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Abstract

Empirical prediction intervals are constructed based on the distribution of pre-

vious out-of-sample forecast errors. Given historical data, a sample of such

forecast errors is generated by successively applying a chosen point forecasting

model to a sequence of fixed windows of past observations and recording the as-

sociated deviations of model predictions from actual observations out-of-sample.

The suitable quantiles of the distribution of these forecast errors are then used

together with the point forecast made by the selected model to construct an

empirical prediction interval. This paper re-examines the properties of the em-

pirical prediction interval. Specifically, we provide conditions for its asymptotic

validity, evaluate its small sample performance and discuss its limitations.

Keywords: Interval forecasting, Probabilistic forecasting, Out-of-sample

forecast error, Model uncertainty, Non-Gaussian distribution

1. Introduction

Prediction intervals are valuable complements to point forecasts as they indi-

cate forecast precision: Future realizations fall within a prediction interval with
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a prescribed probability. The problem of constructing prediction intervals has

traditionally been studied using a theoretical (model-based) approach, which

assumes that the applied forecasting model specifies the underlying stochas-

tic process correctly and that the forecast errors follow a specific distribution

(Chatfield 1993). It is assumed that the chosen forecasting model makes unbi-

ased point forecasts, i.e. the mean of the forecast error is zero. The variance of

the forecast error is found using theoretical formulae derived from the chosen

forecasting model (see, e.g. Box, Jenkins, & Reinsel (1994) for ARMA models).

Although in principle other error distributions are also possible, it is often as-

sumed that the error distribution is Gaussian as this facilitates the derivation

of theoretical formulae. It has long been known, however, that such theoretical

prediction intervals tend to be too narrow if the forecasting model is misspec-

ified, i.e., if forecast errors have non-zero mean or if the error distribution is

non-normal, see e.g. Chatfield (1993, 1995). If there are doubts about model

assumptions, empirically based approaches offer a useful alternative.

The literature on empirical approaches to estimating prediction intervals can

be divided into two strands. The first strand has explored the use of empirical

residual errors to avoid assumptions regarding the spread and shape of the error

distribution. They compute the residual errors of a fitted forecasting model at

different forecast lead times and apply non-parametric methods, such as Cheby-

shev’s inequality (Gardner 1988) and kernel density estimators (Wu 2010), and

semi-parametric methods, such as quantile regression (Taylor & Bunn 1999),

to construct prediction intervals. Whilst these approaches relax assumptions

on the spread and shape of the error distribution, they remain based on resid-

ual errors rather than out-of-sample forecast errors. It is well known, however,

that true post-sample forecast errors tend to be larger than the fitted residuals

(Makridakis & Winkler 1989). The fitted residuals - the differences between the

2



observed and fitted values in-sample - measure how well the chosen model fits

the data. Out-of-sample forecast errors - the differences between the realizations

(that are not included in the fitting process) and the predictions of the model -

indicate the chosen model’s true predictive performance. They simultaneously

incorporate all causes of errors in the model predictions, including random vari-

ations in the data-generating process, parameter estimation errors, and errors

due to incorrect model specification.

The second strand of the literature therefore employs empirical out-of-sample

forecast errors to construct prediction intervals. This approach is based on the

generation of a sample of out-of-sample forecast errors by successively fitting

a chosen point forecasting model to a sequence of windows of past observa-

tions and recording the associated deviations of model predictions from actual

observations out-of-sample. Given a desired nominal coverage rate - the pre-

specified probability that the interval should contain future observations - the

relevant quantiles of the distribution of these empirical forecast errors are used

with the point forecast made by the selected model to calculate an empiri-

cal prediction interval. The concept was introduced by Williams & Goodman

(1971) and is increasingly applied as an alternative to traditional approaches

(see, e.g. Cohen 1986, Jogensen & Sjoerg 2003, Rayer, Smith, & Tayman 2009,

Isengildina-Massa, Irwin, Good, & Massa 2011). Yet, little is known about the

theoretical underpinnings of the approach and some important questions remain

unanswered: Under which conditions is this empirical approach robust under

model uncertainty? What is the finite sample performance of the approach?

When is the approach preferable to the alternatives? The purpose of this paper

is to focus on the empirical approach that uses out-of-sample forecast errors, and

give this approach a full re-examination. Specifically, we consider two sources

of model misspecification:
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1. incorrect assumptions on the forecast error distribution,

2. incorrect assumptions on the functional form of the point forecasting

model, leading to a biased point forecast.

We examine the robustness of the empirical approach against these two types

of model uncertainty using asymptotic results, and simulation and empirical

studies. We also discuss its limitations.

To illustrate the benefits of using out-of-sample forecast errors to construct

prediction intervals, consider the process Yt = µ + ut where ut ∼ N(0, σ2
u).

Suppose the chosen point forecasting model is biased and makes one-step-ahead

point forecasts at time t by Ŷt,1 = µ̂t = µ+ bt where bt ∼ N(b, σ2
b ). This leads

to out-of-sample forecast errors Et,1 = Yt − Ŷt,1 = µ − µ̂t + ut = −bt + ut and

implies that E(Et,1) = −b and Var(Et,1) > σ2
u. Therefore, we can use the mean

of the forecast error to re-center the prediction interval to correct for the forecast

bias and also use the larger variance of the forecast error to widen the interval

to incorporate model uncertainty in addition to the true random variation ut of

the process.

Our asymptotic results show that when the data-generating process is sta-

tionary ergodic, the mean and variance of out-of-sample forecast errors can

be consistently estimated and therefore the empirical prediction intervals have

asymptotically correct coverage, regardless of the selected point forecasting

model. Furthermore, the assumption of Gaussian errors can be avoided by ap-

plying the empirical quantiles of the forecast errors when calculating the interval

endpoints. Therefore, empirical prediction intervals avoid the assumptions of a

correctly specified forecasting model and Gaussian forecast errors. Since empir-

ical prediction intervals are valid for arbitrary point forecasting models, their

use extends to forecasting model that include judgemental aspects that cannot

be subsumed in the theoretical approach to estimating prediction intervals.
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We evaluate the finite sample performance of the empirical prediction in-

tervals using Monte Carlo experiments and provide an empirical study of real

exchange rate forecasts. The focus of the simulation and empirical studies is on

the examination of the robustness of the approach in the face of model misspec-

ification, in comparison with an alternative theoretical (model-based) approach

and a purely non-parametric approach. Both simulation and empirical stud-

ies indicate that empirical prediction intervals are particularly robust for time

series that are nearly non-stationary. Additionally, given that the empirical

approach relies on generating empirical forecast errors, it necessitates the avail-

ability of sufficient data. We find that the empirical prediction intervals for up

to 10-step-ahead forecasts are fairly robust for sample sizes above 120.

The major limitation of the empirical approach is that the estimated inter-

vals are not conditional on past observations or other predictors. If the point

forecasting model contains predictors and produces biased conditional point

forecasts, then our approach will not produce asymptotically correct condi-

tional intervals as the approach widens intervals by incorporating unconditional

model uncertainty. This unconditionality of the approach does not cause its

performance to deteriorate on average (Chatfield 1993) but may lead to larger

standard deviations of the interval estimates in practical situations, compared

to alternative approaches that are conditional on previous observations. This

points to a crucial trade-off in applications: The benefit of robustness against

the unbiasedness of the point forecasting model must be traded off against the

loss in efficiency resulting from the unconditional nature of the approach. How-

ever, if the employed point forecasting model is known to produce unbiased

point forecasts conditional on predictors, our approach will construct consistent

conditional intervals as well.

This paper is organized as follows. In Section 2, we describe the main ap-
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proaches for obtaining theoretical and empirical prediction intervals. Section 3

specifies assumptions for the asymptotic validity of the empirical approach. Sec-

tion 4 contains a small-sample Monte Carlo study that compares the relative

performance of the theoretical and empirical prediction intervals. An applica-

tion to real data is presented in Section 5 and Section 6 provides a conclusion.

The Appendix contains the main proof of the asymptotic analysis in Section 3.

2. Constructing Prediction Intervals: Theoretical and Empirical Ap-
proaches

We consider a stochastic process {Zt : Ω → Rs+1, s ∈ N, t = 1, 2, . . .}

on a probability space (Ω,F , P ) and define the observed vector Zt as (Yt, X
′
t)
′,

where {Yt : Ω → R} is the variable of interest and {Xt : Ω → Rs} is a vector

of covariates. We let Ft be the filtration generated by (Z ′1, . . . Z
′
t)
′.

Suppose a forecasting model g is chosen to make τ -step-ahead point forecasts

Ŷt,τ = g(Zt, Zt−1, . . . , Zt−w+1) at time t. Here w is a window size, i.e., the size

of a subsample used to make point forecasts, and g is a measurable function.

Note that this setup allows the incorporation of various point forecasting models

including univariate, where Ŷt,τ may depend on Yt, Yt−1, . . .; multivariate, where

Ŷt,τ may also depend on covariates Xt, Xt−1, . . .; and judgemental models where

Ŷt,τ is generated by expert judgment conditional on Ft (c.f. Giacomini & White

2006).

Let Et,τ be the out-of-sample forecast errors associated with the estimated

point forecasts Ŷt,τ ,

Et,τ = Yt+τ − Ŷt,τ = Yt+τ − g(Zt, Zt−1, . . . , Zt−w+1).

We assume that the forecast errors Et,τ have an (unknown) cumulative dis-

tribution function Fτ (e) = Pr(Et,τ ≤ e). The quantiles of the forecast error

distribution, Qτ (p) = min{e : Fτ (e) ≥ p} are then used to compute a 100α%
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prediction interval around the point forecast Ŷt,τ . Specifically, the interval end-

points for Yt+τ are

[Lt,τ , Ut,τ ] = [Ŷt,τ +Qτ ((1− α)/2), Ŷt,τ +Qτ ((1 + α)/2)].

Since the true forecast error quantiles Qτ (p) are unknown, they must be esti-

mated to calculate the interval endpoints. Next we describe the theoretical and

empirical approaches to estimating Qτ .

2.1. Theoretical Approach

The prevalent theoretical approach constructs prediction intervals by assum-

ing that the applied forecasting model is correctly specified for the underlying

stochastic process and that the forecast errors are normally distributed. Specif-

ically, forecast errors are assumed to have zero mean and their variance is es-

timated based on the analytical formulae derived from the chosen forecasting

model. Given a series of n realizations of Zt, i.e., {zt : t = 1, 2, . . . , n} and a cho-

sen forecasting model g, denote the estimated point forecast and error variance

for lead time τ by ŷn,τ and σ̂2
τ , respectively. A theoretical 100α% prediction

interval for Yn+τ is then given by

[L̂n,τ , Ûn,τ ] = [ŷn,τ ± z(1−α)/2σ̂τ ],

where z(1−α)/2 = Φ−1( 1−α
2 ) and Φ is a standard normal distribution function.

Theoretical formulae to estimate τ -step ahead forecast error variance σ̂2
τ is

available for many classes of models and is a function of the residual errors of

the fitted model. For example, if the forecasting model is ARIMA, specified in

infinite-moving average form of Yt = ut +ψ1ut−1 +ψ2ut−2 + . . ., ut ∼ N(0, σ2
u),

it can be shown that σ̂2
τ = σ̂2

u[1 + ψ̂2
1 + ψ̂2

2 + . . .], where σ̂2
u and ψ̂i are the

estimated residual error variance and model parameters at t = n.

It is important to note that the conditional validity of the theoretical ap-
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proach requires that the forecasting model is correctly specified with true pa-

rameter values. When the parameter values are estimated with errors, the con-

ditional distribution of forecast errors may not be normally distributed even for

the Gaussian data-generating process and also the conditional mean of the er-

rors is not equal to zero but equal to the forecast bias (Phillips 1979). Bootstrap

approaches (e.g. Stine 1985; Thombs & Schucany 1990; Kim 2001; Reeves 2005)

have been used to address this problem of parameter uncertainty. In the face

of model misspecification, the situation becomes much worse. Theoretical pre-

diction intervals as well as other model-dependent bootstrap intervals become

asymptotically invalid, even unconditionally. Specifically, those intervals tend

to be too narrow to encompass the required proportion of future observations

(Chatfield 1993, 1995).

2.2. Empirical Approach

The empirical approach to prediction interval estimation does not assume

that the chosen forecasting model is correctly specified. Instead, it is based

on the empirical analysis of past forecast errors that would have been made

by the chosen model. Empirical forecast errors are systematically generated

by iteratively applying the chosen point forecasting model g to subsamples of

past observations and recording the deviations of the forecasts from the known

out-of-sample realizations. Given a series of n realizations, the process starts at

t = w < n− τ . At every time t with w ≤ t ≤ n− τ = l, the τ -step-ahead point

forecast ŷt,τ is calculated based on the last w observations. This gives rise to

corresponding empirical forecast errors by

êt,τ = yt+τ − ŷt,τ = yt+τ − g(zt, zt−1, . . . , zt−w+1).

In this way we obtain a sample of the k = n−τ−w+1 = l−w+1 out-of-sample

forecast errors. These empirical errors act as a proxy for the true post-sample
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forecast errors. It is important to note that a fixed window size of w is used to

generate the empirical forecast errors. We will discuss the choice of window size

in more detail in Section 3.

Given k sampled forecast errors {êt,τ : t = w,w + 1, . . . , l}, denote the

estimated p% forecast error quantile by Q̂τ (p). We consider both parametric and

non-parametric approaches to estimate Q̂τ . For the parametric approach, we

assume that the τ -step-ahead forecast errors are normally distributed with finite

mean µτ and variance σ2
τ , and estimate the sample mean µ̂τ = k−1

∑l
t=w êt,τ

and the sample variance σ̂2
τ = k−1

∑l
t=w(êt,τ−µ̂n,τ )2. The parametric empirical

(P-empirical) forecast error quantile is then calculated as Q̂τ (p) = µ̂τ + zpσ̂τ

and the P-empirical prediction interval with the nominal coverage 100α% is

[L̂n,τ , Ûn,τ ] = [ŷn,τ + µ̂τ ± z(1−α)/2σ̂τ ].

Both the theoretical and P-empirical intervals assume that the forecast errors

are normally distributed. The main difference is that the P-empirical intervals

are based on estimating the forecast error variance for lead time τ directly

from the sample variance of τ -step-ahead forecast errors, while the theoretical

intervals are computed using theoretical formulae that are based on one-step-

ahead forecast errors and the properties of the forecasting model, assuming that

the latter is a correct specification of the underlying data-generating process.

The non-parametric approach to constructing empirical prediction intervals

works directly with the empirical distribution of the generated forecast errors

F̂τ (e) = k−1
∑l
t=w I(êt,τ ≤ e), where I(S) is the indicator function of a set S.

Denote the r-th order statistic of the k empirical forecast errors for a given lead

time τ by ô(r)k,τ . The non-parametric empirical (NP-empirical) forecast error

quantile is then Q̂τ (p) = ô(r)k,τ , where r = bkpc+1 and bsc denotes the largest

integer m such that m ≤ s. Therefore, the NP-empirical prediction interval is
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given by

[L̂n,τ , Ûn,τ ] = [ŷn,τ + ô(rL)k,τ , ŷn,τ + ô(rU )k,τ ].

Here rL = bk(1− α)/2c+ 1 and rU = bk(1 + α)/2c+ 1.

3. Asymptotic Justification for the Empirical Approach

Recall that the true interval endpoints for Yn+τ with the nominal coverage

100α% are [Ln,τ , Un,τ ] = [Ŷn,τ +Qτ ((1−α)/2), Ŷn,τ +Qτ ((1+α)/2)]. Given the

last realized values at t = n, zn = (zn, zn−1, . . . , zn−w+1)′, the point forecast

ŷn,τ is fixed. The large-sample validity of empirical prediction intervals therefore

depends entirely on the limiting behavior of the forecast error quantile Qτ . Since

the forecast horizon τ ≥ 1 is fixed, we drop the subscript τ in this section.

A critical assumption for the consistency of both the parametric and non-

parametric quantile estimates is the ergodic stationarity of the underlying data-

generating process.

Assumption 1. The observed stochastic process Zt is stationary ergodic.

Lemma 1. If Assumption 1 holds and a forecasting model is given as g(Zt, Zt−1, . . . , Zt−w+1)
with a fixed window size w, the forecast error Et is also stationary ergodic.

Assumption 2. The forecast errors {Et} have finite mean µ = E[Et] and
variance σ2 = E[Et − µ]2 and a cumulative distribution function of the form
F (e) = Φ(e, µ, σ2), where Φ is a standard normal distribution function.

Lemma 2. If a point forecasting model is misspecified such that E(Y |Z) 6= g(Z),
the mean of forecast errors µ = E[Et] is not zero and equal to forecast bias. The
variance σ2 = E[Et − µ]2 is larger than the variance of forecast errors when an
unbiased forecasting model is used. Furthermore, if Assumptions 1 and 2 hold,
we have µ̂n

a.s−−→ µ and σ̂2
n

a.s−−→ σ2.

Theorem 1. If Assumptions 1 and 2 hold and p ∈ (0, 1), then the parametric

sample quantile satisfies Q̂(p)
a.s−−→ Q(p) = F−1(p).

Lemma 2 implies that when the point forecasting model is misspecified, the

mean forecast error measures the bias in point forecasts which can be used

to re-center the prediction interval. At the same time, the variance of fore-

cast errors becomes larger than the variance of the true random variations of
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the underlying process, which leads to the associated prediction intervals be-

ing wider to accommodate additional errors due to the biased point forecasting

model. By consistently estimating the mean and variance of the forecast er-

ror, we obtain the asymptotically valid parametric empirical intervals. We note

that Theorem 1 is not restricted to the case where forecast errors have a nor-

mal distribution but can be generalized, by the continuous mapping theorem,

to any distribution that is continuous in first and second moments, such as the

exponential distribution.

The non-parametric approach drops the Gaussian error assumption and re-

quires only mild conditions on the forecast error distribution, namely continuity

and bounded density.

Assumption 3. The cumulative distribution function F (e) = E[I(Et ≤ e)] of
the forecast errors is continuously differentiable with positive and finite density
f(e) = F ′(e) in the neighborhood of Q(p) = F−1(p).

Theorem 2. If Assumptions 1 and 3 hold and p ∈ (0, 1), then the non-

parametric sample quantile satisfies Q̂(p)
a.s−−→ Q(p) = F−1(p).

The above two theorems provide conditions under which the quantile of

the forecast error distribution associated with a chosen forecasting model is

consistently estimated. As discussed above, with consistent quantile estimates,

one can calculate asymptotically correct interval endpoints. It is remarkable

that the assumptions do not include a direct assumption on the fitted model

g, but only on the true data-generating process. If the specified assumptions

are satisfied, empirical prediction intervals with any point forecasting model

will have correct coverage on average as n→∞ and are therefore robust under

model uncertainty; it is not necessary to make any assumptions on the predictors

and the predicted. This contrasts with the critical importance of correct model

specification for alternative model-based approaches to achieve asymptotically

correct coverage.

Note that Assumption 1 holds for a wide range of time series models (e.g.
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ARMA models). The assumption suggests that the observed data needs to

be made stationary prior to applying the empirical approach, e.g. through

appropriate deseasonalizing and differencing, to achieve asymptotically correct

coverage of the empirical prediction intervals. Also note that the normality as-

sumption of forecast errors in Assumption 2 may be true asymptotically when

a Gaussian data-generating model is correctly identified (Chatfield 1993). How-

ever, the normality assumption is often invalid in practical applications. In

this case, the use of non-parametric sample quantiles results in more robust

prediction intervals.

As previously noted, it is critical for the asymptotic validity of the empirical

approach to use limited memory predictors. Specifically, we use a rolling scheme

which fixes the size of the fitting sample to w and drops distant observations as

more recent ones are added (e.g. Giacomini & White 2006). Expanding memory

predictors, such as a recursive scheme that uses all available data at time t are

not permitted. The empirical forecast errors collected from the recursive scheme

are not stationary and cannot be used to consistently estimate the unknown

properties of the underlying forecast errors. Take the example of estimating the

forecast error distribution of a correctly specified model, but with parameter

uncertainty. When forecast errors are sampled using the recursive scheme, the

portion of the forecast error that is due to the parameter estimation error re-

duces over time, as more and more data is used to fit the model. Therefore,

the parameter estimation error cannot be consistently estimated using empirical

forecast errors of expanding memory predictors. In contrast, limited memory

estimators with a fixed window size generate asymptotically nonvanishing esti-

mation errors and do not suffer from these inconsistencies. Consequently, the

resulting forecast errors are stationary (Lemma 1) and their quantiles can be

consistently estimated. Note that the forecast errors generated by the empirical
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approach are serially correlated. This serial correlation, however, does not affect

the consistency of the quantile estimates.

It is also important to note that despite its robustness the asymptotic valid-

ity of the empirical approach is shown unconditional on the last realized values,

zn = (zn, zn−1, . . . , zn−w+1)′. The empirical intervals are unconditional because

the forecast error distribution, and also the forecast error quantile, are uncon-

ditionally estimated. The unconditionality of the approach does not cause its

performance to deteriorate on average, as indicated by Theorems 1 and 2, but

will lead to a larger standard deviation of interval estimates than conditional

interval estimates. There is a clear trade-off between the benefit of robustness

against misspecifying a point forecasting model on the one hand and the benefit

of conditionality when the model is correct on the other. In order to analyze

the asymptotic validity of the intervals conditional on predictors, we have to

assume that the correct conditioning function and set of predictors are known

(i.e., E(Y |Z) = g(Z)). Under this assumption, the empirical approach can be

shown to deliver asymptotically correct intervals conditional on predictors (see

Appendix).

Next, we show the asymptotic normality result for the non-parametric sam-

ple quantile of forecast errors. For this, we impose stronger mixing conditions

on the memory of the observed stochastic process Zt. Definitions of φ-mixing

and α-mixing can be found in the Appendix B.

Assumption 4. The observed stochastic process Zt is stationary and (i) φ-
mixing such that φ(m) = O(m−2) as n → ∞ or (ii) α-mixing and there exists
a ∆(> 0) such that α(m) = O(m−(5/2)−∆).

Note that under general conditions, finite autoregressive moving average

(ARMA) processes have exponentially decaying memories and therefore satisfy

Assumption 4. Also, we define

ν2 = lim
k→∞

{kVarF̂k(Q(p))} = lim
k→∞

kVar{[I(Ew ≤ Q(p))+. . .+I(El ≤ Q(p))]/k}.
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Then we make the final following assumption on ν2.

Assumption 5. 0 < ν2 <∞.

Theorem 3. If Assumptions 3, 4 and 5 hold and p ∈ (0, 1), then as n → ∞
the non-parametric sample quantile satisfies

n1/2f(Q(p))

ν
(Q̂(p)−Q(p))→D N(0, 1).

4. Monte Carlo Analysis

We design simulation experiments to give an empirical illustration of the

asymptotic theory. We illustrated that the conditions for the large-sample va-

lidity of the empirical approach do not include a direct assumption on the fitted

forecasting model. Also, for the NP-empirical prediction intervals, no specific

parametric assumption on the error distribution is required. To test this, we

designed our simulation experiments to investigate the validity of the empirical

intervals when facing two sources of model uncertainty. The first source of model

uncertainty comes from the distribution of forecast errors, assuming a correct

point forecasting model (Section 4.1) and the second source is the specification

of the point forecasting model itself (Section 4.2). We report the performance of

the empirical approach for different values of sample size to illustrate its asymp-

totic validity. Here, we illustrate the empirical approach using pure time series

models. It is important, however, to remember that the empirical approach is

applicable for any arbitrary point forecasting mechanism, including multivariate

models and judgemental forecasts.

The simulation experiment is designed as follows. We first assume that the

underlying data-generating process is described by the following ARMA models:

Model 1. Yt = 0.85Yt−1 + ut

Model 2. Yt = 0.75Yt−1 − 0.40Yt−2 + 0.20Yt−3 + ut

Model 3. Yt = 0.75Yt−1 + ut − 0.20ut−1,

where ut has mean zero and standard deviation σu = 1.
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For each simulation run, we generate a single series of n = 120 consecutive

observations using the assumed data-generating model. Based on the gener-

ated sample, 100α% prediction intervals are calculated for each lead time τ .

Specifically, we use the fixed window size w = 30 and generate a sample of the

k = n−τ−w+1 = 91−τ out-of-sample forecast errors. Based on these empirical

forecast errors, parametric and non-parametric empirical prediction intervals are

calculated for a chosen coverage percentage 100α%. 1000 realized out-of-sample

observations are generated for each post sample period, n+ 1, n+ 2, . . . , n+ τ

conditional on the last n observations. The realizations for t = n + τ are then

compared with each estimated prediction interval with lead time τ to calculate

its coverage rate, i.e. the frequency with which the prediction interval contains

out-of-sample realizations. Ideally, the intervals should have 100α% coverage

rate; deviations from 100α% indicate inaccurate interval estimates. We repeat

this for 1000 simulation runs and report the average coverage rate and standard

error (se). We consider the nominal coverage rates α = 0.80 and 0.95, and

lead times τ ranging from 1 to 10. For brevity, we only report the results for

α = 0.80, as the results associated with α = 0.95 provide qualitatively similar

results. Similarly, we only report the results for lead times τ = 1, 3, 5, and 10.

We use two benchmarks for our study: theoretical prediction intervals and

purely non-parametric prediction intervals. The theoretical approach constructs

prediction intervals as if the fitted model with Gaussian assumption would fully

describe the true data-generating model and ignores model uncertainty. This

theoretical interval provides a reference point to investigate the effect of ignoring

model uncertainty over coverage accuracy, in comparison with the empirical

prediction intervals, which are designed to account for this uncertainty, at least

asymptotically. The purely non-parametric prediction intervals are obtained by

calculating the quantiles of the empirical distribution of Yt itself. Under general
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dependence assumption on the underlying process, these intervals are known

to be consistent (Yoshihara 1995). However, the non-parametric approach is

only applicable for constructing prediction intervals for one-step-ahead and is

problematic for multi-period horizons. All computations are conducted using

the R statistical package (version 2.13.1). The R code used in this study can be

provided on request.

4.1. The Case of Making an Incorrect Distributional Assumption

To investigate the effect of non-Gaussian error distributions on the coverage

rate, we consider three alternative error distributions for each data-generating

model (Models 1-3), in particular, Gaussian, exponential, and a contaminated

normal distribution .9F1 + .1F2, where F1 ∼ N(−1, 1) and F2 ∼ N(9, 1). Each

distribution has been centered to have zero mean. These distributions represent

ideal, skewed, and bimodal skewed alternatives respectively. The Gaussian dis-

tribution has been chosen as a benchmark for comparative purposes, given that

the theoretical and P-empirical intervals have been derived under this assump-

tion. In this section we assume that the functional form of the point forecasting

model is correctly identified and focus on the impact of an incorrect assumption

on the forecast error distribution.

Table 1 suggests that both theoretical and empirical prediction intervals

underestimate the nominal coverage rate, even when the data-generating model

is correctly identified and the forecast errors are normally distributed. Both the

theoretical and empirical prediction intervals are too narrow because they ignore

uncertainty in parameter estimation. For the theoretical intervals, the coverage

is particularly underestimated when the data-generating model is an AR(1)

model. This results from the large bias in autoregressive estimation in small

samples, especially for highly autocorrelated processes (Phillips 1979). The

coverage of the P-empirical intervals is also underestimated because the mean
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and variance of τ -step-ahead forecast errors are estimated with some errors in

a finite sample. It is also evident that the P-empirical intervals outperform the

NP-empirical intervals. This is because under Gaussian forecast errors the NP-

empirical intervals require a larger sample of empirical forecast errors to estimate

quantiles non-parametrically for a given accuracy level, particularly for extreme

quantiles near 0 or 1. Since both approaches are asymptotically optimal under

this condition, we observe improvements as the sample size increases.

When the error distribution is not Gaussian but is exponential or mixed, the

theoretical and P-empirical intervals that assume Gaussian errors tend to esti-

mate coverages greater than the nominal coverage, especially for shorter lead

times. The degree of this tendency illustrates the effect of making incorrect

assumptions on the error distribution. In contrast, the NP-empirical intervals

avoid making a distributional assumption and their average coverages are there-

fore less sensitive to the choice of error distribution. More importantly, unlike

theoretical and P-empirical intervals, the coverage of the NP-empirical intervals

becomes closer to the nominal value as the sample size increases (see Figure 1).

We also tested the intervals built from the empirical distribution of Yt itself.

This purely non-parametric approach also avoids a distributional assumption

and thus its coverage rate is robust to the choice of the error distribution. When

the underlying process is highly correlated (for example Model 1), we find that

the NP-empirical intervals outperform the non-parametric intervals. This is due

to the use of a point forecast as a center point of the empirical prediction interval,

which can capture autocorrelation in the underlying process. Unlike the NP-

empirical intervals, the non-parametric approach requires a larger sample size

to obtain reasonable precision when the underlying process is highly positively

correlated (see Figure 1).

The performance of the empirical prediction intervals depends on the accu-
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Table 1: Percentage coverage by 80% prediction intervals for Models 1-3 with three alternative
error distributions and a correct point forecasting model (n = 120)

Theoretical P-Empirical NP-Empirical Non-Parametric
Model Distribution Lead Average (se) Average (se) Average (se) Average (se)
1 Normal 1 78.73 (0.11) 79.15 (0.19) 77.90 (0.21) 75.61 (0.82)

3 76.68 (0.15) 77.41 (0.31) 76.44 (0.33) 75.02 (0.47)
5 75.37 (0.19) 75.97 (0.39) 75.10 (0.40) 74.70 (0.33)

10 73.96 (0.23) 73.56 (0.50) 72.99 (0.51) 74.16 (0.27)
Exponential 1 89.14 (0.11) 86.70 (0.25) 78.10 (0.43) 76.02 (0.86)

3 81.22 (0.21) 80.43 (0.37) 76.68 (0.40) 75.41 (0.51)
5 78.26 (0.23) 78.21 (0.42) 75.67 (0.45) 74.94 (0.37)

10 76.07 (0.25) 75.74 (0.53) 73.48 (0.54) 74.39 (0.28)
Mixture 1 89.72 (0.05) 88.00 (0.28) 76.69 (0.55) 74.97 (0.93)

3 82.21 (0.21) 80.54 (0.42) 75.72 (0.52) 74.69 (0.57)
5 81.62 (0.24) 79.02 (0.47) 74.90 (0.53) 74.28 (0.43)

10 77.47 (0.26) 76.75 (0.56) 73.51 (0.56) 74.00 (0.30)

2 Normal 1 77.94 (0.12) 79.22 (0.25) 78.01 (0.26) 78.19 (0.41)
3 77.48 (0.14) 78.21 (0.29) 76.96 (0.31) 77.87 (0.15)
5 77.96 (0.13) 78.34 (0.24) 77.12 (0.26) 77.61 (0.15)

10 78.09 (0.13) 77.59 (0.27) 76.23 (0.29) 77.65 (0.15)
Exponential 1 88.18 (0.15) 85.71 (0.37) 77.77 (0.49) 77.04 (0.58)

3 83.82 (0.18) 82.41 (0.40) 77.17 (0.45) 77.71 (0.18)
5 84.59 (0.17) 82.63 (0.36) 76.96 (0.41) 77.65 (0.17)

10 84.57 (0.16) 82.32 (0.36) 76.65 (0.40) 77.60 (0.15)
Mixture 1 89.49 (0.06) 86.87 (0.38) 76.79 (0.66) 79.42 (0.48)

3 83.21 (0.12) 81.74 (0.42) 75.73 (0.61) 77.94 (0.18)
5 83.70 (0.10) 82.70 (0.38) 75.48 (0.56) 77.75 (0.17)

10 83.93 (0.10) 82.97 (0.41) 74.66 (0.57) 77.73 (0.15)

3 Normal 1 78.44 (0.11) 79.75 (0.19) 78.55 (0.21) 77.65 (0.45)
3 77.56 (0.14) 79.03 (0.22) 77.97 (0.24) 77.37 (0.23)
5 77.08 (0.15) 78.34 (0.25) 77.61 (0.26) 77.13 (0.19)

10 76.96 (0.16) 77.12 (0.30) 76.23 (0.32) 77.03 (0.18)
Exponential 1 88.56 (0.12) 86.29 (0.30) 77.15 (0.45) 74.13 (0.65)

3 82.75 (0.19) 81.53 (0.31) 76.85 (0.36) 74.42 (0.26)
5 80.97 (0.19) 80.11 (0.32) 76.26 (0.37) 74.62 (0.13)

10 80.32 (0.19) 78.34 (0.36) 74.95 (0.41) 74.75 (0.05)
Mixture 1 89.42 (0.08) 87.68 (0.29) 76.99 (0.57) 73.41 (0.71)

3 85.09 (0.14) 83.14 (0.31) 76.53 (0.50) 72.60 (0.26)
5 83.75 (0.15) 81.62 (0.34) 76.10 (0.48) 72.47 (0.15)

10 83.16 (0.15) 80.16 (0.37) 75.11 (0.49) 72.50 (0.06)
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Figure 1: Impact of sample size n on percentage coverage by 80% prediction intervals when
the data-generating model is described by Model 1 with a contaminated error distribution.
The solid horizontal line indicates the nominal coverage rate of 80%.

racy of the estimated point forecast and the accuracy of the sample quantile

estimate of the forecast errors, which are both determined by the chosen win-

dow length w. Recall that the number of generated empirical forecast errors is

k = n− τ −w + 1. Therefore, there is a tradeoff to be made between the accu-

racy of the sample quantiles which improves with smaller w and the accuracy of

the estimated point forecast made at t = n which improves with larger w. The

appropriate window length will naturally depend on the sample size. Based on

the simulation setups used in Table 1, we find that 20 ≤ w ≤ 30 give credible

coverage accuracy when n = 120 (see Figure 2).

4.2. The Case of Using an Incorrect Point Forecasting Model

We design seven Monte Carlo experiments in order to consider particular

cases of model misspecification resulting from the incorrectly identified structure

of the point forecasting model. To isolate the effect of model uncertainty due
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Figure 2: Impact of window size w on absolute percentage coverage error made by 80%
prediction intervals when the data-generating model is described by Model 2 with a Gaussian
error distribution.

to employing an incorrect point forecasting model from that due to assuming

the incorrect error distribution for the theoretical and P-empirical intervals,

we assume Gaussian forecast errors. Our experimental setting is summarized

in Table 2. Experiments 1 and 2 correspond to model misspecification cases

where the lag orders of the autoregressive models are incorrectly identified.

Experiments 3 and 4 illustrate cases where a unit root in the underlying process

is incorrectly assessed. Experiments 5 and 6 are based on two common point

forecasting methods, simple moving average and exponential smoothing, which

misspecify the underlying data-generating process. Experiment 7 introduces a

deterministic bias equal to the standard deviation of the residual error to the

estimated AR(1) model.

Before we report and discuss the performance of the estimated prediction

intervals, we illustrate that the assumed model misspecifications are not unlikely
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Table 2: Monte Carlo experiment setups for the case of using an incorrect point forecasting
model. The underlying process is assumed to be Gaussian.

Experiment True data-generating model Selected point
forecasting model

1 Yt = 0.85Yt−1 + ut AR(1) AR(3)
2 Yt = 0.75Yt−1 − 0.40Yt−2 + 0.20Yt−3 + ut AR(3) AR(1)
3 Yt = 0.85Yt−1 + ut AR(1) Random walk
4 Yt = Yt−1 + ut IMA(1,0) AR(1)
5 Yt = 0.75Yt−1 + ut − 0.20ut−1 ARMA(1,1) Moving average
6 Yt = 0.75Yt−1 + ut − 0.20ut−1 ARMA(1,1) Exponential smoothing
7 Yt = 0.85Yt−1 + ut AR(1) AR(1)+1

to occur. To this end, we use the specified data-generating model to generate

1000 samples of length n = 120. We then apply common model selection meth-

ods to choose a model specification for each of the generated series and calculate

the probability of correctly specifying the model over 1000 simulated series.

For Experiments 1 and 2 we apply the Akaike Information Criterion (AIC)

to determine the appropriate lag order q of an AR(q) model. The Monte Carlo

simulations estimate that the probability of identifying the correct model, AR(1)

for Experiment 1 and AR(3) for Experiment 2, is only 72% and 53% respectively.

To assess the likelihood of model misspecification for Experiments 3 and 4,

we employ the Dickey-Fuller test (Dickey & Fuller 1979) at a 5% significance

level. This unit root test is known to have low statistical power over stable au-

toregressive alternatives, particularly with roots near unity (DeJong, Nankervis,

Savin, & Whiteman 1992; Diebold & Rudebusch 1991). For the stationary data-

generating model assumed in Experiment 3, the unit root test falsely fails to

reject the null hypothesis of a unit root in approximately 70% of cases. For

the non-stationary data-generating process in Experiment 4, the test rejects the

hypothesis of a unit root with a 5% probability, which is consistent with the

chosen significance level.

Makridakis, Wheelwright, & Hyndman (1998) report that simple forecast-

ing methods, such as moving average and exponential smoothing as applied in
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Table 3: Percentage coverage by 80% prediction intervals for Experiments 1-7 that illustrate
the case where a misspecified point forecasting model is used and the underlying process is
Gaussian as summarized in Table 2 (n = 120)

Theoretical P-Empirical NP-Empirical Non-Parametric
Experiment Lead Average (se) Average (se) Average (se) Average (se)

1 1 78.05 (0.12) 79.11 (0.27) 77.68 (0.29) 76.89 (0.79)
3 76.63 (0.17) 77.25 (0.40) 76.10 (0.42) 75.88 (0.45)
5 75.48 (0.20) 76.23 (0.46) 75.15 (0.47) 75.23 (0.32)

10 74.26 (0.23) 75.33 (0.56) 73.80 (0.56) 74.56 (0.26)

2 1 78.48 (0.16) 79.40 (0.24) 78.13 (0.27) 78.36 (0.43)
3 77.29 (0.13) 78.41 (0.23) 77.35 (0.25) 77.91 (0.16)
5 78.08 (0.13) 78.18 (0.22) 77.05 (0.25) 77.83 (0.15)

10 77.97 (0.13) 77.53 (0.24) 76.43 (0.26) 77.75 (0.16)

3 1 79.62 (0.13) 79.70 (0.14) 78.23 (0.18) 76.54 (0.79)
3 82.94 (0.22) 79.24 (0.27) 78.15 (0.29) 75.89 (0.46)
5 85.91 (0.28) 78.69 (0.37) 77.96 (0.38) 75.52 (0.33)

10 91.56 (0.31) 76.84 (0.52) 76.34 (0.54) 74.98 (0.26)

4 1 78.32 (0.11) 78.82 (0.19) 77.54 (0.21) 57.85 (1.29)
3 75.45 (0.15) 76.84 (0.31) 75.63 (0.34) 56.83 (1.10)
5 72.91 (0.20) 75.35 (0.39) 74.29 (0.40) 55.73 (0.98)

10 67.45 (0.29) 72.84 (0.54) 71.22 (0.54) 53.16 (0.79)

5 1 78.11 (0.22) 83.88 (0.30) 82.94 (0.32) 78.03 (0.43)
3 74.76 (0.20) 77.63 (0.31) 76.74 (0.33) 77.47 (0.22)
5 74.63 (0.16) 77.10 (0.29) 76.33 (0.31) 77.37 (0.19)

10 74.35 (0.15) 75.89 (0.30) 75.19 (0.33) 77.05 (0.19)

6 1 79.16 (0.15) 79.92 (0.20) 78.60 (0.23) 78.57 (0.39)
3 79.28 (0.24) 80.00 (0.27) 78.88 (0.28) 77.41 (0.21)
5 82.00 (0.30) 79.70 (0.34) 78.90 (0.35) 76.91 (0.18)

10 88.97 (0.30) 78.68 (0.43) 77.77 (0.44) 76.68 (0.18)

7 1 59.45 (0.19) 79.28 (0.18) 78.15 (0.20) 76.37 (0.78)
3 68.04 (0.22) 78.01 (0.30) 76.82 (0.31) 75.70 (0.44)
5 68.84 (0.25) 76.86 (0.37) 75.86 (0.38) 75.30 (0.32)

10 68.70 (0.28) 74.70 (0.48) 74.13 (0.49) 74.70 (0.26)

Experiments 5 and 6, are most frequently used in practice, often without justifi-

cation of their suitability due to their ease of use and flexibility. Moving average

and exponential smoothing, however, are optimal only when the underlying pro-

cesses are i.i.d. and ARIMA(0,1,1), respectively. The use of these models for

other data-generating processes amounts to model misspecification. Note that

Experiment 6 could also represent the case of misspecification of a unit root.

Table 3 compares the average coverage rates of the theoretical and empirical

22



prediction intervals. The simulation results suggest that in the case of using the

incorrect point forecasting model, the empirical prediction intervals are more

robust than the theoretical intervals in the sense that estimation outliers of cov-

erage rates are rare. In particular, the empirical prediction intervals are robust

against the misspecification of a unit root in the data series (Experiments 3,

4 and 6), for which the correct specification between a stationary and a non-

stationary model within the framework of the theoretical approach is critical

(Chatfield 1993). In this case, the size of the improvement generated by the

empirical approach generally increases as the lead time increases. Also when a

deterministic bias is introduced to a point forecasting model as in Experiment

7, the empirical approach re-centers the prediction interval by consistently es-

timating this bias using the mean of forecast errors (Lemma 2). The purely

non-parametric approach is based on using the empirical distribution of Yt and

is thus robust against the model misspecification. However, as noted earlier, its

performance deteriorates when the underlying process is highly autocorrelated

(see for example Experiment 3 and 4). Similar results were obtained for 95%

prediction intervals, except that the superiority of the empirical approach is

somewhat reduced.

Figure 3 shows the average length of the estimated prediction intervals in

comparison with the true interval length. The true interval length is calculated

using the true data-generating model in Table 2 and is appropriate for quanti-

fying the level of the underlying random variations. We find that the empirical

approach constructs wider prediction intervals compared to the true intervals.

These wider intervals are necessary to accommodate errors resulting from model

misspecification, in addition to random variations, which alone determine the

width of the true interval. The empirical approach constructs systematically

widened intervals based on empirical forecast errors that are collected out-of-
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Figure 3: Average interval length of 80% prediction intervals for Experiments 1-7 summarized
in Table 2
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sample and have a larger variance than the variance of the underlying data

generating process (Lemma 2). It therefore incorporates all causes of errors in

the model predictions. The larger the effect of uncertainty in the point forecast-

ing model, the wider the intervals generated by the empirical approach. Due

to their asymptotic properties, the length of the empirical intervals becomes

just sufficient to cover the desired future realizations on average as the sample

size increases (see Figure 4). The purely non-parametric approach is robust

but only applicable for one-step-ahead forecasts. As a result, the width of the

non-parametric intervals remains constant as the lead time changes.

Regarding the theoretical approach, Figure 3 shows that the corresponding

prediction intervals can be either wider or narrower than the true interval. This

is a result of ignoring model uncertainty and making false assumptions about the

forecast error variances using the theoretical error variance formulae of a fitted

model. Specifically, the use of a stationary model when the underlying process is

indeed stationary (Experiments 1,2 and 5) tends to result in too narrow intervals

because it ignores the additional uncertainty arising from model misspecifica-

tion. However, if non-stationary models, such as random walk and exponential

smoothing, are fitted to an underlying stationary process (Experiments 3 and

6), the theoretical prediction intervals become too wide and critically overesti-

mate nominal coverage rates, particularly for longer lead times (see Table 3).

This is because non-stationary forecasting models theoretically assume a lin-

early increasing variance of forecast errors with lead time, whereas underlying

stationary processes have gradually increasing forecast error variances to a finite

upper bound. In contrast, fitting a stationary model to a non-stationary process

(Experiment 4) underestimates future uncertainty and results in intervals that

are too narrow. Being able to distinguish between stationary and non-stationary

models is therefore critical for the theoretical approach. It is important to note
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Figure 4: Impact of sample size n on percentage coverage by 80% prediction intervals for
Experiment 3 in Table 2. The solid horizontal line indicates the nominal coverage rate of
80%.

that the effect of model uncertainty does not always lead to lower-than-nominal

coverage of the theoretical intervals as reported in the previous literature.

Figure 4 examines the coverage rate of the empirical approach as a function

of sample size under model uncertainty and compares it with the theoretical

approach. It demonstrates, as expected from the asymptotic results of Section 3,

that the average coverage rates of the empirical intervals converge to the nominal

coverage as the sample size increases, even when the point forecasting model is

misspecified. In contrast, the coverage rates of the theoretical approach using

an incorrect model do not improve with larger sample sizes.

5. An Empirical Example

In this section, we examine the robustness of the empirical prediction in-

tervals, using real time series. We focus on the case of model misspecification

resulting from uncertainty about the presence of a unit root in the process, for
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which the empirical approach was particularly useful in the simulation study.

The time series we consider contain real exchange rates, as there is long-standing

academic debate about whether or not such series contain a unit root.

The study of real exchange rates is concerned with the relative price of a bas-

ket of goods across countries, expressed in a common currency (Imbs, Mumtaz,

Ravn, & Rey 2005). These rates are important for the price of tradable goods,

foreign-exchange futures or options, and portfolios of international assets. An

extensive body of literature in this field studies the validity of the theory of

purchasing power parity, which posits that there is a real exchange rate equilib-

rium. If the theory is valid, real exchange rates are mean-reverting, stationary

processes. Taylor (2006) provides a review of the literature on long-run pur-

chasing power parity and the stability of real exchange rates. He notes that the

debate on the validity of purchasing power parity has been highly controversial

over the past three decades. One strand of the literature confirms the validity

of the purchasing power parity condition by rejecting the null hypothesis of a

unit root and argues that a simple stationary autoregressive process, like AR(1),

accurately describes the behavior of real exchange rates. In contrast, a second

strand finds evidence of a unit root in the process and argues that shocks to real

exchange rates accumulate and rates will not exhibit mean reversion behavior.

They find that a simple random walk can satisfactorily fit, and predict, real

exchange rates.

There is therefore a natural degree of uncertainty about appropriate fore-

casting models for real exchange rates: both AR(1) and random walk models

appear to be sensible choices. These two models are, however, very different in

their implied forecast error variances. As we discussed in Section 4.2, a station-

ary AR(1) model leads to a forecast error variance that converges to a finite

upper bound as lead time increases, whereas a non-stationary random walk im-
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plies linearly increasing forecast error variance without bound. Consequently,

theoretical prediction intervals using an incorrect model assumption may be too

wide or too narrow and have inaccurate coverage rates, particularly for longer

lead times. Therefore, this is an ideal setting for the empirical approach as it

produces robust prediction intervals independently of the assumed forecasting

model. To illustrate the robustness, we conduct experiments on the coverage

accuracy of estimated prediction intervals with both AR(1) and random walk

as point forecasting models. As in the simulation study, we use theoretical pre-

diction intervals and purely non-parametric prediction intervals as benchmarks.

We select nine real exchange rate series between the US dollar and the cur-

rencies of Canada, Japan, Norway, Switzerland, United Kingdom, France, Italy,

Netherlands and Spain. The raw data are monthly time series of nominal ex-

change rates and consumer price indices obtained from the IMF’s International

Financial Statistics (series AE and 64, May 2010 edition). All variables are

transformed to logarithms. Real exchange rates at time t are computed as

qt = et − pt + p∗t , where et is the log nominal exchange rate expressed as the

domestic price of one unit of foreign currency (US $), and pt and p∗t are the log-

arithms of the consumer price index of the domestic and foreign (US) country,

respectively (Taylor 2006). Figure 5 shows the nine real exchange rates series we

studied. The real exchange rate series of Canada, Japan, Norway, Switzerland

and UK have 446 monthly observations (January 1974 to February 2010), and

those of France, Italy, Netherlands and Spain have 312 monthly observations

(January 1974 to December 1998).

We set sample size n = 120, window size w = 30, lead times τ = 1, 2, . . . , 10,

and nominal coverage α = 0.80 and 0.95, as in the simulation study. We tested

different window sizes and found that the preferred window size lies between 20

and 30 as in the simulation study. For each real exchange rate series, we use the
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Figure 5: Monthly real exchange rates series between the US dollar and the currencies of
Canada, Japan, Norway, Switzerland, United Kingdom, France, Italy, Netherlands and Spain
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first 120 months of the series to construct prediction intervals for each of the

following 10-month period. The actual observations over this 10-month period

are then compared to the estimated prediction intervals, giving one coverage

sample. We then roll forward one month and take the next 120 observations to

compute the next set of prediction intervals over the following 10-month period.

Again, the realizations are compared with the prediction intervals to obtain a

second coverage sample. This process continues until we reach the end of the

data set. In total, for each forecast horizon of 1 to 10 we have obtained 317

prediction intervals for the series of Canada, Japan, Norway, Switzerland and

UK, and 183 prediction intervals for the series of France, Italy, Netherlands

and Spain. The average coverage rate is then estimated as the proportion of

iterations where the observed value lies within the correspondingly constructed

prediction intervals.

Figures 6 and 7 compare the theoretical and empirical prediction intervals

when the chosen point forecasting models are AR(1) and random walk, respec-

tively. The figures suggest that the empirical prediction intervals are remarkably

robust against the choice of forecasting model. In contrast, the performance of

the theoretical prediction intervals depends heavily on the chosen model and the

performance of any one model varies significantly across countries. When one

relies on the theory of purchasing power parity and uses a theoretical approach

with an AR(1) forecasting model to construct prediction intervals, the estimated

intervals can be too narrow to quantify future uncertainty. It is also evident

that the average coverages of the P-empirical and NP-empirical are similar,

which indicates that the Gaussian assumption on forecast errors is not the ma-

jor source of model uncertainty for forecasting real exchange rates. The purely

non-parametric approach performs poorly in this context as consequence of the

near non-stationarity of real exchange rate series. Similar comments can be
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made for 95% prediction intervals, except that the superiority of the empirical

approach is not quite as pronounced.

The test of correct conditional coverage of Christoffersen (1998) is also calcu-

lated. The Christoffersen test for correct conditional coverage is the combination

of the tests for unconditional coverage and independence. Table 4 reports the

average coverage and p-value of the Christoffersen test for one-step-ahead pre-

diction intervals when an AR(1) model is the chosen point forecasting model.

We find that the average coverage rate of the empirical intervals is close to the

nominal value. However, there are a few occasions where the Christoffersen test

rejects the null of correct conditional coverage at the 5% significance level. This

illustrates a trade-off between the improved average and the reduced conditional

performance of the empirical approach. Similar conclusions can be drawn when

random walk is the chosen point forecasting model.

6. Conclusion

This paper investigates the robustness of using an empirical approach to con-

struct prediction intervals. The empirical approach is based on the generation

of a sample of empirical forecast errors, based on moving a fixed time window

over the data, predicting on the basis of data within the window, and collecting

out-of-sample prediction errors at the desired lead time. This sequence of fore-

cast errors directly captures not only random variation in the data-generating

process, but also uncertainty in parameter estimation and, importantly, any un-

certainty associated with a point forecasting model. If the distribution of these

forecast errors is used to construct prediction intervals in the face of param-

eter and model uncertainty, we can systematically widen interval widths that

lead to correct coverage rates. The asymptotic analysis suggests that, for a

data-generating process that is stationary ergodic, the empirical prediction in-

tervals can perform credibly with an arbitrary point forecasting model (i.e. the
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Figure 6: Percentage coverage by 80% prediction intervals using an AR (1) model as point
forecasting model for real exchange rates series
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Figure 7: Percentage coverage by 80% prediction intervals using a random walk model as
point forecasting model for real exchange rates series
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Table 4: Percentage coverage and p-value of the Christoffersen test for 80% prediction intervals
when an AR(1) model is the chosen point forecasting model and τ = 1. Boldface indicates
that the null hypothesis of correct conditional coverage is rejected at the 5% significance level.

Country Approach Desired coverage 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
Canada Theoretical coverage 0.08 0.18 0.27 0.38 0.49 0.60 0.67 0.76 0.85 0.89

p-value 0.30 0.40 0.20 0.43 0.78 0.91 0.21 0.06 0.00 0.00
P-Empirical coverage 0.12 0.18 0.28 0.40 0.48 0.59 0.68 0.78 0.87 0.90

p-value 0.32 0.48 0.43 0.91 0.41 0.65 0.37 0.27 0.04 0.00
NP-Empirical coverage 0.10 0.19 0.27 0.35 0.44 0.55 0.65 0.76 0.87 0.91

p-value 0.78 0.78 0.30 0.07 0.03 0.06 0.05 0.10 0.06 0.00
Non-Parametric coverage 0.04 0.10 0.15 0.18 0.20 0.22 0.27 0.38 0.53 0.64

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Japan Theoretical coverage 0.12 0.21 0.34 0.45 0.55 0.62 0.75 0.83 0.91 0.95
p-value 0.24 0.58 0.11 0.07 0.07 0.43 0.04 0.16 0.51 0.95

P-Empirical coverage 0.12 0.24 0.36 0.45 0.54 0.64 0.75 0.83 0.92 0.96
p-value 0.18 0.06 0.04 0.06 0.20 0.14 0.07 0.12 0.30 0.56

NP-Empirical coverage 0.09 0.20 0.30 0.41 0.51 0.61 0.73 0.84 0.91 0.95
p-value 0.40 0.89 0.86 0.73 0.70 0.65 0.30 0.09 0.64 0.75

Non-Parametric coverage 0.04 0.09 0.18 0.28 0.36 0.44 0.48 0.58 0.75 0.83
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Norway Theoretical coverage 0.11 0.24 0.35 0.45 0.56 0.64 0.71 0.78 0.88 0.93
p-value 0.78 0.13 0.08 0.06 0.03 0.11 0.67 0.34 0.24 0.10

P-Empirical coverage 0.12 0.24 0.35 0.47 0.58 0.67 0.74 0.82 0.88 0.93
p-value 0.24 0.08 0.05 0.02 0.00 0.01 0.13 0.48 0.32 0.10

NP-Empirical coverage 0.09 0.19 0.29 0.40 0.48 0.58 0.71 0.82 0.88 0.94
p-value 0.51 0.68 0.58 0.82 0.54 0.50 0.76 0.40 0.32 0.36

Non-Parametric coverage 0.04 0.13 0.24 0.33 0.42 0.47 0.52 0.60 0.70 0.76
p-value 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Switzerland Theoretical coverage 0.10 0.19 0.30 0.41 0.50 0.58 0.69 0.82 0.93 0.97
p-value 0.78 0.78 0.95 0.65 0.96 0.43 0.67 0.32 0.04 0.09

P-Empirical coverage 0.10 0.21 0.32 0.42 0.53 0.60 0.72 0.83 0.94 0.96
p-value 0.78 0.58 0.51 0.50 0.35 0.82 0.36 0.16 0.02 0.39

NP-Empirical coverage 0.11 0.20 0.29 0.39 0.51 0.62 0.74 0.83 0.91 0.93
p-value 0.52 1.00 0.67 0.65 0.87 0.57 0.16 0.20 0.40 0.16

Non-Parametric coverage 0.05 0.13 0.17 0.26 0.36 0.44 0.53 0.64 0.74 0.81
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UK Theoretical coverage 0.13 0.25 0.36 0.46 0.54 0.65 0.74 0.83 0.88 0.94
p-value 0.09 0.04 0.02 0.02 0.13 0.05 0.13 0.12 0.32 0.66

P-Empirical coverage 0.10 0.25 0.35 0.44 0.55 0.65 0.75 0.83 0.90 0.93
p-value 0.93 0.04 0.05 0.11 0.07 0.05 0.03 0.16 0.78 0.16

NP-Empirical coverage 0.11 0.19 0.30 0.37 0.50 0.61 0.71 0.83 0.90 0.93
p-value 0.52 0.78 0.95 0.36 0.87 0.65 0.67 0.12 0.78 0.10

Non-Parametric coverage 0.12 0.24 0.35 0.41 0.48 0.54 0.61 0.68 0.79 0.83
p-value 0.18 0.10 0.05 0.65 0.54 0.02 0.00 0.00 0.00 0.00

France Theoretical coverage 0.13 0.24 0.35 0.46 0.56 0.65 0.71 0.82 0.92 0.95
p-value 0.17 0.17 0.13 0.09 0.13 0.21 0.84 0.56 0.44 0.88

P-Empirical coverage 0.12 0.21 0.36 0.46 0.58 0.66 0.74 0.83 0.94 0.96
p-value 0.36 0.75 0.05 0.06 0.02 0.12 0.24 0.34 0.07 0.60

NP-Empirical coverage 0.10 0.17 0.26 0.34 0.48 0.60 0.72 0.84 0.94 0.95
p-value 0.98 0.25 0.24 0.09 0.51 0.93 0.49 0.13 0.07 0.88

Non-Parametric coverage 0.08 0.20 0.27 0.35 0.43 0.48 0.58 0.66 0.75 0.82
p-value 0.44 0.97 0.31 0.16 0.07 0.00 0.00 0.00 0.00 0.00

Italy Theoretical coverage 0.14 0.27 0.38 0.49 0.56 0.64 0.70 0.76 0.89 0.95
p-value 0.07 0.02 0.02 0.01 0.10 0.34 0.91 0.17 0.49 0.85

P-Empirical coverage 0.09 0.25 0.39 0.48 0.55 0.62 0.72 0.81 0.91 0.95
p-value 0.61 0.09 0.01 0.02 0.13 0.51 0.60 0.69 0.61 0.85

NP-Empirical coverage 0.11 0.19 0.31 0.39 0.52 0.62 0.68 0.82 0.91 0.95
p-value 0.49 0.69 0.79 0.72 0.61 0.51 0.56 0.44 0.79 0.85

Non-Parametric coverage 0.05 0.10 0.16 0.29 0.33 0.42 0.45 0.55 0.69 0.74
p-value 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Netherlands Theoretical coverage 0.11 0.19 0.34 0.44 0.54 0.65 0.72 0.82 0.90 0.95
p-value 0.49 0.83 0.23 0.33 0.28 0.21 0.60 0.56 0.83 0.85

P-Empirical coverage 0.09 0.20 0.31 0.46 0.52 0.62 0.77 0.84 0.91 0.95
p-value 0.79 0.97 0.67 0.12 0.72 0.51 0.03 0.13 0.61 0.85

NP-Empirical coverage 0.09 0.17 0.29 0.36 0.48 0.58 0.72 0.83 0.91 0.95
p-value 0.61 0.34 0.72 0.21 0.61 0.60 0.49 0.25 0.61 0.85

Non-Parametric coverage 0.10 0.21 0.27 0.36 0.42 0.51 0.58 0.63 0.77 0.81
p-value 0.98 0.75 0.40 0.21 0.02 0.01 0.00 0.00 0.00 0.00

Spain Theoretical coverage 0.16 0.27 0.39 0.49 0.58 0.66 0.74 0.80 0.87 0.92
p-value 0.01 0.03 0.01 0.01 0.02 0.12 0.18 0.97 0.17 0.09

P-Empirical coverage 0.14 0.24 0.34 0.46 0.58 0.67 0.78 0.83 0.88 0.93
p-value 0.07 0.17 0.23 0.09 0.04 0.05 0.01 0.34 0.36 0.28

NP-Empirical coverage 0.07 0.17 0.28 0.37 0.47 0.60 0.72 0.82 0.92 0.93
p-value 0.20 0.25 0.60 0.42 0.35 0.93 0.49 0.44 0.44 0.28

Non-Parametric coverage 0.11 0.17 0.26 0.35 0.44 0.53 0.56 0.59 0.70 0.76
p-value 0.65 0.25 0.24 0.16 0.10 0.03 0.00 0.00 0.00 0.00
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model may be misspecified) and is therefore robust under model uncertainty.

Simulation and empirical studies confirm this claim.

In most real-life scenarios it is difficult to characterize the underlying process

completely. The empirical prediction intervals are therefore useful for the prob-

abilistic forecasting of economic and business time series in practice. We find

that the benefit of the empirical approach is particularly substantial for near

unit root processes. The empirical approach is also particularly useful in reality

as it is widely applicable to the use of various point-forecasting models, includ-

ing the prevalent moving averages and exponential smoothing models, and also

judgemental forecasting models, for which theoretical formulae for constructing

prediction intervals are unavailable.

Two caveats are required, however. First, to obtain adequate coverage accu-

racy, the observed data needs to be made stationary, e.g., through appropriate

differencing or deseasonalizing, prior to applying the empirical approach. Sec-

ond, adequate coverage performance of empirical intervals requires appropriate

sample sizes. We find that a sample of at least 120 observations is generally

required to collect a sufficient number of empirical forecast errors for up to 10

forecast horizons. In view of the present rate of technological development,

we feel that the computational intensity of the approach is unlikely to be a

significant constraint.

The major limitation of empirical prediction intervals lies in that they are

not conditional on past observations. The unconditionality of the approach

does not cause its performance to deteriorate on average, as is indicated by the

asymptotic and simulation results: however, it will lead to larger standard de-

viations of interval estimates compared to alternative approaches that compute

conditional prediction intervals given the recent state of the system. Future

work should extend the empirical approach to incorporate the conditionality of
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forecast errors. Exponential weighting schemes, as discussed in Taylor (2007)

and conditional autoregressive value at risk in Engle & Manganelli (2004), can

possibly be applied to empirical forecast errors to make the quantile estimation

adaptive and conditional.
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Appendix A. Asymptotic Justification

Proof of Lemma 1

Proof. Note that Et,τ = Yt+τ−Ŷt,τ = Yt+τ−g(Zt, Zt−1, . . . , Zt−w+1) = h(Zt+τ , Zt, Zt−1, . . . , Zt−w+1)
where h(.) is a measurable function and w is fixed. Therefore, it follows from
Stout (1974)[pp. 182–183] that if Zt is stationary ergodic, Et is also stationary
ergodic.

Proof of Lemma 2

Proof. Let an unbiased forecasting model g∗(Zt) = E(Yt|Zt) and let ut be the
forecast error (residual error) of this model, i.e., Yt = g∗(Zt) + ut and E(ut) =
0. Then we can write the resulting forecast errors of the chosen forecasting
model g(Zt) 6= g∗(Zt) as Et = Yt − Ŷt = g∗(Zt) − g(Zt) + ut. Therefore µ =
E(Et) = g∗(Zt)− g(Zt) 6= 0. Also, σ2 = Var(Et) = Var(g∗(Zt)) + Var(g(Zt)) +
Cov(g∗(Zt), g(Zt)) + Cov(g(Zt), ut) + Var(ut) > Var(ut).

To see µ̂n
a.s−−→ µ, note that {Et} is stationary ergodic by Lemma 1. As-

sumption 2 states that E|Et| <∞ and thus k−1
∑l
t=w êt

a.s−−→ µ follows from the
Ergodic theorem as in Theorem 3.34 of White (2001).

To show that σ̂2
n

a.s−−→ σ2, we expand σ̂2
n = k−1

∑l
t=w(êt−µ̂n)2 = k−1

∑l
t=w ê

2
t−

µ̂2
n. We have already shown that µ̂n

a.s−−→ µ and hence µ̂2
n

a.s−−→ µ2 by continu-

ous mapping theorem. It remains to be shown that k−1
∑l
t=w ê

2
t

a.s−−→ E(E2
t ).

Since {Et} is stationary ergodic, {E2
t } is also stationary ergodic by Stout
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(1974)[pp. 182–183]. In view of Assumption 2, the Ergodic theorem implies

k−1
∑l
t=w ê

2
t
a.s−−→ E(E2

t ), which completes the proof.

Proof of Theorem 1

Proof. In view of Lemma 2, this is a direct result of the continuous mapping
theorem.

Proof of Theorem 2

Proof. Fix p with 0 < p < 1. We will show that for every ε > 0 there exists
N = N(ε) such that for all n > N , |Q̂n(p) − Q(p)| < ε. It will suffice to show
this for sufficiently small ε. By a Taylor expansion,

F (Q(p) + ε) = F (Q(p)) + εf(Q(p)) + o(ε). (A.1)

Since f(Q(p)) > 0 by Assumption 3, we may assume that ε is sufficiently small
to guarantee that

εf(Q(p)) + o(ε) > 0. (A.2)

Next we show that F̂n(e) − F (e) = Rn(e) where Rn(e) converges to zero al-
most surely. By Lemma 1, {Et} is stationary ergodic and {I(Et ≤ e)} is also
stationary ergodic. Because E|I(Et ≤ e)| < ∞, the Ergodic theorem implies

k−1
∑l
t=w I(êt ≤ e)

a.s−−→ E(I(Et ≤ e)). Thus we have

F̂n(e)− F (e) = Rn(e)
a.s−−→ 0. (A.3)

If we replace F (Q(p) + ε) by F̂n(Q(p) + ε)−Rn(Q(p) + ε) in (A.1) we obtain

F̂n(Q(p) + ε) = F (Q(p)) + εf(Q(p)) + o(ε) +Rn(Q(p) + ε). (A.4)

In view of (A.2) and (A.3) we can choose N1 so that εf(Q(p))+o(ε)+Rn(Q(p)+
ε) > 0 for all n > N1. Because F (Q(p)) = p, we obtain F̂n(Q(p) + ε) > p for all
n > N1.

In the same way we can show that p > F̂n(Q(p)−ε) for all n > N2, provided
ε is small enough. Therefore, F̂n(Q(p) + ε) > p > F̂n(Q(p) − ε) for all n >
max(N1, N2). Since F̂n is nondecreasing, Q(p) + ε > Q̂n(p) > Q(p) − ε, as
desired.

Definition 1. Let {Zt}∞t=−∞ be a stationary random process in R. Denote by
Aba the σ-algebra generated by events of the form {(Zi1 , . . . , Zin) ∈ E} where
a ≤ i1 < i2 < . . . < in ≤ b and E is a n-dimensional Borel set. For all
A ∈ An−∞ and B ∈ A∞n+m, we define the mixing coefficients

φ(m) = sup |P(B|A)− P(B)|,

α(m) = sup |P(A ∩B)− P(A)P(B)|,
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β(m) = E(sup |P(B|A)− P(B)|).

If, for the sequence {Zt}, φ(m) → 0 (α(m) → 0, β(m) → 0) as m → ∞, {Zt}
is called φ-mixing (α-mixing, β-mixing).

If φ(m)(α(m), β(m)) = O(m−a−∆) for some ∆ > 0, then φ (α, β) is of size
−a.

Lemma 3. Let h be a measurable function h : Rw+1 → R and define Ut =
h(Vt, . . . , Vt−w), where w is finite. If {Vt} is φ-mixing (α-mixing, β-mixing) of
size −a, a > 0, then {Ut} is φ-mixing (α-mixing, β-mixing) of size −a.

Proof. See White (2001), Theorem 3.35 and Theorem 3.49.

Proof of Theorem 3

As {Zt} is stationary and mixing, it follows from Lemma 3 that {Et} and

{I(Et ≤ e)} are also stationary and mixing of the same size as {Zt}. In view

of Assumption 5, the rest of the proof is then an immediate consequence of

Yoshihara (1995) Theorem 2.

Appendix B. Conditional Quantile Estimation with Correct Model
g∗

We consider a special case where a functional form of the correct point

forecasting model g∗ is known and show that the conditional forecast error

quantile is consistently estimated. For this, we limit our forecasting models to

a parametric model and assume that the chosen parametric model delivers the

right conditional mean in population such that g∗(Zt, β) = E(Yt|Zt) where the

parameter β ∈ B is a vector of unknown model parameters for B, a real and

compact set. Therefore we have

Yt = g∗(Zt, β) + ut

where ut is the residual error of the underlying process with mean zero and its

pth quantile is denoted by q. In finite samples, the chosen model makes a point

forecast by Ŷt = g∗(Zt, β̂) where β̂ is the estimated parameter. We can then
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write

Et = Yt − Ŷt = g∗(Zt, β)− g∗(Zt, β̂) + ut = g∗(Zt, β1) + ut. (B.1)

Note that g∗(Zt, β1) is the conditional bias in point forecast due to parameter

estimation. By estimating this bias parametrically by g∗(Zt, β̂1) and estimating

the empirical quantile of ut non-parametrically, we can estimate the sample

conditional quantile Q̂|z(p) given Zt. More specifically, let ût = Et − g∗(Zt, β̂1)

and let q̂ be the pth empirical quantile of ût using order statistics. Then, we

write the sample quantile conditional on Zt as

Q̂|z(p) = g∗(Zt, β̂1) + q̂.

To show the asymptotic normality of this estimator Q̂|z(p), we make the

following regularity conditions, which are a standard set of conditions for β̂1 →p

β∗1 and q̂ →p q
∗ where β∗1 and q∗ are the unknown true values.

Assumption 6. The observed stochastic process Zt is stationary and β-mixing
such that

∑∞
m=1m

1/(r−1)β(m) <∞ for r > 1.

Assumption 7. The residual error ut is independent of Zt, τ -dependent, with
marginal distribution function H(u) and continuously differentiable density h(u)
with h(u) > 0. The conditional density of Yt+τ given Zt = z is bounded:
η(y|z) ≤ η̄ <∞.

Assumption 8. Let β̂1 be an estimator of the parameter β1 in (B.1), which
can be written as an approximate method of moments estimator, i.e., for some
function lt(β1), β̂1 satisfies 1√

n

∑n−1
t=0 lt(β̂1) = o(1) and the function lt(β1) is

continuously differentiable in β1.

Assumption 9. For all β1, E|lt(β1)|2r <∞.

Assumption 10. Elt(β1) = 0 only if β1 = β∗1 .

Assumption 11. Eltl
′
t = L > 0 and rank(lβ1

) = d where lt = lt(β
∗
1) and

lβ1
= (∂/∂β′1)Elt(β

∗
1).

Assumption 12. For some C < ∞ and all β1, E supβ2:|β1−β2|<δ |lt(β1) −
lt(β2)|2r ≤ Cδ.

39



Assumption 13. The function g∗(Zt, β1) satisfies

sup
β2:|β1−β2|≤δ

|g(Zt, β1)− g(Zt, β2)| ≤ a(Zt)δ

with Ea(Zt) <∞.

Theorem 4. If Assumptions 6- 13 hold and p ∈ (0, 1), then the sample quantile
conditional on Zt satisfies

n1/2

σ2
Q(p)|z

(Q̂|z(p)−Q|z(p))→D N(0, 1).

Exact expression for σ2
Q(p)|z

can be found in (9) of Hansen (2006).

Proof. This is a variation of Theorem 1 by Hansen (2006), where the quantile
estimation is applied to the out-of-sample forecast errors Et (instead of applied
directly to Yt). Hence, by Hansen (2006) Theorem 1 and under our Assump-
tions 6- 13, it is sufficient to show that Et is stationary and β-mixing such that∑∞
m=1m

1/(r−1)β(m) < ∞ for r > 1 and η(y|z) = f(e|z) where f(e|z) is the
conditional density of Et.

Under our Assumption 6, it follows from Lemma 3 that Et is also station-
ary and absolutely regular. Further, Et = Yt − Ŷt and Ŷt = g(Zt, β̂) is fixed
conditional on Zt and therefore we have η(y|z) = f(e|z).
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