehicle kilometres travelled  more or less important than a 15% change in average fuel economy 

standards? And many more questions with important practical implications.  

3.2 Model Set-up  

The model assumptions and some of the key equations are described in this section. The model is set up such 

that the ranges for most of the inputs are specified at year 2030 and data are interpolated and extrapolated 

before and after that date. 2030 was chosen since it is not too far out in time that useful judgements cannot be 

made, but it is also far enough in time such that significant changes can be reasonably expected. The 

uncertainty in the inputs is propagated throughout the data points in the model out to year 2050 as described in 

the following sections. Input distributions are represented as triangular distributions, defined by a maximum, 

most likely, and minimum value. Refer to the Appendix for the complete list of equations, parameters, and the 

symbols used to represent the input and output variables. The equation numbers used in this section refer to the 

numbering used in the Appendix.  

3.2.1 Computing Vehicle Stock 

The share of vehicles in the market is captured as percentage of sales in each year. The share of  conventional 

NA-SI engines in the market is not specified directly but is calculated as the residual not covered by   the 

percentage of sales of other types of powertrains. An exponential growth function is used to interpolate and 

extrapolate sales shares, total vehicle sales, and percentage of cars (versus light trucks) from present to 2030 

and out to year 2050, as shown in Eqnn 1 below: where TSL is the total vehicle sales, which is an input to the 

model. The extrapolated values are then checked to ensure the changes are reasonable over time. Year 2009 is 

used as the base year here.  The uncertainty in the sales shares, total sales, and percentage of cars is propagated 

over time using similar equations to Eqn 1, where both the mode and the range are extrapolated out to year 

2050. These numbers are not to be taken as forecasts but as conditional projections into the future.   

TLS (i)= TLS (2009) * exp [ (ln(TSL(2030)/TSL(2009))/(21))*(i – 2009)]; i=2010-2050  [mil]   Eqn (1)  

Market segmentation is also tracked, to allow for a shift between cars and light trucks over time using equation 

4 below, where PCAR represents the percentage of cars (versus light trucks) in the sales share in year i.  

TLS-SEG1(i)=PCAR(i) * TLS (i)       [mil] Eqn (4)  

 The future scrappage rate input is then used to keep track of the number of cars removed in each calendar 

year. This is then used to calculate the on road vehicle stock, using the number of surviving cars based on 

model year (from 1960 onwards) and the calendar year. Refer to equations 5-10 described in the Appendix .   

The same sets of calculations are performed for all segments of the LDV market (cars, SUVs, and OLTs), and 

the details of each segment are kept track of separately until the very last calculations to compute the total fuel 

use and GHG emissions. This in turn allows segment specific analyses.  

3.2.2 Computing Vehicle Kilometres Travelled and Fuel Consumption  

VKT is calculated using annual growth rates, which vary in different periods of time, and is based on the 

vehicle's model year. It is assumed that VKT of vehicles decline with age, in other words, older cars travel 

less. Equations 12 and 13 below describe how VKT is kept track of over time,  based on the vehicle model 

year. The uncertainty in the VKT variable is propagated over time through the growth rate as shown in Eqn 13.  
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VKT(i, MYh, VA)= VKT (i, MYh, VA-1) * exp(MYDC*VA) ;    

VA=1-60, i=2006-2050; h=1960=2050       [km] Eqn(12) 

 VKT(i, MYh) = (1+VKT-Gr)* VKT(i-1, MYh); r=1-3; i=2006-2050; h=1960=2050 [km] Eqn (13)   

Fuel consumption is the inverse of the well-known measure of fuel economy and is measured in Litres/100km. 

Fuel consumption of Cars, SUVs, and OLTs, and different powertrains are kept track of separately. A 

correction factor has been used to take into account the difference between laboratory fuel economy 

measurements and highway driving conditions, as explained in section 3.4.   

Fuel consumption is calculated based on a measure called Emphasis on Reducing Fuel Consumption (ERFC), 

which takes a value between 0 and 1, and is defined as the percentage of the actual FC reduction realized to 

total FC reduction possible with constant size and performance (Cheah, 2009, Bandivadekar, 2008).  ERFC of 

cars and light trucks in year 2030 are specified as inputs to the model and are described using an exponential 

relation over time, as shown in Eqn 15 below. The uncertainty in the future vehicles‟ fuel consumption is thus 

propagated through ERFC, as described in Eqn 15, as well as their relative fuel consumption over time.  

ERFCu (i)= ERFCu (2009) * exp [ (ln(ERFCu (2030)/ ERFCu (2009))/(21))*(i – 2009)];  

 i=2010-2050; u=1,2         [ ] Eqn (15) 

The relative fuel consumption of each powertrain (relative to a NA-SI conventional engine in 2008) is then 

used to calculate the vehicle fuel use over time. The relative fuel consumption is a function of ERFC as 

described earlier. The relative fuel consumption of each powertrain at 100% ERFC is also described over time 

with an exponential curve similar to that described in Eqn 14.  The relative fuel consumption of different 

powertrains in 2030 at 100% ERFC level is also input into the model. The actual fuel consumption of each 

powertrain in each year is then calculated based on the ERFC in that year as well as the relative fuel 

consumption of that powertrain in the same year, multiplied by the fuel consumption of the base vehicle (2008 

NA-SI).  ERFC is used here to account for weight savings and changes in the performance of vehicles over 

time.  

The relative fuel consumption for PHEV used in this paper is for the miles these vehicles travel on gasoline 

engine. Their electricity consumption is then calculated using their electricity use per kilometres travelled on 

the battery, treated the same way as BEVs. The utility factor is used to calculate the number of kilometres 

PHEVs travel on gasoline versus electricity (Eq 14).  For FCVs, we keep track of the energy consumption per 

100 km, which is then used to calculate the total FCV life-cycle energy use based on its associated VKT. 

3.2.3 Computing Total Fuel use and Life-cycle GHG Emissions   

The fuel consumption for each powertrain and each calendar year is kept track of separately and then summed 

up in the last step to calculate the total fuel use in billion litre gasoline equivalent per year. The total fuel 

consumption is calculated using equations 19 and 23 below, and includes all liquid based fuels. This excludes 

electricity primary fuel use; life-cycle energy use from electricity is included in the energy graphs discussed in 

section 4.5. 

FUm (i)=∑ FC-SEGk (i)* VKT(i, MYh)* VS(i); i,h=1960-2050; m=1-4, k=1-3  [Bil L] Eqn (19) 

FU-t(i) = ∑ FUm (i); i=1960-2050; m=1,2      [Bil L] Eqn (23) 
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 The volume of alternative fuels is calculated based on the blend percentage. It is assumed that total available 

tarsand will be split equally in replacing diesel and gasoline. Total fuel consumption is reported in billion litre 

gasoline equivalent and is adjusted for different fuel energy densities. The total energy consumption is 

calculated using fuel volumes and fuel energy densities based on Eqn 24 below, which also includes the 

electricity total life-cycle energy consumption.  

EC(i)= ∑[FUa (i) *FDa] + FU-E(i)*FD3; i=1960-2050; a=4-10    [MJ] Eqn (24) 

WTW coefficients are described using an exponential curve over time shown in equation 25 below, as it is 

assumed here that the WTW emissions will improve over  time due to better raw material processing  and more 

efficient use on the vehicle. The GHG emissions are then calculated using life-cycle WTW emissions and the 

fuel use based on equation 26 below, and summed up to represent the total life-cycle emissions from the fleet 

in Mt CO2 equivalent per year. For electricity, the WTW emissions represent the grid average emissions. This 

is calculated, as shown in Eqn 26 below, based on the percentage of electricity that comes from renewable 

clean sources (which is an input to the model) as well as the WTW of conventional electricity (coal and natural 

gas based), which is also an input to the model. The uncertainty in the life-cycle emissions are thus propagated 

through WTW coefficients and alternative fuel use over time following equations 25 and 26 below.   

WTWd (i)= WTWd (2009) * exp [ (ln(WTWd (2030)/ WTWd (2009))/(21))*(i – 2009)];  

i=2010-2050; d=1-8                                                                                  [gCO2 eqv/MJ,  g/kWh] Eqn (25) 

WTW-E (i)= (1-PCS-5(i))* WTW-EC+ PSC-5(i)*WTW-EC; i=2010-2050     [gCO2 eqv/kWh]  Eqn(26) 

WTW-t (i)= ∑ WTWd (i) * FUp; i=2008-2050; d=1-6; p=1-8                                [Mt CO2 eqv] Eqn(27) 

 

3.3 Methodological Illustrative Examples  

Three illustrative examples are carefully chosen here to demonstrate the methodology. The inputs are first 

ranked based on their level of uncertainty and then grouped in very low, low, medium, and high uncertainty 

categories. The rankings are chosen to be representative and sensible but are for demonstration purposes only 

to allow readers to understand the methodology without getting into  detailed consideration of why a certain 

range and mode is used for each input. Refer to the authors‟ 2011 study which covers those details for a 

realistic technology and fuel development pathway (Bastani, 2011). Table 1 below shows the ranking chosen 

for these examples. The inputs are represented by triangular distributions and the min, mode, and max values 

are shown in the table below.  

 The measure used in this model is the inverse of fuel economy, which is the vehicle fuel consumption in 

L/100km. Vehicle fuel use is calculated from ERFC (Emphasis on Reducing Fuel Consumption) and 

powertrain‟s relative fuel consumption. ERFC measures the degree to which weight savings and technological 

improvements are used to reduce vehicle fuel use. ERFC is defined as the actual fuel consumption reduction 

realized, divided by the fuel consumption reduction achievable if size and performance are kept constant, and 

is reported as a percentage (DOT, 2010). At 100% ERFC all the technological improvements are used to 

reduce fuel consumption while power and weight are kept constant. At 0% ERFC, the fuel consumption stays 

the same because all technological improvements have been offset by performance gains (power and faster 

acceleration time, and added weight). Though not explicitly stated, weight reduction is taken into account in 

these calculations through its coupling with ERFC. 



November 2011 
 

11 of 33 

 

Parameter  Min  Mode Max Mean STD 

Uncertainty 

Level 

Values in 

2010 

Total light vehicles Sales in 2030 [„000] 16,149 18,403 20,657 18,403 920 Low 11,500 

Future Scrappage Rate(2011+) 60% 80% 100% 80% 8% Medium 80% 

%Sales HEV in 2030 5% 10% 15% 10% 2% High 3% 

% Sales PHEV in 2030 3% 5% 7% 5% 1% High 0% 

%Sales BEV in 2030 2% 4% 6% 4% 1% High 0% 

VKT-Annual-Growth(2006-2020) 0.38% 0.50% 0.62% 0.50% 0.05% Medium 0.50% 

VKT-Annual-Growth(2020-2030) 0.13% 0.25% 0.37% 0.25% 0.05% High N/A 

VKT-Annual-Growth(2030+) -0.20% 0.00% 0.20% 0.00% 0.08% High N/A 

Emphasis on Reducing Fuel Consumption (ERFC)  

ERFC Cars 60% 80% 100% 80% 8% Medium 50% 

ERFC Light Trucks 53% 70% 87% 70% 7% Medium 50% 

Fuels and Energy Sources  Value in 2010 

%blend cellulosic ethanol in 2030 7% 14% 21% 14% 3% High 0% 

%blend corn ethanol in 2030 4% 8% 12% 8% 2% High 5% 

%electricity from clean sources in 2030  38% 50% 62% 50% 5% Medium 29% 

%bio-diesel 2% 3% 4% 3% 0% Medium 0% 

%tarsand in 2030 13% 25% 37% 25% 5% High 10% 

WTW Coefficients[gCO2  eqv/MJ] 

Cellulosic Ethanol WTW in 2030 4 8 12 8 2 High 10 

Corn Ethanol WTW in 2030 52 69 86 69 7 Medium 77 

Gasoline WTW in 2030 86 92 98 92 2 Very Low 92 

Diesel WTW in 2030 88 94 100 94 2 Very Low 94 

Bio-Diesel WTW in 2030 67 89 111 89 9 Medium 89 

Conventional ElectricityWTW in 2030 

[gCO2/kWh] 495 970 1445 970 194 High 1078 

Hydrogen WTW in 2030 93 123 1445 123 12 Medium 137 

TarSand WTW in 2030 99 105 111 105 3 Very Low 109 

Electricity Use 

PHEV Elec consumption (kWh/100km) in 

2030 12 24 35 24 5 High 36 

BEV Elec consumption (kWh/100km) in 

2030 12 24 36 24 5 High 36 

FCV Hybrid Electric Energy use 

(MJ/100km) 59 115 171 115 23 High 115 

Utility Factor 24% 48% 72% 48% 10% High N/A 

FC Relative in 2030 

FC-r NA-SI cars in 2030 0.53 0.70 0.87 0.7 0.07 Medium 1.00 

FC-r Turbo cars in 2030 0.47 0.62 0.77 0.62 0.06 Medium 0.90 
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FC-r Diesel cars in 2030 0.45 0.59 0.73 0.59 0.059 Medium 0.84 

FC-r HEV cars in 2030 0.21 0.42 0.63 0.42 0.084 High 0.70 

FC-r PHEV cars in 2030 0.21 0.42 0.63 0.42 0.084 High 0.70 

FC-r NA-SI LT in 2030 0.54 0.71 0.89 0.714 0.071 Medium 1.00 

FC-r Turbo LT in 2030 0.46 0.61 0.76 0.609 0.06 Medium 0.83 

FC-r Diesel LT in 2030 0.42 0.56 0.69 0.555 0.056 Medium 0.74 

FC-r HEV LT in 2030 0.22 0.43 0.63 0.426001 0.085 High 0.70 

FC-r PHEV LT in 2030 0.22 0.43 0.63 0.426 0.085 High 0.70 
Table 1-Ranked Input List for example A 

Then three illustrative examples are simulated using these ranked categories, with very low, low, medium, and 

high categories representing the spread (standard deviation/mean) set to 2.5%, 5%,10%,15% respectively in 

example A, ; to 5%, 10%,20%,30% in  example B; and to 10%, 20%40%,60% in example C. These illustrative 

examples are chosen as simplified examples where the mode is kept constant and the spread is doubled to give  

readers a better sense of how the integrated impact of uncertainty on the outputs changes as the level of 

uncertainty is increased, with a consistent set of inputs. These examples also confirm the internal validity of 

the results. The simulation results for these examples are presented in the next section. 

 

3.4 Numerical Simulation Results  

This section presents the simulation results from running the model  10,000 times given the inputs described in 

section 3.3 for illustrative examples A,B, and C with different levels of uncertainty.   

3.4.1 Illustrative Example A 

The following graphs (Figure 4,Figure 5, Figure 6, Figure 7) show the simulation results from running the 

model with the inputs shown in Table 1 above and with spread (standard deviation/mean) for very low 

uncertainty set to 2.5%,  low uncertainty to 5%, medium to 10% and high uncertainty to 20%. The results here 

show the total fuel consumption and emissions in 2030 and 2050. 

 The results are in the form of probability distribution functions, where the area underneath the graph is 

equal to 1. The y-axis shows the relative probability, adjusted to keep the integral of the graph equal to 1, and 

has no physical meaning. The statistic summary for each graph is shown on the right hand side of the 

probability distribution functions.  The minimum and maximum values are not meaningful measures as they 

dependent on the number of runs and thus are not referred to here. Instead, the 1% and 99% percentile values 

are used here to interpret the range of outcomes. Statistics such as the mean and standard deviation and 

confidence intervals converge over large number of runs and should be used to interpret the probabilistic 

results shown here. For instance, in year 2030 (Figure 4), the fuel consumption will be most likely around 510 

billion litres gasoline equivalent, but could be anywhere between 450 and 590 billion litres (note that the 

values are rounded here to avoid implying high precision). The standard deviation shows the spread of the 

outcome. In example A, for example, in year 2030, the standard deviation is 31 billion litres, which shows how 

much variation there is from the mean value (expected value). A small standard deviation shows that the 

outcomes are expected to vary in a range close to the mean value and a large standard deviation shows that the 

outcomes are spread out over a large range of values. The ratio of the standard deviation to the mean, also 

called the coefficient of variation or unitized risk, is a normalized measure of dispersion of a probability 



November 2011 
 

13 of 33 

distribution, and is the measure we use here to discuss the uncertainty in the outcomes. The coefficient of 

variation of fleet fuel use in example A in year 2030 is about 6% and in year 2050 is about 11%. As expected, 

the level of uncertainty in the outcome increases over time, as our knowledge of the future declines. The 

coefficient of variation in this example is relatively low, which is consistent with the relatively low 

uncertainties in the inputs. The measure “values” on the right side of the probability density functions show the 

number of times the model is run using Latin Hypercube sampling.. 10000 runs is chosen here because the 

standard error of the mean can then be conveniently calculated by dividing the standard deviation by 100, 

which is about 0.3 billion litres for the 2030 fleet fuel use in this case. In other words, if we run the model 

another 10000 runs, there is about a 95% chance that we will find a mean value within 0.6 billion litres of the 

510 billion litres expected value found here. Moreover, the interval shown above the graphs is the 90% 

confidence interval which indicates the reliability of the shown estimates. For instance, in example A, in year 

2030, there is a 90% chance that the fuel consumption estimates will be somewhere between 470 to 570 billion 

litres. That is, there is only a 10% risk that fuel consumption will exceed 570 or be below 470 billion litres. 

These types of information are significant for policy makers, for example, when deciding which emissions 

pathways to choose based on an accepted level of risk associated with the outcomes not matching what they 

expect.  

 The probability distribution outcomes below can be used to determine any level of confidence interval 

based on the readers‟ interest; the 90% interval is only shown here as an example.  Further, different percentile 

values can also be read from the following graphs; for instance, Figure 4 shows the 5% percentile for 2030 fuel 

use, which means there is 5% chance of fuel consumption falling below 470 billion litres in year 2030 in this 

example. Different percentiles and quartiles of interest can be similarly inferred from these PDF functions.  

 Another measure of interest is the outcome skewness, which is a measure of asymmetry. In 2030 fleet fuel 

use in example A, the skewness is small which means the outcome is relatively symmetric. In year 2050, the 

skewness is  larger and is a positive number, which means the outcome distribution has a longer right hand tail 

compared to the left side, which means the distribution has a few high values. In contrast, when skewness is 

negative the distribution has a longer left tail and has a few low values. Even though the input distributions 

were chosen symmetrically for this example, the outputs are not always symmetric. This is due to the 

interactions among variables, described in the equations earlier, and is yet another reason for having to develop 

a proper stochastic model to be able to examine the impact of uncertainties in the input on the outcome.  

Finally, Kurtosis is another useful measure which indicates the level “peakedness” and heavy tails in a 

probability distribution. In other words, higher Kurtosis indicates that the spread is due to a few extreme 

deviations as opposed to frequent modest deviations. This could be used to determine what the source of 

uncertainty is in the outcomes. In year 2050 in example A (Figure 5), for example, the Kurtosis is low which 

means the spread in the fuel consumption comes from frequent modest deviation and the distribution has a 

more rounded peak and shorter thinner tails.  Similarly, Figure 6 and Figure 7 can be read using the most 

likely, range, spread, coefficient of variance, confidence intervals, and such to interpret the emissions 

distribution results from illustrative example A. In year 2030 (Figure 6), for instance, the fleet GHG emissions 

will be most likely around 1400 Mt CO2 equivalent, but could be anywhere between 1190 and 1640 Mt CO2 

equivalent. The standard deviation of GHG emissions is about 97 and 117 Mt CO2 equivalent in years 2030 

and 2050, respectively. The emissions distributions are also positively skewed with a few higher extreme 

values with very low probabilities.   
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Figure 4-2030 U.S. Fleet fuel use [Bil L gasoline eqv/year] : Illustrative Example A Results 

 

 

Figure 5-2050 U.S. Fleet fuel use [Bil L gasoline eqv/year]: Illustrative Example A Results 
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Figure 6-2030 U.S. Fleet GHG emissions [Mt CO2 eqv/year]: Illustrative Example A Results 

 

 

Figure 7-2050 U.S. Fleet GHG emissions [Mt CO2 eqv/year]:: Illustrative Example A Results 
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3.4.2 Illustrative  Example B 

The following graphs (Figure 8 and Figure 9) show the simulation results from running the model with the 

mode inputs shown in Table 1 above and with coefficient of variation for very low uncertainty as 5%, low 

uncertainty as 10%, medium as 20% and high uncertainty as 30%. The results here show the fuel consumption 

and emissions in 2050 (Figure 8 and Figure 9). Similar statistical information can be inferred from these 

graphs, as explained in section 3.3.1. The mean value stays about the same as that of example A here, since the 

mode of the inputs have been kept the same. The mean is not exactly the same though due to asymmetry in the 

output. The spread is now larger in example B, as expected since the uncertainty levels in inputs have been 

increased. The outputs are also more asymmetrical, with a higher positive skewness and thus a longer right 

hand tail, which means there is a chance of the fleet fuel use having a much higher value. Even though the 

inputs are symmetrically chosen here, the outputs are visibly asymmetric. This further confirms that simple 

averaging and summing up of the effects from the inputs is not sufficient to understand the uncertainty impact 

on the outputs, and underlines the need for a  stochastic model such as the one described in this paper.   

 

Figure 8-2050 U.S. Fleet fuel use [Bil L gasoline eqv/year]: Illustrative Example B Results 
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Figure 9-2050 U.S. Fleet GHG emissions [Mt CO2 eqv/year]:: Illustrative Example B Results 

 

3.4.3 Illustrative Example C 

The following graphs (Figure 10and Figure 11) show the simulation results from running the model with the 

mode inputs shown in Table 1 above and with higher uncertainties as the coefficient of variation is set to 10% 

for very low uncertainty and20%, 40% , and 60% for low, medium and high levels of uncertainty respectively. 

The results here show the fuel consumption and emissions in 2050.  Similar statistical information can be 

inferred from these graphs (Figure 10 and Figure 11), as explained in section 3.3.1. The spread in this example 

is substantially greater than in the  previous examples, which is driven by higher uncertainties in the inputs. 

The level of uncertainty in the inputs has an amplified impact on the output. The outputs are also highly 

positively skewed with a very long right hand tail, with a relatively symmetric set of inputs, which indicates 

that there is a chance that the fuel consumption and emissions could be much larger than the expected value 

(mean) in year 2050.  
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Figure 10-2050 U.S. Fleet fuel use [Bil L gasoline eqv/year]: Illustrative Example C Results 

 

 

Figure 11-2050 U.S. Fleet GHG emissions [Mt CO2 eqv/year]:: Illustrative Example C Results 
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3.4.4 Major Contributing Factors  

The following tornado graphs show the major contributors to the fleet fuel use in example A for 2030 and 

2050, and ranks them based on their relative importance under uncertainty. These graphs are developed using 

ranked linear regression analysis of the inputs and outputs, using data from 10,000 simulation runs. The labels 

on the y-axis indicate the major influencing factors, and the numbers on the bar in front of each parameter, 

along the x-axis, shows by how much (in billion litres of gasoline equivalent/yr) the total fuel consumption 

would increase with a one standard deviation increase in the input shown on the y-axis. Refer to Table1 for a 

complete list of inputs and statistics (including input standard deviation values).   

 In year 2030, for instance, if the scrappage rate is increased by one standard deviation (i.e. 8%), the total 

transport fuel use decreases by about 49 Billion litres of gasoline equivalent. The changes in the output shown 

on these tornado graphs is a result of the net effect of the influence of each input in determining the final 

output, as well as the underlying uncertainty in each input. As shown inFigure 12, in 2030, for example, if the 

relative fuel consumption of NA-SI cars is increased by one standard deviation (i.e. 0.1) , the total fuel use will 

be increase by about 20 billion litres.  Further the direction in which the outputs are impacted by the inputs is 

shown by the direction of the bars. For example, as shown in Figure 12, , and Figure 13 below, an increase in 

scrappage rate decreases the fuel consumption due to faster fleet turn over and thus faster penetration of 

improved vehicles and retirement of older vehicles. Further, these figures show  that an increase in VKT 

growth increases fuel consumption, due to increase in travelling. Moreover, an increase in the relative fuel 

consumption of NA-SI cars increases fuel use due to reduced fuel economy, while an increase in the BEV sales 

reduces fuel use, due to electricity replacing fuel. All the directional effects of the inputs on the total fuel use, 

shown in Figure 12 and Figure 13, are  as expected.   

 These tornado graphs are “Mapped Regression Values”, which means the outputs are scaled to the unit of 

fuel use (billion litres) to describe the impact of each parameter on the output in absolute terms.  These graphs 

thus indicate which parameters are most important in determining total fuel use in the near to long term. These 

graphs also show that the major influencing parameters change dynamically over time, as the uncertainty 

profile and dynamics of interaction between various influencing forces change. 

 As shown in Figure 12 and Figure 13, the scrappage rate is the most influential parameter in determining 

total fuel use in the mid term, and one of the major contributors in the long term. This is attributed to the fact 

that scrappage rate directly controls the size of the fleet and thus the technology turn over. The VKT annual 

growth in the short and mid terms is also an important contributor as it captures the actual on the road use of 

the vehicles. .  Moreover, the ERFC of cars becomes more important in the long term, as the emphasis on 

reducing fuel consumption becomes higher (lower vehicle weight and less emphasis on vehicle performance 

increase), and thus technological improvements are used to increase vehicles‟ fuel economy.  As shown in the 

following graphs therefore the relative importance and the impact of major contributing variables change over 

time.  
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Figure 12-2030 U.S. Fleet fuel use ranked major influences [Bil L gasoline eqv/year]: Illustrative Example B 

 

Figure 13- 2050 U.S. Fleet fuel use ranked major influences [Bil L gasoline eqv/year]: Illustrative Example B 
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Similar tornado graphs can be plotted for GHG emissions, as shown in Figure 14below. In year 2050, for 

instance, if the scrappage rate is increased by one standard deviation (i.e. 8%), the total transport emissions 

decreases by about 82 Mt CO2 equivalent. The scrappage rate is the most influential parameter in determining 

the total emissions in the short and mid term. Though still important in the long term as shown in Figure 

14scrappage rate is not as influential in 2050 compared to the nearer term. This is because scrappage rate 

directly controls the size of the fleet and thus the technology turn over, and, fuels become less emissions 

intensive over time. Therefore, the higher the scrappage rate, the faster are old and inefficient vehicles replaced 

by new improved vehicles with higher fuel economy, using fuels that have a much cleaner life-cycle. 

Moreover, the WTW of gasoline is most influential in the near term and becomes less and less important over 

time, as other types of fuels replace gasoline and as their process of fuel making and the raw material become 

cleaner, making fuels less emissions intensive. The percentage cellulosic ethanol blend is one of the most 

influential parameters in the near to long term, this is due to the high level of uncertainty in the development of 

this fuel, due to technological challenges and the economics of this fuel, and its extremely low emissions 

compared to conventional fuels. This also indicates cellulosic ethanol‟s large potential in contributing to large 

emissions reduction in the long term.    

 

Figure 14- 2050 U.S. GHG Emissions ranked major influences [MtCO2 equivalent)/year]: Illustrative Example B   
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3.5 Distributions Comparisons 

The first graph in this section shows the dynamic of the output distributions over time: Figure 15compares the 

fleet fuels distribution from illustrative example B over time from near to long term. As shown on this graph, 

the mean of the distribution decreases over time while the spread increases noticeably. The reduction in the 

mean over time is expected given the chosen pathway here, and the increase in the spread is justified by the 

increase in the uncertainty of knowledge about the future vehicle fleet. A similar dynamic holds for emissions 

distribution over time. 

 The coefficient of variance increases from example A to B to C, due to the increase in the uncertainty level 

in the inputs from A to C. The increase in the coefficient of variance is non-linear. Figure 16 overlays the 

distribution from illustrative examples A and B for the year 2050.  As shown in Figure 16, the mean of 

example A and B distributions are very close, as expected, due to keeping the input modes the same and the 

symmetry in the input distributions in these examples. The spread increases from example A to B as the input 

uncertainties are increased.  

 

 

Figure 15- Fleet fuel use distribution [Bil L gasoline eqv/year] over time: Illustrative example B 
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Figure 16-Distribution comparison for 2050 fleet fuel use [Bil L gasoline eqv/year]: Red: Illustrative example B , 

Blue: Illustrative Example A   

4  Discussion and Concluding Remarks   

This paper has introduced a stochastic fleet assessment model which quantifies the impact of uncertainties on 

the U.S. light-duty vehicle fleet fuel use and GHG emissions out to year 2050. The model further identifies and 

ranks the major influences on future fuel use and emissions under uncertainty and over time. The results show 

that the impact of uncertainty on future emissions and fuel use is significant and thus needs to be quantified 

and taken into account when analyzing the future of light-duty vehicle fleet.  

 The results show that the mere summing of individual inputs uncertainties does not predict the uncertainties 

in the results, and aggregate quantification of uncertainties accounting for interaction among inputs should be 

performed using stochastic fleet assessment models such as the one developed in this paper. Moreover, the 

results show that the symmetry in the output is not solely determined by individual inputs‟ uncertainty 

symmetry, as inputs with completely symmetric uncertainty bounds can  produce significantly non-symmetric 

outputs due to the interactions among variables.   

 The probability distributions provided in this paper further quantify the range of possible outcomes, using 

measures such as: the expected value, standard deviation, different confidence intervals, skewness and 

kurtosis, and the coefficient of variance in each outcome, for any given point in time out to 2050. The 

probability distributions also indicate what the chances are of achieving a certain target and the confidence 

level with which future emissions and fuel use can be estimated. Further, the tornado diagrams developed from 

the model can be used to identify which variables and uncertainties are most important in determining the fleet 

fuel use and GHG emissions and how they change over time to inform policy prioritization under uncertainty. 
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 Quantification of uncertainties in the emissions and fuel consumption out to year 2050 has been made 

possible using the methodology described in this paper. This methodology deciphers real-world uncertainties 

into a set of probabilistic density functions that can be readily interpreted and compared to inform transport 

research priorities and policy making. This model can be further used by policy makers to explore different 

views about what the uncertainties may be: to understand the consequences and associated risks based on their 

informed view on the uncertain states of the world, and identify pathways that lead to the highest reduction of 

fuel use and emissions with a high probability using numerical evidence. The results from this research can 

therefore be used to inform policy makers of the possible consequences of their decisions, and help them 

choose amongst alternatives by providing them with a more complete picture than traditional deterministic 

models.  
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Glossary  

 

BEV   Battery electric vehicle  

BOF   Steelmaking technique using a basic oxygen furnace.  

CAFE   Corporate Average Fuel Economy 

CAR Sedans and Wagons 

ERFC   Emphasis on Reducing Fuel Consumption 

EPA/USEPA   U.S. Environmental Protection Agency  

EV Electric Vehicle  

FCH Fuel-cell Hybrid  

Fuel Consumption (FC) Amount of fuel consumed by a vehicle per unit distance of travel (L/100km), which is 

the inverse of the more commonly used metric, fuel economy 

Fuel Economy (FE) Distance travelled per unit of fuel used (miles per gallon, MPG).  

Fuel use   Total fuel used in liters of gasoline-equivalent  

GHG   Greenhouse gases  

GREET   Greenhouse gases, Regulated Emissions, and Energy use in Transportation  

 model by Argonne National Laboratory.  

HEV   Hybrid-electric vehicle  

HCCI  Homogenous Charge Compression Ignition  

ICE   Internal combustion engine  

LCA Life-cycle assessment  

Light truck  Class of vehicles including sport utility vehicles, vans and pickups weighing less 

than 8,500 lb (gross vehicle weight) 
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LDV  Light-duty vehicles  

MIT Massachusetts Institute of Technology  

MPG   Miles per gallon, units of vehicle fuel economy  

MY  Model year of new vehicles  

NA-SI   Naturally-aspirated Spark Ignition (versus a turbo or supercharged) engine  

NHTSA   U.S. National Highway Traffic Safety Administration  

NRC   U.S. National Research Council  

OLT Other Light Trucks (includes pick-up trucks and all trucks that are part of LDVs but 

not categorized as SUV or cars) 

PDF Probability Density Function  

PHEV   Plug-in hybrid electric vehicle  

SUV   Sport Utility Vehicle  

TEDB   Transportation Energy Data Book published by Davis et al 
[2]

  

TTW Tank-to-Wheels  

Turbo-SI Turbo charged Spark Ignition engine  

VKT   Vehicle kilometres travelled  

WTT Well-to-Tank  

WTW Well-to-Wheels 
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Appendix: Equations  

A.1 Vehicle Stock and Market Share  

 

Parameter Symbol 

Total LDV Sales  TLS 

Future Scrrapage rate FSR 

Vehicle Stock VS 

Vehicle-in-use VIU 

Model-year MY 

Vehicle-Removed VR 

Non-Survived-Vehicles NSV 

  

Vehicle Segment  SEG 

Cars SEG1 

SUVs SEG2 

Other light Trucks (OLT) SEG3 

  

%Sales Powertrain  S 

Gasoline-Turbo S1 

Diesel S2 

HEV S3 

PHEV S4 

BEV S5 

FCHEV S6 
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%Cars PCAR 

%SUV PSUV 

 

TLS (i)= TLS (2009) * exp [ (ln(TSL(2030)/TSL(2009))/(21))*(i – 2009)]; i=2010-2050  [mil]   Eqn 

(1)  

SEGk (i)= SEGk (2009) * exp [ (ln(SEGk (2030)/ SEGk (2009))/(21))*(i – 2009)];  

i=2010-2050; K=1,2,3 [ ] Eqn (2) 

PACR (i)= PACR (2009) * exp [ (ln(PACR (2030)/ PACR (2009))/(21))*(i – 2009)];   

i=2010-2050 [ ] Eqn (3) 

TLS-SEG1(i)=PCAR(i) * TLS (i) [mil] Eqn (4)  

TLS-SEG2(i)=PSUV(i) * TLS (i) [mil] Eqn (5) 

TLS-SEG3(i)=(1-PCAR(i)-PSUV(i))*TLS(i) [mil]  Eqn (6) 

NSV(i, SEGk)= TLS(i, SEGk)*FSR; i=2010-2050; K=1-3 [mil] Eqn (7) 

VIU(i, SEGk)= TLS(i, SEGk)- NSV(i, SEGk) ; i=2010-2050; K=1-3 [mil] Eqn (8) 

VR(i, SEGk)= NSV(i, SEGk)-NSV(i-1, SEGk) ; i=2010-2050; K=1-3 [mil] Eqn (9) 

VS(i)= ∑ [VS(i-1, SEGk)]MY + TLS (i, SEGk) – VR (i, SEGk) ; 

 i=2010-2050; MY=1990-2050; K=1-3 [mil] Eqn (10) 

 

Sj (i)= Sj (2009) * exp [ (ln(Sj (2030)/ Sj (2009))/(21))*(i – 2009); i=2010-2050; j=1-6 [%] Eqn 

(11) 

 

A.2 Travelling Pattern 

 

VKT Growth VKT-G 

VKT-Annual-Growth(2006-2020) VKT-G1 

VKT-Annual-Growth(2020-2030) VKT-G2 

MY 
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VKT-Annual-Growth(2030+) VKT-G3 

Model Year Decay  MYDC 

Vehicle Age VA 

PHEV utility factor  PHEV-UF 

PHEV Gasoline VKT PHEV-G-VKT 

 

VKT(i, MYh, VA)= VKT (i, MYh, VA-1) * exp(MYDC*VA) ;   [km]  

VA=1-60, i=2006-2050; h=1960=2050  Eqn (12)  

 VKT(i, MYh) = (1+VKT-Gr)* VKT(i-1, MYh); r=1-3; i=2006-2050; h=1960=2050  [km] Eqn (13)   

PHEV-G-VKT (i) = (1-PHEV-UF)*  VKT(i, MYh); i=2006-2050; h=1960=2050  [km] Eqn (14)        

 

A.3 Fuel Economy, Fuel use, and Energy Consumption  

 

*Note: fuel consumption is the inverse of fuel economy and has unit of L/100km  

ERFC   

Cars ERFC-1 

Light Trucks (LT) ERFC-2 

  

Relative Fuel Consumption  FC-r 

NA-SI Car FC-r-1 

Gasoline-Turbo Car FC-r-2 

Diesel Car FC-r-3 

HEV Car FC-r-4 

PHEV Car FC-r-5 

BEV Car FC-r-6 
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FCHEV Car FC-r-7 

NA-SI Light Truck (LT) FC-r-8 

Gasoline-Turbo LT FC-r-9 

Diesel LT FC-r-10 

HEV LT FC-r-11 

PHEV LT FC-r-12 

BEV LT FC-r-13 

FCHEV LT FC-r-14 

Fuel consumption (L/100km) FC 

  

Fuel use FU 

Gasoline equivalent  FU-1 

Diesel equivalent  FU-2 

Electricity  FU-3 

Hydrogen use FU-4 

Cellulosic Ethanol FU-5 

Corn Ethanol FU-6 

Bio-diesel FU-7 

Tarsand FU-8 

Gasoline  FU-9 

Diesel  FU-10 

Total liquid based  FU-t 

Total Electricity use  FU-E 

  

%Clean Source PCS 

Blend Cellulosic Ethanol PCS-1 
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Blend Corn Ethanol PCS-2 

Bio-diesel PCS-3 

Tarsand  PCS-4 

Renewable Electricity  PCS-5 

Fuel Density [MJ/L, MJ/kWh] FD 

Energy Consumption [MJ] EC 

 

ERFCu (i)= ERFCu (2009) * exp [ (ln(ERFCu (2030)/ ERFCu (2009))/(21))*(i – 2009)];  

 i=2010-2050; u=1,2 [ ] Eqn (15) 

FC-re (i)= FC-re (2009) * exp [ (ln(FC-re (2030)/ FC-re (2009))/(21))*(i – 2009)];  

 i=2010-2050; e=1-14 [ ] Eqn (16) 

FC-re (ERFCu,i,i)= f(FC-re(100%,i), FC-re(0%,i)); u=1,2; e=1-14; i=2009-2050 [ ]  Eqn (17) 

FC-SEGk (i)= FC-r-SEGk (i)*FC-r-SEGk (2009); k=1-3; i=2010-2050 [L/100km] Eqn (18) 

FUm (i)=∑ FC-SEGk (i)* VKT(i, MYh)* VS(i); i,h=1960-2050; m=1-4, k=1-3 [Bil L] Eqn (19) 

PCSo (i)= PCSo (2009) * exp [ (ln(PCSo (2030)/ PCSo (2009))/(21))*(i – 2009)];  

 i=2010-2050; o=1-5 [ %] Eqn (20) 

FUp (i)= PCSo (i)*FUm (i); i=2010-2050; o=1-4; m=5-8 [Bil L] Eqn (21) 

FUb (i)= FUm (i)-[∑ FUp (i) (p|1-4)]; i=1960-2050;b=9,10 [Bil L] Eqn (22) 

FU-t(i) = ∑ FUm (i); i=1960-2050; m=1,2 [Bil L] Eqn (23) 

EC(i)= ∑[FUa (i) *FDa] + FU-E(i)*FD3; i=1960-2050; a=4-10 [MJ] Eqn (24) 

 

A.4 Life-cycle Emissions 

 

Fuel Well-to-Wheel Emissions WTW 

Cellulosic Ethanol WTW WTW-1 
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Corn Ethanol WTW WTW-2 

Bio-diesel WTW WTW-3 

Conventional Electricity WTW WTW-4 

Gasoline WTW WTW-5 

Diesel WTW WTW-6 

Hydrogen WTW WTW-7 

Tarsand WTW WTW-8 

Average Electricity Grid WTW WTW-E 

Clean Electricity WTW WTW-EC 

Total WTW WTW-t 

 

WTWd (i)= WTWd (2009) * exp [ (ln(WTWd (2030)/ WTWd (2009))/(21))*(i – 2009)];  

i=2010-2050; d=1-8                                                                                [gCO2eqv/MJ,  g/kWh] Eqn (25) 

WTW-E (i)= (1-PCS-5(i))* WTW-EC+ PSC-5(i)*WTW-EC; i=2010-2050      [gCO2eqv/kWh]  Eqn(26) 

WTW-t (i)= ∑ WTWd (i) * FUp; i=2008-2050; d=1-6; p=1-8                              [Mt CO2 eqv]  Eqn(27) 
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