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Abstract  

The future of U.S. transport energy requirements and emissions is uncertain. Transport policy research has 

explored a number of scenarios to better understand the future characteristics of U.S. light-duty vehicles. 

Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future U.S. 

vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are 

inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of U.S. 

transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to 

quantify the uncertainties in U.S. vehicle fleet emissions and fuel use for a realistic yet ambitious pathway 

which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability 

distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for 

the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 

40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1,360 and 

850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters 

that are major contributors to variations in emissions and fuel consumption are also identified and ranked 

through the uncertainty analysis. It is further shown that these major contributors change over time, and 

include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near 

term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and 

percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance 

of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction 

pathways, in the light of their possible consequences.  

Keywords: Life-cycle GHG emissions, fuel consumption, light-duty vehicle fleet, uncertainty, stochastic 

policy model, STEP   

1 Introduction 

 In the U.S. light-duty vehicles consume a significant share of the national oil supply as well as about 10% of 

the world oil consumption (Davis, 2007). Light-duty vehicles  are responsible for more than one third of the 

total U.S. greenhouse gas emissions (EIA, 2007a).  . The total fuel consumption from cars and light trucks—

SUVs, vans, and pickup trucks—was about 528 billion litre and GHG emissions of about 1,260 million metric 

tons of CO2in 2005 (Davis, 2007, Transportation, 2008).
 
The impact of transportation on climate change and 

future of energy supply is an increasingly important challenge faced by the U.S.      
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A number of deterministic scenarios have been developed in transport research literature to depict the future of 

light-duty vehicles. This paper uses the Stochastic Transport Emissions Policy model (STEP) (Bastani, 2011) 

to analyze a realistic fuel use and GHG emissions reduction pathway under uncertainty and determine the 

impact of uncertainty on the U.S. fleet fuel use and GHG emissions out to year 2050.  The significance of the 

results in the context of emissions mitigation and transport policy planning are further discussed.    

2 Literature  

Transport research has sought to explore the potential of engine and vehicle technologies,  fuel developments, 

market and travel demand changes in reducing the U.S. fleet fuel use and GHG emissions, and to examine  the 

impact of various policies to enforce a substantial change in the future of on road transport in the next couple 

of decades. A number of approaches have been taken in the transport literature to better understand the 

different dimensions of what determines the future U.S. road transport fuel use and emissions. Such 

dimensions include, for example, what determines travel demand and what measures can be taken to reduce 

demand,  travel mode choice and intermodal shifts, individual‟s travel time and budget, as well as how 

congestion and other constraints, such as work schedule, affect one‟s travel mode choice. Certain aspects of 

transport demand and mode choice have been well researched, including what determines choices and shifting 

between private and public transport modes (Bass, 2011, Buehler, 2011a) , making public transport financially 

and practically viable(Thompson, 2007, Buehler, 2011b),  methodologies for measuring  satisfaction of 

customers who use both public and private modes of transportation(Diana, 2012), travel time and budget, time 

value,  and the extent to which factors such as congestion and work schedule drive an individual‟s commuting 

mode choice (Habib, 2012, Mokhtarian, 2004, Habib, 2009, Abrantes, 2011).Further, various strategies have 

been proposed for reducing the use of private vehicles and changing people‟s attitudes towards cars (Wright, 

2000, Cullinane, 1992, Marshall, 2000) , in addition to better understanding the psychological and behavioural 

determinants in choosing private cars over other modes of transport (Stradling, 2000, Hiscock, 2002) 

.Understanding the logic of how individuals choose certain travel modes and what factors affect these choices 

is crucial in exploring policies to discourage private vehicle ownership, and in projecting how light-duty 

vehicle travel demand will evolve in the next few decades, as research seeks to shape the future of cleaner 

transportation.  

 Moreover, technological improvements in engine and vehicle systems, fuel developments, as well as 

alternative vehicle market deployment, are ongoing areas of research, in promoting more efficient vehicles and 

helping reduce the fleet fuel use and GHG emissions. A number of analyses have assessed the technological 

potential for improving vehicle fuel economy in conventional engine and powertrains as well as shifting to 

alternative vehicles such as battery electric vehicles, plug-in hybrids, and fuel-cell vehicles (Cheah L., 2008, 

Kromer, 2007, Heywood, 2003, Kasseris, 2007, Kromer M. A., 2008).The tradeoffs between fuel economy 

improvements and weight and performance increases have further been an important area of research in recent 

years (Cheah, 2009, Knittle, 2012).The deployment of alternative vehicles and the rate at which they penetrate 

remains a highly contentious area, due to initial market barriers such as high cost, and technology reliability 

and development delays, as well as consumer acceptance (Graham-Rowe, 2012, Karplus, 2010) . 

 Research has further sought to explore the determinants of vehicle kilometres travelled, transport demand, 

and policies that could influence these parameters, such as road pricing and VKT taxation schemes and 

congestion. However, the projection of future travel demand remains highly uncertain (Moore, 2010, Graham-

Rowe, 2011, Tal, 2011, Su, 2010, Stanley, 2011, Macharis, 2010, Wadud, 2011) . These aspects all play an 
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important role in analyzing the integrated impact of technological, economical, and behavioural changes on the 

future of light-duty vehicle fleet fuel use and GHG emissions. Scenario analysis is often used to bring these 

aspects together quantitatively and estimate their aggregated impact on reducing fuel use and emissions into 

the future.  

 A number of recent studies have used scenario analysis to explore the future of road transport in the U.S. 

Some of the prominent studies include: On the Road in 2035 by  Bandivadekar  et al , LEVERS by Yang et al , 

fleet scenarios by Greene and Plotkin , NEMS by Morrow et al , and the CGE-MARKAL Hybrid by Schafer 

and Jacoby  (Bandivadekar, 2008b, McCollum, 2009, Yang, 2009, Greene, 2011, Morrow, 2010, Schäfer, 

2006)  These studies are pursued in different contexts: the studies by Marrow, and Schafer et al are pursued in 

a macro-economic context, whereas On the Road in 2035 study, LEVERS, and Plotkin et al are based on 

bottom-up technology and fuel development details. The U.S. Department of Energy and U.S. Department of 

Transport also analyze different scenarios when assessing the impact of future CAFE standards on the light-

duty vehicle fleet to support the rulemaking process
 
(DOT, 2010).  

 Discrete deterministic scenarios, however, are unable to identify the range of possible outcomes that may 

result from choosing a particular emissions reduction pathway, as well as the associated likelihood of each 

outcome. This is a critical shortfall given the inherent real-world uncertainties in vehicle technology and fuel 

developments over time. Assessing the impact of these uncertainties is further made difficult given the 

interactions amongst variables and that each variable affects the outputs in a different direction. It is here that 

this paper seeks to contribute to the development of the future transport research literature. This work builds on 

the vehicle fleet modelling literature in transport research and stochastic modelling techniques in the climate 

change literature (Hope, 2006). This paper thus uses the Stochastic Transport Emissions Policy (STEP) 

(Bastani, 2011)  to quantify the uncertainties in the integrated impact of technological and fuel developments, 

and demand and market changes, on reducing the light-duty vehicle fleet fuel use and emissions, to help 

decision makers in the transport sector analyze the future of light-duty vehicle fleet in the light of real-world 

uncertainties. 

  In some fields, such as climate change, the distinction between deterministic scenario analysis and 

stochastic modeling has been clearly established: major analyses used in IPCC assessments are based on 

probabilistic studies, which use integrated assessment models such as DICE, PAGE, ICAM, SLICE, and 

FUND(M.L. Parry, 2001, M.L. Parry, 2007, Nordhaus, 1994, Hope, 1993, Dowlatabadi, 1993, Morgan, 1995, 

David L. Kelly, 1998, MIT, 1994, R. Tol, 1995, R.J. Lempert, 1994, R. Mendelsohn, 1994, Hope, 2006). 

However, in the transport sector the distinction remains blurry, and scenario analysis is sometimes considered 

as an alternative for dealing with uncertainties. Scenario analysis, however, identifies what the “average” 

outcome would be given a set of deterministic inputs. Simply changing the average scenario thus does not 

provide one with a range of possible outputs because each scenario has a different set of underlying 

assumptions and is thus equivalent to taking different pathways in the real-world, let‟s say to reduce emissions. 

Further, deterministic scenarios cannot quantify the likelihood associated with the possible range of outcomes. 

In contrast, the aim of this paper is to provide a methodology that quantifies the uncertainties in the outputs: it 

provides decision makers with a more complete picture showing the range of possible outcomes and the 

probability associated with each outcome, given a chosen fuel use and emissions reduction pathway. 

 Although scenario analysis can be useful, it does not tell decision makers what the range of possible 

outcomes and their associated likelihood would be if a certain pathway is taken. This has significant practical 
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importance as policy makers are motivated to choose the pathway that best addresses their objectives. They 

thus would need to understand the risk profile of the outcomes and the chances of hitting a certain target, under 

a consistent set of assumptions and given the input uncertainties.  

 This paper therefore uses the Stochastic Transport Emissions Policy model (STEP) (Bastani, 2011)  to 

quantify and analyze the integrated impact of uncertainty on the light-duty vehicle fleet fuel use and emissions, 

as well as the major contributing variables and their relative importance in determining the outcomes out to 

year 2050.  There are few studies to date that project fleet fuel use and GHG emissions out to year 2050. To 

the best of our knowledge, no other study has yet examined the impact of uncertainties on such projections 

using a systematic methodology.   

3 STEP Model 

This paper uses STEP (Stochastic Transport Emissions Policy model) to analyze the impact of uncertainty on 

the future of U.S. light-duty vehicles (Bastani, 2011).  An overview of STEP is shown in Figure 1. This model 

takes a number of stochastic inputs which describe the performance of various vehicle technologies, fuel 

availability and life-cycle emissions, as well as demand and market deployment of the new vehicle 

technologies and alternative fuels.  STEP then outputs the total light-duty vehicle fleet GHG emissions (Mt 

CO2 equivalent/year) and fuel use  (billion litres gasoline equivalent/year) as a probability density function 

overtime out to the year 2050, showing the range of possible outcomes that can be expected from a chosen 

policy pathway, and the probability of each outcome occurring. The model uses a Monte Carlo simulation to 

perform stochastic calculations.  

 The basic calculation logic that is used to compute fuel use and emissions here follows the MIT fleet model 

(Bandivadekar, 2008b). The fleet turnover is tracked based on the calendar year, vehicle model year, the 

market penetration rate of advanced technologies, and scrappage rate of vehicles on the road. Full life-cycle 

emissions of fuels are taken into account by tracking the fuel consumption of each powertrain as well as the 

WTT (well-to-wheel) and TTW (tank-to-wheel) of conventional and alternative fuels. Vehicle weight 

reduction is further taken into account through powertrain fuel use improvements over time. Refer to the 

authors‟ 2011 methodology paper
 
 (Bastani, 2011)  for the full model details and equations. The fleet fuel use 

calculated here includes liquid based fuels, excluding electricity primary fuel use. The full life-cycle energy 

consumption of electrify is included in the life-cycle energy consumption results, discussed later in the paper.  
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Figure 1-STEP Model Overview 

 The input values and distributions are determined by the decision theory, which is designed to distinguish 

between a set of alternatives, where each alternative faces uncertain states of the world that can be represented 

by probability distributions (Lindley, 1985). Subjective probability is used to estimate the underlying 

uncertainty in the inputs based on expert assessments. These probabilities are subjective because they depend 

on the experts‟ judgement
 
, which is likely to vary based on the information they each have available (Lindley, 

1985). These subjective assessments will be subject to representativeness, availability and anchoring effects 

leading to predictable biases (Tversky, 1974). For instance, anchoring leads to a bias in the uncertainty range 

by the experts, which are often stated as narrower  than can be justified by the experts‟ knowledge (Tversky, 

1974, Alpert, 1969, Holstein, 1971, Winkler, 1967). To reduce such biases, a range of different sources were 

consulted to determine the probability distribution in the inputs represented in this paper, and  probability 

elicitation techniques were followed  using direct probability assessment techniques to obtain probability 

estimates while minimizing bias and overconfidence (Henrion, 1991, Morgan, 1990).. First, experts are briefed 

on why the study is conducted, then a clear understanding is reached on what the quantities mean and their 
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units of measure. The experts are then asked to estimate the upper and lower bounds for each parameter, to 

minimize anchoring and overconfidence biases. The interviewer then proposes more extreme values and asks 

the experts whether there is a reason for such values to occur. Then, if there is a sensible explanation, the 

expert is asked to extend the bounds. The rest of the distribution is then completed in consultation with the 

expert (Morgan, 1990). Refer to the authors‟ methodology paper (Bastani, 2011) for the complete details.  

  

3.1 Data: Estimation of Input Parameters  

This section describes the inputs to the model for a pathway with a relatively ambitious emissions reduction 

target, with realistic uncertainty bounds, which are then used to calculate the results presented in section 4. 

These input values represent a sensible and ambitious pathway that results in significant fuel and emissions 

reduction with realistic uncertainty bounds, and are used as default values for STEP. They are chosen based on 

historical data, available relevant literature, MIT Sloan Automotive Laboratory‟s engine-in-vehicle 

engineering analysis and engine simulations, expert judgment, and internal consistency.   

 Although the reduction targets for 2030 and beyond used here are ambitious, this model can be used with 

any set of inputs, should other experts wish to explore the uncertainty in the outputs given a different set of 

input probability distributions based on their subjective stochastic assessments of the future LDV fleet. This is 

in fact the very reason for proposing a model that can take uncertain inputs and do more than present the 

results as predictions of the future. This model cab thus be used to provide a more complete and realistic 

picture of future characteristics of light-duty vehicle fleet fuel use and emissions given real-world 

uncertainties.  

The most important inputs are shown in Table 1 ; the following sections describe why these input values were 

chosen. Refer to the Appendix for the complete list of input parameters.  

Parameter  Min  Mode Max Mean STD %STD/Mean Values in 2010 

Total light vehicles Sales in 2030 [„000]  9,387 18,403 23,000 16,930 2,827 17% 11,500 

Future Scrappage Rate(2011+) 65% 80% 105% 83% 8% 10% 80% 

%Sales HEV in 2030 3% 10% 17% 10% 3% 30% 3% 

% Sales PHEV in 2030 1% 5% 9% 5% 2% 35% 0% 

%Sales BEV in 2030 0% 4% 8% 4% 2% 40% 0% 

VKT-Annual-Growth(2006-2020) 0.26% 0.50% 0.74% 0.50% 0.10% 20% 0.50% 

VKT-Annual-Growth(2030+) -0.40% 0.00% 0.40% 0.00% 0.16% N/A N/A 

ERFC Cars 40% 80% 100% 73% 12% 17% 50% 

%blend cellulosic ethanol in 2030 4% 14% 24% 14% 4% 30% 0% 

%electricity from clean sources in 2030  30% 50% 75% 52% 9% 18% 29% 

Cellulosic Ethanol WTW in 2030 

[gCO2/MJ] 6 8 14 9 2 18% 10 

Gasoline WTW in 2030 [gCO2/MJ] 81 92 103 92 5 5% 92 

Electricity WTW in 2030 [gCO2/kWh] 376 970 1376 908 205 23% 1078 

FC-r NA-SI cars in 2030 0.44 0.70 0.96 0.7 0.105004 15% 1.00 

FC-r NA-SI LT in 2030 0.45 0.71 0.98 0.714 0.107105 15% 1.00 

Table 1-Important Inputs into STEP  
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3.1.1 Vehicle Demand  

The annual sales of LDVs from year 1970 to 2007 data were obtained from the US Environmental Protection 

Agency database (EPA, 2009b).  These figures include all 4-wheeled vehicles weighing less than 3,865 kg 

(8,500 lbs) (Bandivadekar, 2008b, EPA, 2009b). The impact of the recent recession in the US on the 

automobile sales is also taken into account using  short-term forecasts of the U.S. market (Polk, 2009).
 
 

Historical data are used in the model up to the present date, and the equations explained the author‟s 

methodology paper (Bastani, 2011)  are used to interpolate and extrapolate data over time using the model 

inputs in year 2030.  

 The following Figure 2, from Cheah‟s work shows that historically scrappage follows sales with some 

delay (Cheah, 2010). History shows that scrappage rate has stayed  at around 80% in the US (GmbH, 2005). A 

constant, but uncertain, future scrappage rate is thus used here as an input to the model.  

 

Figure 2- U.S. passenger vehicle sales and scrappage, 1975-2050  

 The US Bureau of the Census estimate that population growth will fall from 0.9 to 0.75 percent per year by 

2040 (Bureau, 2007). The mean vehicle sales  here is assumed to be in tandem with the mean population 

growth rate of 0.8 percent per year (Bandivadekar, 2008b, Bandivadekar, 2008a).
 
The resultant forecasted 

vehicle sales using this assumption compare well with The Polk Company and the Federal Highway 

Administration estimates
 
(Davis, 2007, Polk, 2009, Cheah, 2010)  The number of vehicles in operation in the 

model does not exceed the estimated vehicle ownership saturation level  (850 vehicles per 1,000 people), 

determined based on income and population density (Dargay, 2007, Bureau, 2008).  Figure 3 shows a range of 

data from the literature that have informed the vehicle sales input into STEP.    
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Figure 3-Estimates informing STEP total sales input 

 Vehicle life is significantly uncertain (Bandivadekar, 2008b). This uncertainty is due to a number of factors 

including: the reliability of new vehicle technology, economic factors that could result in consumers keeping 

their cars for a longer or shorter period of time, technology developments which could result in vehicles 

becoming more durable and reliable, as well as higher safety provisions as a result of new regulations and 

scrappage policies. These factors also have an effect on the scrappage rate of older vehicles.   

 The vehicle median life can be calculated using three methods described in the literature (Bandivadekar, 

2008a).
 
These methods include using a logistic function to estimate the vehicle‟s survival rate; using a Weibull 

distribution; and using “engineering” and “Cyclical” Scrappage rate (Greene, 1981, Libertiny, 1993, 

Greenspan, 1999). The logistics curve derived by Bandivadekar et alis used in this model to determine the 

median life for vehicles using several data sources (Greene, 1981, Libertiny, 1993, Greenspan, 1999, NHTSA, 

2006, Bandivadekar, 2008b). The vehicle retirement is in tandem with the median vehicle life(Bandivadekar, 

2008b, Bandivadekar, 2008a). 

 The model also keeps track of different segments of the LDV market--small cars, SUVs, and other light 

trucks (such as pick-up trucks)--to  allow vehicle segment shift and downsizing of vehicles in the future. 

Historical data shows a change in the share of light trucks versus cars and SUVs; and that the increase in the 

sales of light trucks has slowed down during the past few years (Heavenrich, 2006, EIA, 2007a). The market 

share of light trucks in the U.S. is the largest and the share of small cars is the smallest compared to the rest of 

the world, which in turn indicates a large potential for the fleet downsizing in the U.S. (Cheah, 2010, Gibson, 

2000) The market share of other light trucks (pick-up trucks) has been constant at about 22% historically, and 

is kept constant in this model. The downsizing potential thus comes from the shift to lighter weight vehicles 

and segment shift from SUVs and vans to cars. The mode of inputs describing the LDV segmentation is 

displayed in Figure 4 below.  
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Figure 4-Mean input values for vehicle segment shares 1970-2050 

 

Literature data are used to inform the mode value for the total vehicle sales and future scrappage rate as 

described. The range of data in the literature and literature simulation and regression models (Eg. demand 

models by Train) (Lave, 1979, Train, 1980b)
 
 are then used as an indicative measure of uncertainty in these 

variables, and to inform the process of probability elicitation. Finally, weighting and ranking of the inputs 

qualitatively as well as elicitation techniques (Morgan, 1990, Bastani, 2011) were used with prominent experts 

in the field to determine a set of plausible minimum and maximum values for the total vehicle sales and future 

scrappage rate variables as shown in Table 2. This is an iterative process through which a set of sensible and 

self-consistent distributions are chosen for the input variables.  

 

Table 2- Vehicle demand input distribution values into STEP 

3.1.2 Travel Patterns 

The modal vehicle kilometres travelled (VKT) data is obtained from Oak Ridge National Laboratory‟s TEDB 

and is different for cars, SUVs, and OLTs, as shown in Figure 5 (Bandivadekar, 2008b).
 
It is assumed here that 

the VKT of cars decreases as they age, as shown in Figure 6.  VKT changes with a number of parameters such 

as growth in the highway infrastructure, gasoline prices, income growth, and demographic trends. The mode 

annual growth rate of VKT is set to decrease over time, from 0.5% (for 2006-2020) to 0.25% (for 2020-2030) 

and to 0.1% from 2030 onwards. The different growth rates in time periods chosen here reflect the change in 

travelling demand growth dynamics in the short, mid, and long term (Bandivadekar, 2008b, Greene, 1990, 

NRC, 2002).  Figure 5 and Figure 6show the mean inputs into the model. The minimum and maximum values 

for these inputs are chosen following the probability elicitation process described earlier in section 3, and were 

informed by literature data and travel demand simulation and regression models, such as the work of Train and 

Mannering in this area (Mannering, 1981, Lohrer, 1983, Mannering, 1983, Mannering, 1980). The VKT 
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growth rates here are chosen to reflect the possibility of a decrease in travel demand. These values are 

summarized in Table 3.  

 

Figure 5- Mean input values for VKT [km] of cars and light trucks over 1970-2050 

 

Figure 6-Mean input values for annual VKT driven by different model year cars 

 

Table 3- Travel demand input distribution values into STEP 



November 2011 
 

11 of 48 

3.1.3 Well-to-Wheel Emissions  

Gasoline, diesel, cellulosic and corn ethanol, bio-diesel, hydrogen, tarsand, and electricity are the sources of 

energy taken into account in STEP. The full life-cycle emissions of these fuels are obtained from industry data 

and existing literature; such as: GREET 2007 data, Groode and Heywood 2008, Kromer and Heywood 2007, 

McCulloch et al 2005 and recent EPA studies (CONCAWE, 2007, GREET, 2007, Groode, 2008, Kromer, 

2007, McCulloch M., 2005, EPA, 2010, EPA, 2009a). The WTW emissions in year 2030 are uncertain inputs 

and are interpolated and extrapolated over time, as described in section 3.2.4. The WTW emissions factors 

change over time to account for refinery processes and vehicle efficiency improvements. As explained in 

previous sections, literature data are used to inform the mode values chosen here, and probability elicitation 

techniques and literature simulations, including the GREET model, have informed the inputs range. The values 

are summarized in Table 4.    

Substantial but achievable changes on the energy supply side are assumed here. For instance, the average grid 

electricity emissions is assumed to reduce its mean significantly (by almost a factor of four by 2050), and the 

amount of fuel coming from sources such as tar sands grows substantially by 2050.  

 A weighted average electricity emissions factor is used here, based on the contribution from renewable and 

conventional sources, the current grid emissions, as well as the seasonal and day and night time variability in 

electricity emissions (De Sisternes, 2010, EPA, 2010, Elgowainy, 2009). This factor also changes over time to 

account for better integration of renewable sources into the grid and implementation of ideas such as “smart” 

grid and “micro-grids”.  These WTW emissions factors of various fuel sources are then used to calculate the 

total life-cycle GHG emissions of the on-road light duty vehicle fleet. 

 

Table 4-WTW input distribution values into STEP 

3.1.4 Alternative Energy Source Availability 

The availability of alternative energy sources such as bio-fuels, electricity, and tar sands is tracked in STEP to 

assess the impact of these fuels on the total GHG emissions in the next couple of decades. A number of studies 

have estimated the amount of available biomass  in the USA, such as the study by DOE which suggests 

hundreds of million of tons of biomass will be available, produced in a sustainable manner (DOE, 2005).     BP 

estimates that 10-30% of global transportation fuel can be supplied by bio-fuel by 2030 (Ellerbusch, 2008). A 

General Motors and Sandia National Laboratory study estimated that 60 billion gallons of ethanol can replace 

conventional fuel by 2030 (Sandia National Labs, 2008, Melillo, 2009a). Studies also warn about possible 

environmental damage (Melillo, 2009a, Melillo, 2009b).  Logistics issues and the economics of bio-fuels are 
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further considered limiting factors to market share of these fuels in the next couple of decades (UC-Davis, 

2008, Reilly, 2009).  

 In this study, electricity and biofuels are modeled to have a dirty component (coal/ corn ethanol), a clean 

component (renewable electricity/cellulosic biomass), and average GHG emission components.  The use of tar 

sands fuels is also assumed to grow over time.  IEA data show the current electricity supply mix in the US, 

which includes nuclear, solar, hydro, wind, coal, oil, and gas: 30% wasgenerated from clean sources in 2010 

(IEA, 2009). The average US grid emissions were about 700 g/kWh in 2009 (IEA, 2009). The 2007 EIA 

Annual Energy Outlook estimates little improvement in the average grid emissions from now to 2030 (EIA, 

2007a). As new power plants come online, a modest improvement in average grid emissions is estimated 

(Kromer, 2007). The current electricity consumption is about 3,700 billion kilowatt hours and is estimated to 

grow to 5,200 billion kilowatt hours by 2035 (EIA, 2007a).  The average grid emissions depend on initial 

marginal load, seasonal variability, integration of clean sources into the grid, and grid management, for 

example using smart grid algorithms. Proper integration and management of the grid is thus necessary for the 

potential of cleaner electricity to be realized in reducing transport GHG emissions in the next couple of 

decades.  

 Tar sands or oil sands is another source of energy taken into account here. Canadian Association of 

Petroleum Producers (CAAP) estimates there are more than a total of 175 billion barrels recoverable oil. In 

2006, 1.2 million barrels per day of tar sand was recovered from Canadian reserves (CAAP, 2006).  CAAP 

estimates oil sands production to increase to 4 million barrels per day by 2020. The Canadian Energy Research 

Institute estimates this to increase to 6 million barrels per day by 2030 (O&GJ, 2006). The Energy Information 

Administration‟s International Energy Outlook 2007 estimates 1.9-4.4 million barrels per day from Canadian 

reserves in 2030 (EIA, 2007a). Its is assumed here that available tar sand fuels replaces gasoline and diesel 

equally. Similar to previous sections, these data from the literature have informed the mean values for the 

inputs to the model as shown in Figure 7 below. The blend of cellulosic and corn ethanol are shown as a 

percentage of the total gasoline fuel demand, and the tar sands percentage corresponds to the share of 

combined diesel and gasoline that tar sands will replace. Percentage clean electricity shows the share of total 

electricity demand that will be produced using renewable sources. Further, the bio-diesel share is shown as a 

percentage of the total diesel fuel demand. The distribution of these input variables is also summarized in 

Table 5.  
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Figure 7-% Alternative energy source mean input values  2010-2050 

 

Table 5- Alternative fuel input distribution values into STEP 

3.1.5 Market Deployment  

Market deployment rates of advanced powertrains are very uncertain due to a number of factors such as 

infrastructure needs, consumer preferences, gasoline prices, incentives for adopting an alternative vehicle and 

so forth. A number of forecasts have been made both by the automotive industry and other independent studies 

to estimate the market share of various powertrains in the US in the mid and longer term (Sullivan, 2008, 

Omotoso, 2008, UBS, 2007, Solheim, 2008, Ulrich, 2008, Volkswagen, 2010). Several discrete choice models 

have also been developed to find the relation between vehicle attributes and consumer preference such as the 

work of Greene and Train in this area. (K. E. Train., 2007, Xinyu Cao, 2004, Train, 1980a, Grreene, 2001, 

David Brownstone, 1994). These have informed the mode values chosen for the inputs here, as shown in 

Figure 8 . Aggregated and disaggregated vehicle demand models have also been developed which take into 

account both vehicle attributes and other variables such as availability of fuel stations (disaggregate models), 

to predict market deployment of alternative powertrains (Xinyu Cao, 2004, Grreene, 2001, David Brownstone, 

1994) Similar to previous sections, probability elicitation with experts, based on a combination of these 

forecasts, literature-based data, market models, and confidential automaker‟s data, have informed the input 

probability distributions summarized in Table 6.  

 A higher ratio of turbo sales might be plausible in the mid-term. This ratio will be conditioned on 

regulatory push and consumer acceptance of driving characteristics, especially as vehicles are further 
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downsized and problems such as turbo lag becomes more evident. However, higher penetration of turbo 

vehicles, since the differences between an improved naturally-aspirated vehicle and turbo is about 10 percent 

and lowers over time, would not have much of an effect on the results shown here.  

 

Figure 8- Powertrain market share mean input values2010-2050 

 

Table 6-Sales share input distribution values into STEP 

3.1.6 Fuel Economy   

The measure used in this model is fuel consumption , the inverse of fuel economy, expressed in L/100km. 

Vehicle fuel use is calculated from the ERFC (Emphasis on Reducing Fuel Consumption) and the  

powertrain‟s relative fuel consumption (2008 NA-SI is the base). ERFC measures the degree to which weight 

reduction and technological powertrain improvements are used to reduce vehicle fuel use. ERFC is defined as 

the actual fuel consumption reduction realized, divided by the fuel consumption reduction achievable if size 

and performance are kept constant; it is reported as a percentage. At 100% ERFC, all the technological 

improvements are used to reduce fuel use while vehicle acceleration capability and size are kept constant. At 

0% ERFC, the fuel consumption stays the same because all technological improvements have been offset by 

performance gains (faster acceleration time) and negligible weight reduction (Figure 12). Using vehicle 

simulations, with a program called Advisor, ERFC is related to the relative fuel consumption of vehicles 

(compared to the reference fuel consumption of NA-SI in 2008) (Cheah, 2009, Kasseris, 2007). Using relative 

fuel consumption and ERFC, the fuel use of each powertrain can then be calculated, as described in section 



November 2011 
 

15 of 48 

3.2. Thus the impact of performance variation and weight reduction are both captured in the ERFC measure as 

shown in Figure 9. Historical data shows an increase in performance and weight of the vehicles which 

corresponds to the decline of ERFC (Cheah, 2010, EPA, 2009b).  Thus, the trade offs between fuel economy, 

performance, and weight have been included in the analysis  

 

Figure 9- Trade off between acceleration performance, weight, and fuel consumption
 
(Cheah, 2010)

 

 

 

Figure 10- Average US Vehicle Characteristics (Cheah, 2010)
  

ERFC has varied historically as shown in Figure 11. ERFC was historically highest and above 100% before the 

1985 oil crises. It  then declined and remained low for several years before rising again in the past few years as 

a result of tighter regulatory emphasis on fuel economy improvements, as shown in Figure 11. The history in 

this area has been steadily increasing performance and weight, and ERFC has been below 50%. 
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 Though not explicitly stated, there is vehicle weight reduction involved in the calculations here: it is 

coupled into the ERFC value as described above. An average weight reduction of about 10 percent by 2030, 

and an average of 20 percent reduction, by 2050, has been built into the ERFC values chosen in this study.  

These weight reductions occur through downsizing, use of light-weight materials, and vehicle redesign.  These 

couple through ERFC as this parameter trades off performance increase, vehicle size and weight, and fuel 

consumption An EPA correction factor is further used here to correct laboratory fuel economy 

measurements  for highway and city driving conditions (Bandivadekar, 2008b, EPA, 2009b).
 
Similar to 

previous sections, the input mode values chosen here are based on literature data and are shown in Figure 13 

and Figure 14 for the relative fuel consumption of different powertrains. It is assumed here that the fuel 

consumption reduction rate slows down over time as the easier modifications are expected to be done earlier in 

time.  A number of forecasts including EPA, DOE, EIA, as well as vehicle simulations (including  Advisor 

simulation work by Cheah et al)  have been used in the probability elicitation process to inform the probability 

distribution of inputs summarized in Table 7 (DOT, 2010, EIA, 2007b, EPA, 2006, EPA, 2007, Cheah, 2009, 

Kasseris, 2007, Cheah, 2010, Mannering, 1979). 

 

 

Figure 11- ERFC of average new US vehicle (MacKenzie, 2009)
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Figure 12- Relative Fuel Consumption of NA-SI powertrain at varying ERFC (simplified FC-relative-ERFC map) 

 

The fuel consumption values shown below for each specific powertrain technology are for the average car or 

light truck sold in a given year.  New technologies that have only penetrated into some of the new vehicles are 

multiplied by a weighting number less than one.  Also, only a fraction of the new cars have the latest 

technology. Because the production run for each vehicle model design in about five years, the technology in 

the average engine and vehicle sold is about three years old. Also, any performance and size increases that 

occur degrade fuel consumption significantly, a factor captured in the ERFC parameter. Further, weight 

reduction must be put in the context of the historical trend of steady weight increases due to response to new 

regulations, additional features and size increase, for a given model vehicle.  
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Figure 13- Relative Fuel Consumption of cars mean input values 2010-2050 

 

 

Figure 14- Relative Fuel Consumption of light trucks mean input values 2010-2050 
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Table 7- Vehicle fuel economy input distribution values into STEP 

4 Numerical Simulation Results 

This section presents the simulation results from running the model 10,000 times given the inputs described in 

section 3.1.  

4.1 Transport-related Fuel Use (near, mid, and long-term) 

The following results show the uncertainty profile of the total transport-related fuel consumption in the near, 

mid, and long term (year 2020, 2030, 2050). These graphs show the total liquid based fuel use, which is 

reported in billion litres gasoline equivalent.  

 The results are in the form of probability distribution functions, where the area underneath the graph is 

equal to 1. The y-axis shows the relative probability, adjusted to keep the integral of the graph equal to 1, and 

has no physical meaning. The statistic summary for each graph is shown on the right hand side of the 

probability distribution functions.  The minimum and maximum values are not meaningful measures as they 

dependent on the number of runs and thus are not referred to here. Instead, the 1% and 99% percentile values 

are used here to interpret the range of outcomes. Statistics such as the mean and standard deviation and 

confidence intervals converge over large number of runs and should be used to interpret the probabilistic 

results shown here. The results (Figure 15) show that the fuel consumption in the near term (2020) will be 

most likely around 540 billion litres (expected value) and could be anywhere between 490 and 590 billion 



November 2011 
 

20 of 48 

litres (1% and 99% values)respectively (note that the values in this section have been rounded to avoid 

implying high precision). The standard deviation in year 2020 is about 22 billion litres. The coefficient of 

variance is about 4% which indicates a low level of uncertainty in the 2020 fuel use. In other words, given the 

uncertainties in the inputs, the fuel use in 2020 is fairly well known. Moreover, the 90% confidence interval 

indicates that there is 90% chance the fuel use will be somewhere between 500 and 570 billion litres in 2020, 

and there is only a 5% chance that fuel reductions below 500 billion litres can be achieved in the short term. 

The fuel use distribution is asymmetric and negatively skewed in 2020, which means the distribution has a few 

low values. In other words, there is a slight chance that a large fuel reduction below 470 billion litres would be 

possible.  

 Looking ahead into the mid term, the results (Figure 16) show that there is about a 7% reduction in the 

expected value of fuel use from 2020 to 2030. It is shown that the fuel use will be most likely about 500 billion 

litres and could be anywhere between 410 and 600 billion litres. The standard deviation in 2030 is about 40 

billion litres, which is higher than 2020, as our knowledge of fleet behaviour becomes more uncertain as we 

move into the future. The coefficient of variance is about 10% which indicates a medium level of uncertainty 

in the fuel use in mid term. Furthermore, the 90% confidence interval indicates that there is a 90% chance that 

fuel use will lie somewhere between 430 and 560 billion litres, with only 5% chance that fuel use would be 

lower than 430 billion litres. There is also a small chance that fuel use would exceed 560 billion litres in the 

mid term. The fuel distribution in 2030 is asymmetric and positively skewed, which indicates the distribution 

has a few high values. In other words there is a slight chance that the fuel use exceeds our expectations and is 

above 600 billion litres.  

 In 2050, the mean results (Figure 17) show around a 35% reduction in fuel use from 2020 levels. Fuel use 

will be most likely around 350 billion litres in 2050 and could lie anywhere between 200 and 580. The 

standard deviation is about 84 billion litres, which is quiet large and indicates that the outcomes are spread 

over a larger range in 2050. The coefficient of variance is about 24%, which indicates a relatively high level of 

uncertainty in 2050 fuel use. As shown in the probability density functions below, the uncertainty spread 

grows over time, as expected. The increase in the coefficient of variance is non-linear over time. Moreover, the 

results show that there is a 90% chance that fuel use will lie between 230 and 500in 2050, with only 5% 

chance of achieving a reduction lower than 230 billion litres. There is also a small risk that fuel use would 

exceed 500 billion litres in 2050. The fuel use distribution is highly asymmetric in 2050, and is positively 

skewed. This indicates that the distribution has a long right hand tail, which means there is a possibility that 

fuel use could highly exceed our expected value in 2050 Finally, the r results could also be used to determine 

the probability of achieving a reduction target, for instance, there is about a 10% probability in 2050 that fuel 

use can be reduced to 250 billion litres or half the 2030 expected value. Alternatively, in 2030, for example, 

there is a 60% chance of achieving a 5% fuel use reduction from the 2020 expected level. Similarly, all these 

probability density function can be used to determine the probability of achieving a target over time. 

Cumulative probability functions, such as that shown in Figure 18, could also be used to determine the 

probability of achieving a target or lower values given a chosen pathway at any given point in time out to year 

2050.  

 



November 2011 
 

21 of 48 

 

Figure 15-2020 U.S.  Fleet fuel use (billion litres gasoline equivalent/year)  

 

 

Figure 16- 2030 U.S.  Fleet fuel use (billion litres gasoline equivalent/year) 
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Figure 17- 2050 U.S.  Fleet fuel use (billion litres gasoline equivalent/year)  

 

Figure 18- 2050 U.S.  Fleet fuel use (billion litres gasoline equivalent/year) cumulative probability function 
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Transport-related Emissions (near, mid, and long-term) 

The following results show the uncertainty profile of the total full life-cycle transport-related emissions in the 

near, mid, and long term (year 2020, 2030, 2050). The total GHG emissions are reported in Mt CO2 equivalent.  

 The results (Figure 19) show that the life-cycle emissions in the near term (2020) will be most likely around 

1,580 Mt CO2 equivalent (expected value) and could be anywhere between 1,380 and1,7600 Mt CO2 

equivalent.  The standard deviation in year 2020 is about 80 Mt CO2 equivalent. The coefficient of variance is 

about 5% which indicates a low level of uncertainty in the 2020 emissions. In other words, given the 

uncertainties in the input, the emissions in 2020 are fairly well known. Moreover, the 90% confidence interval 

indicates that there is a 90% chance that the emissions will be somewhere between 1,450 and 1,710 Mt CO2 

equivalent in 2020, and there is only a 5% chance that emissions reductions below 1,450 Mt CO2 equivalent  

could be achieved in the short term. The emissions distribution is asymmetric and positively skewed in 2020, 

which means the distribution has a few extremely high values. In other words, there is a slight chance that 

emissions could exceed our expectations and be higher than 1,800 Mt CO2.  .  

 Looking ahead into the mid term, the results (Figure 20) show that there is a 14% reduction in the expected 

value of emissions from 2020 to 2030. Emissions will be most likely about 1,360 Mt CO2 equivalent and could 

be anywhere between 1,070 and 1,6800 Mt CO2 equivalent. The standard deviation in 2030 is about 130 Mt 

CO2 equivalent, which is higher than 2020, as our knowledge of fleet behaviour becomes more uncertain as we 

move into the future. The coefficient of variance is about 10% which indicates a medium level of uncertainty 

in the emissions in mid term. Furthermore, the 90% confidence interval indicates that there is a 90% chance 

that emissions will lie somewhere between 1,150 and 1,590 Mt CO2 equivalent, with only 5% chance that 

emissions would be lower than 1,150 Mt CO2 equivalent. There is also a small chance that emissions would 

exceed 1,590 Mt CO2 equivalent in the mid term. The emissions distribution in 2030 is asymmetric and 

positively skewed, which indicates that the distribution has a few high values. In other words there is a slight 

chance that the emissions could exceed our expectations and be above 1,850 Mt CO2 equivalent.  

 In 2050, the mean results (Figure 21) show around a 47% reduction in emissions from 2020 levels. GHG 

emissions will be most likely around 850 Mt CO2 equivalent in 2050 and could lie anywhere between 440 and 

1,450  Mt CO2 equivalent. The standard deviation is about 225 Mt CO2 equivalent, which is quite large and 

indicates that the outcomes are spread over a larger range in 2050. The coefficient of variance is about 27%, 

which indicates a relatively high level of uncertainty in 2050 emissions. As shown in the probability density 

functions below, the uncertainty spread grows over time, as expected. The increase in the coefficient of 

variance is non-linear over time. Moreover, the results show that there is a 90% chance that emissions will lie 

between 520 and 1,260 Mt CO2 equivalent in the long term, with only a 5% chance of achieving a reduction 

lower than 520 Mt CO2 equivalent. There is also a small risk that emissions could exceed 1,260 Mt CO2 

equivalent in 2050. The emissions distribution is highly asymmetric in 2050, and is positively skewed. This 

indicates that the distribution has a long right hand tail, which means that there is a possibility that emissions 

could significantly exceed our expected value in 2050. In other words, there is a chance that GHG emissions 

could be much worse than expected.    
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Figure 19-2020 U.S. Fleet GHG emissions  (Mt CO2 equivalent/year)  

 

Figure 20- 2030 U.S. Fleet GHG emissions  (Mt CO2 equivalent/year)  
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Figure 21- 2050 U.S. Fleet GHG emissions  (Mt CO2 equivalent/year)  

 

4.2 Fuel use Major Influences (near, mid, and long term) 

The following tornado graphs show the major contributors to total transport-related fuel consumption over 

time, and ranks them based on their relative importance. These graphs are developed using ranked linear 

regression analysis of the inputs and outputs, using data from 10,000 simulation runs. The labels on the y-axis 

indicate the major influencing factors, and the numbers on the bar in front of each parameter, along the x-axis, 

shows by how much (in billion litres of gasoline equivalent) the total fuel consumption would increase with a 

one standard deviation increase in the input shown on the y-axis. Refer to the Appendix for a complete list of 

inputs and statistics (including input standard deviation values).   

 In year 2020, for instance, if the scrappage rate is increased by one standard deviation (i.e. 8%), the total 

transport fuel use decreases by about 20 Billion litres of gasoline equivalent. The changes in the output shown 

on these tornado graphs is a result of the net effect of the influence of each input in determining the final 

output, as well as the underlying uncertainty in each input. As shown in Figure 23, in 2030, for example, if the 

relative fuel consumption of NA-SI cars is increased by one standard deviation (i.e. 0.1) , the total fuel use will 

be increase by 13 billion litres.  Further the direction in which the outputs are impacted by the inputs should be 

noted. For example, as shown in Figure 22, Figure 23, and Figure 24 below, an increase in scrappage rate 

decreases the fuel consumption, due to faster fleet turn over, and an increase in VKT growth increases fuel 

consumption, due to increase in travelling. Further, an increase in the relative fuel consumption of NA-SI cars 

increases fuel use due to reduced fuel economy, while an increase in the BEV sales reduces fuel use, due to 
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electricity replacing fuel. All the directional effects of the inputs on the total fuel use, shown in Figure 22, 

Figure 23, and Figure 24, are as expected.   

 These tornado graphs are “Mapped Regression Values”, which means the outputs are scaled to the unit of 

fuel use (billion litres) to describe the impact of each parameter on the output in absolute terms.  These graphs 

thus indicate which parameters are most important in determining total fuel use in the near to long term. These 

graphs also show that the major influencing parameters change dynamically over time, as the uncertainty 

profile and dynamics of interaction between various influencing forces change. 

 As shown in Figure 22, Figure 23, and Figure 24, the scrappage rate is the most influential parameter in 

determining total fuel use in the short and mid term, and one of the major contributors in the long term This is 

because the scrappage rate directly controls the size of the fleet and thus the technology turn over. Therefore, 

the higher the scrappage rate, the faster old and inefficient vehicles are replaced by new improved vehicles 

with higher fuel economy. Furthermore, the mid term VKT annual growth is influential in the mid and short 

term, while the long-term VKT annual growth is more important in year 2050, Also, the VKT annual growth is 

relatively more important in the near term than the mid and long terms. This could be attributed to the lower 

fuel economy of vehicles in the near term, and thus  the higher impact of the kilometres travelled by these less 

efficient vehicles.  Moreover, the ERFC of cars becomes more important in the long term, as the emphasis on 

reducing fuel consumption becomes higher (lower vehicle weight and less emphasis on vehicle performance 

increase), and thus technological improvements are used to increase vehicles‟ fuel economy.   

 

 

Figure 22-2020 U.S. Fleet fuel use ranked major influences (billion litres gasoline equivalent/year) under 

uncertainty  
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Figure 23- 2030 U.S. Fleet fuel use ranked major influences (billion litres gasoline equivalent/year) under 

uncertainty 

 

Figure 24- 2050 U.S. Fleet fuel use ranked major influences (billion litres gasoline equivalent/year) under 

uncertainty 
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 The total vehicle sales becomes more influential over time, and is the most important contributor to fuel use 

in 2050. This is attributed to the fact that vehicle sales has a direct impact on the growth of the vehicle fleet 

over time. In 2050, one standard deviation (i.e. 2,800,000 vehicles) increase in the total vehicle sales increases 

fuel use by 65 billion litres. Further, the ERFC of cars becomes the second most influential parameter in 2050, 

that is, if ERFC is increased by 12% the total fuel use will be decreased by about 30 billion litres. The relative 

fuel consumption of NA-SI vehicles also becomes influential in 2050, where an increase of 0.1 in the relative 

NA-SI fuel consumption results in a 24 billion litre increase in the total fleet fuel use. Similarly, the relative 

fuel consumption of light trucks (SUVs and pick-up trucks) becomes a more important factor in determining 

the total fleet fuel use over time. Finally, the relative fuel consumption of NA-SI gasoline cars stays dominant 

in the mid and long term, but the fuel consumption of turbo-SI and diesel also become more important over 

time as their market share increases.  

 The market share of BEVs and HEVs become more influential over time. This could be attributed to 

technology improvements over time and the growing market share of these vehicles in the market.  In 2050, 

one standard deviation increase in the BEV sales share (i.e. 2% increase) in the car market results in 11 billion 

litres decrease in total fuel use.  This indicates the large potential of alternative vehicles in reducing the total 

US fleet fuel use in the mid and long term.   

4.3 GHG Emissions Major Influences (near, mid, and long-term) 

Similar to the previous section, the following tornado graphs show the major contributors to the total transport-

related emissions over time and ranks them based on their relative importance under uncertainty. As in the last 

section, the labels on the y-axis indicate the major influencing factors, and the numbers on the bar in front of 

each parameter, along the x-axis, shows by how much (in Mt CO2 equivalent) the total GHG emissions would 

increase with a one standard deviation increase in the input shown on the y-axis. Refer to the Appendix for a 

complete list of inputs and statistics (including input standard deviation values).   

 In year 2020, for instance, if the scrappage rate is increased by one standard deviation (i.e. 8%), the total 

transport emissions decreases by about 59 Mt CO2 equivalent. As shown in Figure 26, in 2030, for example, if 

the gasoline WTW is increased by one standard deviation (i.e. 5 gCO2/MJ), the GHG emissions will be 

increased by 45 Mt CO2 equivalent. In 2020, for example, a one standard deviation increase in the annual VKT 

growth rate in the near term (i.e. by 0.1%) results in an increase of 24 Mt CO2 equivalent in the total fleet life-

cycle emissions.   

As shown in Figure 25 and Figure 26, the scrappage rate is the most influential parameter in determining the 

total emissions in the short and mid term. Though still important in the long term, scrappage rate is not as 

influential in 2050 compared to the nearer term. This could be attributed to the fact that scrappage rate directly 

controls the size of the fleet and thus the technology turn over, in addition to the fact that, fuels become less 

emissions intensive over time. Therefore, the higher the scrappage rate, the faster are old and inefficient 

vehicles replaced by new improved vehicles with higher fuel economy, using fuels that have a much cleaner 

life-cycle. Moreover, the WTW of gasoline is most influential in the near term and becomes less and less 

important over time, as other types of fuels replace gasoline and as their process of fuel making and the raw 

material become cleaner, making fuels less emissions intensive. The percentage cellulosic ethanol blend is one 

of the most influential parameters in the near to long term, this is due to the high level of uncertainty in the 

development of this fuel, due to technological challenges and the economics of this fuel, and its extremely low 
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emissions compared to conventional fuels. This also indicates cellulosic ethanol‟s large potential in 

contributing to large emissions reduction in 2030 and beyond.   

 

Figure 25-2020 U.S. Fleet GHG emissions ranked major influences (MtCO2 equivalent/year)under uncertainty  

 

Figure 26- 2030 U.S. Fleet GHG emissions ranked major influences (MtCO2 equivalent/year) under uncertainty  
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Figure 27- 2050 U.S. Fleet GHG emissions ranked major influences (MtCO2 equivalent/year) under uncertainty 

   

 Furthermore, the near term VKT annual growth (2006-2020) becomes influential in the short-mid term, 

while the long-term VKT annual growth (2030+) becomes important in year 2050, Also, the VKT annual 

growth is relatively more important in the near term than in the mid and long terms. This is because of the 

lower fuel economy of vehicles and dirtier fuels in the near term, and thus of the higher impact of the 

kilometres travelled by these less efficient vehicles Moreover, the ERFC of cars becomes more important in 

the long term, as the emphasis on reducing fuel consumption becomes higher (lower vehicle weight and less 

emphasis on vehicle performance increase), and thus technological improvements are used to increase 

vehicles‟ fuel economy.    

 The total vehicle sales becomes more influential over time, and is the most important contributor to GHG 

emissions in 2050, as was the case with fuel use and described in previous section. This is attributed to the fact 

that vehicle sales has a direct impact on the growth of the vehicle fleet over time. In 2050, one standard 

deviation (i.e. 2,800,000 vehicles) increase in the total vehicle sales increases the total fleet emissions by 167 

Mt CO2 equivalent. Further, the ERFC of cars becomes the third most influential parameter in 2050, that is, if 

ERFC is increase by 12% the total emissions will be decreased by about 67 Mt CO2 equivalent. The relative 

fuel consumption of NA-SI vehicles also becomes influential in 2050, where an increase of 0.1 in the relative 

NA-SI fuel consumption results in 43 Mt CO2 equivalent increase in the total fleet GHG emissions. The 

relative fuel consumption of NA-SI gasoline cars stays dominant throughout the time, but the fuel consumption 

of turbo-SI and HEVs become more important in the longer term, as their market share increases.  

 The market share of BEVs , HEVs, and PHEVs become more influential over time This could be attributed 

to battery technology improvements over time, the growing market share of these vehicles in the market, and 

greening of the electricity grid. In year 2050, one standard deviation increase in the BEV sales share (i.e. 2% 

increase) in the car market results in a 24 Mt CO2 equivalent decrease in total fleet emissions. This indicates 
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the large potential of alternative vehicles in reducing the total US fleet GHG emissions in the mid and long 

term.   

 The WTW of tar sands becomes more important over time, as this fuel starts to replace a higher volume of 

conventional fuels. In 2050, for example, one standard deviation increase in tar sands WTW (i.e. 5 gCO2/MJ 

increase) would result in about 27 Mt CO2 equivalent increases in life-cycle fleet emissions. The WTW of 

electricity and the percentage of renewable energy fed into the gird become more important in the long term, as 

the market share of BEVs and PHEVs increase and thus the greening of the grid plays a more influential role. 

In 2050, for instance, a one standard deviation increase (i.e. 205 gCO2/kWh increase) in conventional 

electricity WTW (i.e. coal and natural gas based electricity) results in 19 Mt CO2 equivalent increase in the 

emissions. Moreover, a standard deviation increase (i.e. 9% increase) in the percentage of electricity produced 

from clean sources decreases the fleet GHG emissions by about 22 Mt CO2 equivalent. The potential of clean 

electricity can thus be more fully realized as electrification increases over time. 

4.4 Emissions and Fuel Consumption Uncertainty-Time Plots    

The following graphs in Figure 28 and Figure 29 show the evolution of the fleet fuel use and GHG emissions 

over time. These figures show the range of possible fuel use and emissions outcomes at any point out to year 

2050. From these graphs, one can determine what the probability of achieving a target is, in this case given the 

pathway chosen in this paper. The mean curve shown on Figure 28 and Figure 29show the expected reduction 

that can be achieved over time, given the pathway chosen in this paper. The 95% and 5% dotted lines bound 

the range of outcomes that could be expected with 90% confidence and the 75% and 2?5% dotted lines bound 

the range of outcomes that could be expected with 50% confidence. In other words, there is a 90% chance that 

the fuel use would be somewhere between the outer dotted lines, shown on Figure 28, out to year 2050. As 

shown in these results, the uncertainty in the fleet fuel use and GHG emissions is significant and grows 

considerably over time.  

  

 

Figure 28-U.S. Fleet fuel use  (billion litres gasoline equivalent/year) over time out to 2050 
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Figure 29-U.S. Fleet GHG emissions (MtCO2 equivalent/year) over time out to 2050 

The following graph ( Figure 30) shows the uncertainty (spread/mean) of GHG emissions and fuel 

consumption over time, where spread is defined as two Standard-deviations. This plot ( Figure 30) shows that 

the uncertainty in both emissions and fuel use grow over time, and reach approximately 50% for both fuel use 

and emissions in 2050. This is expected as uncertainty in our knowledge of the future also increases as we look 

ahead in time.  

 

Figure 30- Uncertainty-Time plot for U.S. fleet GHG emissions and fuel use based on 2standard deviation/mean 

4.5 Life-cycle Energy Consumption  

The following graphs show the probability distribution for the life-cycle energy consumption of the fleet in 

2050. The energy results include the full life-cycle energy consumption from all fuels including electricity and 
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hydrogen, as well as the primary fuel used to generate electricity. The coefficient of variance is about 24% in 

2050, and is similar to that of fuel use that year. Figure 31 shows that the energy consumption will be 

somewhere between 7.5 and 17 Exajoules with a 90% confidence level, and will be expected to be around 12 

Exajoules in 2050. The distribution is positively skewed and thus there is a chance that the energy 

consumption could be much higher than expected.  The ranked major influences on energy consumption are 

shown in Figure 32. The major influences are similar to that of fuel use in 2050; however, the ranking is 

different. For instance, the sales share of  BEVs is relatively less important that HEVs in determining the total 

energy consumption than in fuel use in 2050. This is because the use of BEVs results in replacing liquid-based 

fuel by electricity, which means a significant change in the fuel use volume; however, BEVs still use energy to 

move and hence their less significant impact on life-cycle energy use  Moreover, the growth of travel demand 

in the mid term becomes relatively more important than light truck fuel consumption. This can be attributed to 

the fact that LT fuel consumption only affects the fuel use directly, while the VKT demand affects the amount 

of energy needed for both conventional and alternative powertrain vehicles.  

 

Figure 31- 2050 U.S. Fleet life-cycle energy consumption (EJ/year) 
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Figure 32-2050 U.S.  fleet life-cycle energy consumption ranked major influences (EJ/year) under uncertainty 

5 Fleet Behaviour  

The following section describes the fleet behaviour, given the pathway chosen in this paper. The graphs in this 

section are based on the mean input values of various distributions, and are presented here as a complementary 

set of results. The input values in this study are chosen to reflect sensible projections into the future so that the 

results could be interpreted in a real world sense. Very few robust and detailed analyses out to 2050 have been 

done to date; therefore, the authors provide this section to describe one example of the fleet behaviour out to 

the year 2050, given the pathway chosen here.   

 Figure 33 shows the fuel consumption (L/100km) for an average future vehicle, calculated using a weighted 

average based on the powertrain shares in the fleet for each year out to 2050. Gasoline NA-SI remains as a 

dominant powertrain in the future, even with the rather aggressive positive electrification explored here. Figure 

34 shows the share of alternative powertrain sales as a percentage of total market share over the next couple of 

decades. The fuel consumption of the fleet is then shown in Figure 35, by LDV segment. The fuel use in the 

car segment stays dominant over the next few decades; however, a shift between cars and SUVs can be seen in 

Figure 35, as a result of downsizing efforts. The fuel use in all segments is also reduced over time due to a 

higher emphasis on fuel consumption reduction, for example, through weight savings, and reduced vehicle fuel 

consumption due to improved technologies. Figure 36 shows the fleet fuel consumption by powertrain. The 

fuel use from NA-SI is largest and stays dominant over time. The life-cycle GHG emissions are shown in 

Figure 37, where emissions from gasoline are substantially reduced over time, while the share of emissions 

from alternative fuel sources such as tarsand and corn ethanol is increased over time. The emissions from 

electricity do not increase significantly over time due to an increase in the share of electricity produced from 

renewable sources and greening of the grid.  
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Figure 33- Average new vehicle mean fuel consumption (L/100km) out to 2050 

 

Figure 34- Mean new vehicle sales market share out to 2050 

 

Figure 35- Mean fuel use in billion litre gasoline equivalent by LDV segment out to 2050 
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Figure 36- Mean fuel use (billion litres gasoline equivalent) by powertrain type out to 2050 

 

Figure 37- Mean life-cycle GHG emissions (MtCO2 equivalent) by fuel type out to 2050 

6 Comparison with Earlier Work  

 The following graph in Figure 38 overlays the fuel use results from this paper with a number of scenarios 

explored in previous studies such as the MIT model (Bandivadekar  et al, 2009), Greene and Plotkin (2011), 

Yang et al (2009) and the DOE and AEO forecasts. The minimum, maximum, 5%, 25%, 75%, and 95% results 

from STEP are also shown in this figure. The deterministic scenarios shown here, drawn from the literature, do 

not agree on what the future of fuel consumption would look like, due to their different sets of chosen 



November 2011 
 

37 of 48 

assumptions, model logics, and policy pathways. The deficiencies of scenario analysis are thus self-evident 

from this graph, as it is not possible for the reader to assign a probability to any of these pathways or prioritize 

amongst them. The methodology adopted in the STEP, as described in this paper, however, can be seen to 

offer a way not only to show possible pathways for reducing fuel use and emissions in the future, but also to 

provide the reader with the range of possible outcomes from such pathways and their associated probabilities. 

Such results can then be used to compute the probability of achieving a target following a certain pathway. In 

other words, different policy pathways, including the ones explored by Greene, and Yang et al in previous 

studies, can be input into STEP to show the range of possible outcomes that those pathways could result in, as 

well as the probability associated with those outcomes. This would then allow proper probabilistic comparison 

amongst policy pathways and thus assist decision makers to choose between them based on their consequences 

and the probability of achieving certain targets.   

 

Figure 38-STEP fleet fuel use result comparison with earlier studies 

7  Discussion and Concluding Remarks   

This paper quantifies the impact of uncertainties on the total U.S. fleet fuel use and GHG emissions, resulted 

from a pathway of steadily improving vehicle fuel efficiency technology, reduced vehicle size and weight, and 

the deployment of alternative vehicles and clean energy sources out to 2050. This work also identifies and 

ranks the major influences on future fuel use and emissions under uncertainty and over time. This relatively 

aggressive pathway reduces fleet fuel use and GHG emissions to about half of their maximum level (of 2010-

2020) by 2050. The results show that the uncertainties are significant in the mid and long term. Therefore, an 

understanding of the probability distributions of the outputs given a chosen particular pathway is essential, to 

be able to understand the full range of future possibilities and their associated probabilities. This in turn 

provides policy makers with a more complete picture of what the consequences of their decisions are in the 

light of their associated risks, and allows decision makers to analyze the impact of new policies in one space 

consistently while accounting for the uncertainties in the inputs.  

 The probability distributions provided in this paper further quantify the range of possible outcomes, using 

measures such as: 1% and 99% values, as well as the spread, different confidence intervals, and the coefficient 
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of variance in each outcome, for any given point in time out to 2050. The probability distributions also indicate 

what the chances are of achieving a certain target; for instance, from the results presented in this paper it can 

be concluded that there is 45% chance of  achieving a 36% reduction below 2008 level fuel use in 2050, and a 

51% chance of achieving a 49% reduction below 2008 emissions in 2050. Such information clarifies whether 

the current policies in place can reduce fuel use and emissions with a reasonably high probability, and what the 

range of possible outcomes look like following current and proposed regulatory plans. Using STEP, key 

strategies can thus be identified to close the gap between what the current policies are going to achieve in the 

mid and long term, given future uncertainties, and what it is hoped to achieve in 2030 and beyond. 

 Further, the results show that the magnitude and uncertainty associated with future scrappage rate, vehicle 

sales, ERFC, and near and mid term VKT annual growth play an influential role in determining the mid and 

long term fuel consumption and emissions probability distributions. As well, the results confirm the large 

potential for reducing emissions using cellulosic ethanol and electricity.  The magnitude and ranking of major 

influences can also inform policy priorities and efforts in better controlling (and thus reducing uncertainty in), 

and improving certain parameters.  Given the revealed importance of future scrappage rate and VKT annual 

growth rate, for instance, it is recommended that more effort be spent on putting in place effective scrappage 

policies and travel demand management strategies that control these parameters in the mid-long term. 

Moreover, the influence of vehicle sales indicates, for example, the importance of having  policies in place that 

regulate sales weighted fuel consumption of vehicles. Finally, the significance of ERFC confirms the need for 

more efforts to be put into reducing vehicle weight and increasing emphasis on using improved technologies 

for reducing vehicle fuel consumption.  

 As shown in the tornado results, the major contributing factors change over time from near to long term. 

This therefore indicates the need for dynamic policy making, where the focus is changed over time to control 

and improve the most significant parameters in order to maximize the impact on fuel and emissions reduction. 

In other words, the tornado diagrams help in policy prioritization both at any given point in time and 

dynamically over the next few decades.  

 Furthermore, the relative importance of the major contributors under uncertainty changes based on the type 

of output in question, whether emissions, fuel use, or energy consumption. In other words, a different set of 

parameters are most influential based on whether a policy is designed to reduce emissions, fuel use, or energy 

consumption.  Therefore, policy makers should take into account the results from all three outputs in parallel 

when deciding which areas to focus on.   

 The identification and ranking of the major influences given real-world uncertainties also allows for 

prioritization amongst the contributing forces. For instance, the results here show that a 0.1% change in the 

near term VKT annual growth is twice as effective in increasing the fuel use in 2030, compared to a 0.08% 

increase in the mid term VKT growth, given the uncertainties associated with VKT demand over time. 

Furthermore, the results indicate that an 8% increase in future scrappage rate is five times more effective in 

reducing the fuel use in 2030 compared to a 2% increase in BEV sales, given scrappage policy and BEV sales 

uncertainties in the future. Such comparisons have real-world implications and can therefore inform the 

process of decision making and policy prioritization.  

 The results from this paper demonstrate the effect of uncertainty on the future of fleet wide fuel use and 

emissions reduction  from a carefully constructed pathway that results in significant fuel use and life-cycle 

GHG emissions reduction in the mid and long term. The results are based on a pathway of steadily improving 



November 2011 
 

39 of 48 

vehicle fuel efficiency technology, reduced vehicle size and weight, and the deployment of alternative vehicles 

and clean energy sources. These results show that the impact of uncertainty on the fleet fuel use and GHG 

emissions is significant, and need to be taken into account when analyzing the future of the light-duty vehicle 

fleet to inform more robust policy making, given the real world uncertainties in technology development and 

market behaviour. Quantifying the impact of uncertainty allows decision makers to better understand the 

consequences of their decisions in the light of their associated risk. This in turn allows decision makers to 

analyze the impact of new policies while accounting for the uncertainties in the inputs. Further, this study 

identified the major contributing factors to fleet fuel use and GHG emissions under uncertainty and ranked 

them in terms of relative influence over time. This therefore indicates the need for dynamic policy making, 

where the focus is changed over time to control and improve the most significant parameters in order to 

maximize fuel and GHG emissions reduction. Understanding the probability of achieving certain targets is 

essential as policy makers and regulatory bodies will be making decisions and setting standards that shape the 

future of light-duty vehicles over the next several decades, while facing notable uncertainties in technology 

and market characteristics in the mid to long term.  This study offers a quantitative methodology that allows 

target setting and policy making based on the fleet fuel use and emissions risk distributions over time, and 

provide a more complete picture of the potential for reducing transport‟s environmental impacts given real-

world uncertainties. 
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Glossary  

 

BEV   Battery electric vehicle  

BOF   Steelmaking technique using a basic oxygen furnace.  

CAFE   Corporate Average Fuel Economy 

CAR Sedans and Wagons 

ERFC   Emphasis on Reducing Fuel Consumption 

EPA/USEPA   U.S. Environmental Protection Agency  

EV Electric Vehicle  

FCH Fuel-cell Hybrid  

Fuel Consumption (FC) Amount of fuel consumed by a vehicle per unit distance of travel (L/100km), which is 

the inverse of the frequently used metric, fuel economy 

Fuel Economy (FE) Distance travelled per unit of fuel used (miles per gallon, MPG).  

Fuel use   Total fuel used in liters of gasoline-equivalent  

GDI Gasoline Direct-Injection 

GHG   Greenhouse gases  

GREET   Greenhouse gases, Regulated Emissions, and Energy use in Transportation  

 model by Argonne National Laboratory.  

HEV   Hybrid-electric vehicle  

HCCI  Homogenous Charge Compression Ignition  

ICE   Internal combustion engine  

LCA Life-cycle assessment  

Light truck  Class of vehicles including sport utility vehicles, vans and pickups weighing less 

than 8,500 lb (gross vehicle weight) 

LDV  Light-duty vehicles  

MIT Massachusetts Institute of Technology  

MPG   Miles per gallon, units of vehicle fuel economy  
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MY  Model year of new vehicles  

NA-SI   Naturally-aspirated Spark Ignition (versus a turbo or supercharged) engine  

NHTSA   U.S. National Highway Traffic Safety Administration  

NRC   U.S. National Research Council  

OLT Other Light Trucks (includes pick-up trucks and all trucks that are part of LDVs but 

not categorized as SUV or cars) 

PDF Probability Density Function  

PHEV   Plug-in hybrid electric vehicle  

SUV   Sport Utility Vehicle  

TEDB   Transportation Energy Data Book published by Davis et al 
[2]

  

TTW Tank-to-Wheels  

Turbo-SI Turbo charged Spark Ignition engine  

VKT   Vehicle kilometres travelled  

WTT Well-to-Tank  

WTW Well-to-Wheels 
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Appendix: Input List 

The following is the complete list of inputs into STEP: 

Parameter  Min  Mode Max Mean STD %STD/Mean 

Values in 

2010 

Total light vehicles Sales in 2030  9,387 18,403 23,000 16,930 2,827 17% 11,500 

Future Scrappage Rate(2011+) 65% 80% 105% 83% 8% 10% 80% 

%Sales Gasoline-Turbo in 2030 6% 12% 18% 12% 2% 20% 7% 

%Sales Diesel in 2030 1% 5% 9% 5% 2% 30% 1% 

%Sales HEV in 2030 3% 10% 17% 10% 3% 30% 3% 

% Sales PHEV in 2030 1% 5% 9% 5% 2% 35% 0% 

%Sales BEV in 2030 0% 4% 8% 4% 2% 40% 0% 

%Sales FCHEV in 2030 0% 2% 5% 2% 1% 44% 0% 

% car (vs. light trucks) 45% 65% 80% 63% 7% 11% 51% 

VKT-Annual-Growth(2006-2020) 0.26% 0.50% 0.74% 0.50% 0.10% 20% 0.50% 

VKT-Annual-Growth(2020-2030) 0.07% 0.25% 0.43% 0.25% 0.08% 30% N/A 

VKT-Annual-Growth(2030+) -0.40% 0.00% 0.40% 0.00% 0.16% N/A N/A 

Emphasis on Reducing Fuel Consumption (ERFC)  

ERFC Cars 40% 80% 100% 73% 12% 17% 50% 

ERFC Light Trucks 30% 70% 100% 67% 14% 22% 50% 

Fuels and Energy Sources Value in 2010 

%blend cellulosic ethanol in 2030 4% 14% 24% 14% 4% 30% 0% 

%blend corn ethanol in 2030 2% 8% 14% 8% 2% 30% 5% 

%electricity from clean sources in 2030  30% 50% 75% 52% 9% 18% 29% 

%bio-diesel 1% 3% 5% 3% 1% 30% 0% 

%tarsand in 2030 15% 25% 45% 28% 6% 22% 10% 

WTW Coefficients[gCO2 eqv/MJ] 

Ethanol WTW in 2030 6 8 14 9 2 18% 10 

Corn Ethanol WTW in 2030 60 69 90 73 6 9% 77 

Gasoline WTW in 2030 81 92 103 92 5 5% 92 

Diesel WTW in 2030 82 94 106 94 5 5% 94 

Bio-Diesel WTW in 2030 56 89 122 89 13 15% 89 

Conventional Electricity WTW in 2030 

[gCO2/kWh] 376 970 1376 908 205 23% 1078 

Hydrogen WTW in 2030 93 123 1376 123 12 10% 137 

TarSand WTW in 2030 92 105 118 105 5 5% 109 

Electricity Use 

PHEV Elec consumption (kWh/100km) in 

2030 12 24 35 24 5 20% 36 

BEV Elec consumption (kWh/100km) in 

2030 12 24 36 24 5 20% 36 

FCV Hybrid Electric Energy use 

(MJ/100km) 30 115 200 115 35 30% 115 

Utility Factor 30% 48% 66% 48% 7% 15% N/A 
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FC Relative in 2030 

FC-r NA-SI cars in 2030 0.44 0.70 0.96 0.7 0.105004 15% 1.00 

FC-r Turbo cars in 2030 0.39 0.62 0.85 0.62 0.093005 15% 0.90 

FC-r Diesel cars in 2030 0.37 0.59 0.81 0.59 0.088505 15% 0.84 

FC-r HEV cars in 2030 0.21 0.42 0.63 0.42 0.084004 20% 0.70 

FC-r PHEV cars in 2030 0.21 0.42 0.63 0.42 0.084004 20% 0.70 

FC-r NA-SI LT in 2030 0.45 0.71 0.98 0.714 0.107105 15% 1.00 

FC-r Turbo LT in 2030 0.39 0.61 0.83 0.609 0.091355 15% 0.83 

FC-r Diesel LT in 2030 0.35 0.56 0.76 0.555 0.083254 15% 0.74 

FC-r HEV LT in 2030 0.22 0.43 0.63 0.426 0.085205 20% 0.70 

FC-r PHEV LT in 2030 0.22 0.43 0.63 0.426 0.085204 20% 0.70 
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