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Do hospitals experience safety tipping points as utilization increases and if so, what are the implications
for hospital operations management? We argue that safety tipping points occur when managerial escalation
policies are exhausted and workload variability buffers are depleted. Front-line clinical staff is forced to ration
resources and, at the same time, becomes more error-prone as a result of elevated stress hormone levels. We
confirm the existence of safety tipping points for in-hospital mortality using the discharge records of 82,280
patients across six high-mortality-risk conditions from 256 clinical departments of 83 German hospitals.
Focusing on survival during the first seven days following admission, we estimate a mortality tipping point
at an occupancy level of 92.5%. Among the 17% of patients in our sample who experienced occupancy above
the tipping point during the first seven days of their hospital stay, high occupancy accounted for one in seven
deaths. The existence of a safety tipping point has important implications for hospital management. First,
flexible capacity expansion is more cost-effective for safety improvement than rigid capacity, as it will only
be used when occupancy reaches the tipping point. In the context of our sample, flexible staffing saves more
than 40% of the cost of a fully staffed capacity expansion, while achieving the same reduction in mortality.
Second, reducing the variability of demand by pooling capacity in hospital clusters can greatly increase
safety in a hospital system, as it reduces the likelihood that a patient experiences occupancy levels beyond
the tipping point. Pooling the capacity of nearby hospitals in our sample reduces the number of deaths due
to high occupancy by 34%.
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1. Introduction
Avoidable deaths occur in hospitals as the direct or indirect consequence of avoidable adverse
events, such as medication errors, infections, delayed treatments, or technical complications during
operations. The scale of the problem was prominently highlighted by the influential Harvard Med-
ical Practice Study in the early 1990s (Brennan et al. 1991, Leape et al. 1991), which estimated
that 6,895 of the 2,671,863 patients hospitalized in New York State in 1984 had died in hospital as
a consequence of preventable adverse events – more than three times the New York State traffic
death toll in the same year (US Dept. of Transportation 2012). This study ignited a major global
effort to improve hospital safety, much of which was focused on the prevention of individual human
errors through process redesign and the use of technology (Kohn et al. 2000). For example, Bates et
al. (1999) report an 81% reduction in medication errors through the introduction of computerized
physician order entry systems. Leape et al. (1999) and Kucukarslan et al. (2003) report that the
inclusion of pharmacists in ward rounds on ICUs and general medicine wards led to a reduction of
66% and 78% respectively, in preventable adverse drug reactions. Comprehensive surgical safety
checklists reduced the total number of surgical complications in a Dutch hospital from 27.3% to
16.7% (Eefje et al. 2010). Despite such impressive improvements, advances appear to be isolated
and system-wide progress in reducing avoidable death rates remains slow (Leape and Berwick 2005,
Landrigan et al. 2010).
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The mortality effects of intervention at the level of a hospital or a hospital system are less well
understood than those of intervention at the process level, despite the fact that the former are less
dependent on the specific organizational context and therefore more easily scalable and more likely
to help achieve the desired system-wide progress. An example in point is hospital capacity pooling,
where nearby hospitals agree to short-term admission diversion or staff relocation protocols in
response to local occupancy surges. While pooling does not affect average hospital utilization in
the system, it reduces the variability in utilization levels of individual hospitals. Does capacity
pooling reduce avoidable death rates in the system? The answer to this question depends on the
nature of the relationship between occupancy levels and mortality. If this relationship is linear,
then avoidable deaths in the system are not affected by pooling: Any reduction in mortality by
avoiding further occupancy increases in a busy hospital is offset by an increase in mortality due to
increased occupancy in the hospital that admits the diverted patients. However, if the relationship
is nonlinear, capacity pooling can have a significant effect on avoidable deaths. We will argue in this
paper that bed occupancy has a highly nonlinear effect on mortality: Mortality remains unaffected
by occupancy up to a tipping point, beyond which it deteriorates rapidly with further increased
occupancy levels. As a consequence, capacity pooling has the potential to reduce avoidable death
rates across a health system as patient diversion reduces the propensity of a hospital to exceed the
safety tipping point, while the mortality in a less busy diversion hospital is not affected as long as
its occupancy level remains below the tipping point.

In order to provide evidence for a safety tipping point, we have to overcome three methodological
challenges. First, avoidable in-hospital deaths are rare events. One has to combine data from
multiple hospitals and multiple patient segments to assemble a large sample of patients and obtain
sufficient statistical power. In this study we use patient-level data from 83 acute hospitals across
six patient segments with high mortality risk.

Second, occupancy studies usually consider occupancy aggregated at the corporate hospital level.
However, patients experience occupancy at the level of individual wards. Operational decision in
response to occupancy, such as the allocation of patients to specific wards, are mostly taken at the
level of the clinical departments. Therefore, departmental occupancy is more relevant for patient
care than aggregate hospital occupancy. Unfortunately, hospital departments, as managerial units,
are not standardized and not recorded as part of US or UK administrative patient records, which
form the basis of most empirical studies of hospital operations and it is therefore not possible to
reconstruct department-level occupancy from such data. Departments are, however, recorded in a
standardized way in the German discharge records that we use in this study.

The third methodological challenge is of a statistical nature: when occupancy is high, doctors
may choose to discharge relatively healthy patients earlier than they would normally do to make
space for newly arriving patients. They may well select patients for early discharge on health-related
factors that are not recorded in the discharge record and thus not observable to the researcher. As
a consequence, patients in the hospital during periods of high occupancy are more unwell in an
unobserved way and the mortality risk among these patients is higher - not as a consequence of
high occupancy per se but as a consequence of a changed risk set due to early discharge decisions
in response to high occupancy. We account for this endogeneity in our econometric models.

Using a sample of 82,280 patients with high mortality risk, we estimate a tipping point at an
occupancy level of 92.5%; 17.4% of these patients experienced occupancy levels above the tipping
point. We estimate that 78 of the 4,247 deaths in our sample are due to high occupancy, and
therefore avoidable, accounting for one in 55 deaths in the sample. However, 82.6% of patients in
the sample never experienced occupancy above the tipping point. The effect on those patients who
experienced occupancy above the tipping is therefore considerably larger: occupancy accounts for
one in seven deaths (14.4%) among these patients. This is clinically highly significant.

We discuss potentially beneficial interventions in tipping point systems, specifically the effect of
flexible staffing and capacity pooling. In our sample, flexibly staffed capacity increase turns out
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to be 43% cheaper than rigid staffing for a commensurate mortality improvement. To estimate
the effect of capacity pooling, we combine near-by hospitals in our sample to hospital clusters and
estimate that 34.4% of the deaths due to occupancy in our sample could have been avoided if
nearby hospitals had pooled their capacity.

2. Related Literature
The nature of the association between system load and service quality in general, and hospital
occupancy and mortality in particular, is not yet well understood and the literature has hitherto
produced inconsistent results. In an early paper, Oliva and Sterman (2001) built a dynamic model of
a service organization to illustrate the complex interactions between service demand and managerial
response and how these can lead to an erosion of service quality over time. More recently, a series of
empirical studies have focused on operational efficiency and throughput in the context of hospitals.
These studies acknowledge that a focus on throughput alone can have harmful consequences for
clinical quality and therefore recommend also investigating effects on clinical outcomes such as
mortality rates (KC and Terwiesch 2009, 2012, Long and Mathews 2013, Berry Jaeker and Tucker
2012, Kim et al. 2013). KC and Terwiesch (2009), for example, complemented a throughput analysis
of a sample of cardiothoracic patient records from a US hospital with a study of the effect of
workload on mortality. They found a significant effect of fatigue but could not identify a significant
effect of bed occupancy on mortality.

In contrast to these throughput studies, this paper focuses on system load as a cause of quality
deterioration and complements recent studies that consider workload effects at the level of indi-
vidual workers. Powell et al. (2012) show that doctors’ discharge coding behavior is affected by
workload, with detrimental effect for hospital reimbursement. Green et al. (2012) show that absen-
teeism rates are correlated with anticipated future nurse workload. Drawing on the theory of stress,
Tan and Netessine (2012) show that workload has a curvilinear effect on waiters’ performance and
illustrate that a reduction in staffing can in fact lead to an increase in revenues. In the same vein,
Hopp et al. (2007) illustrate within a queuing model that when a server has discretion over service
time in response to workload, increasing the number of servers may worsen congestion. We will
incorporate these insights into the development of the tipping point hypothesis, which integrates
the effects of excess capacity, managerial actions, and individual worker responses to explain the
organization-level effect of variation in system utilization on service quality.

Several recent studies in the medical literature have identified a link between hospital activity
levels and mortality (see Kane et al. (2007) for a review). Schilling et al. (2010) explored the effects
of hospital occupancy levels on admission, annual nurse staffing levels, and seasonal factors on
hospital mortality in a retrospective study of 166,920 emergency patients with high-risk conditions
admitted to 39 Michigan hospitals between 2003 and 2006. The study found that admission on
days when the hospital is in the top tertile of its occupancy range is associated with an elevated
mortality risk. Needleman et al. (2011) studied the effect of below-target nurse staffing levels using
197,861 patient records from 43 clinical units of a US medical center and concluded that regis-
tered nurse staffing below target levels is associated with increased mortality. These studies model
workload with a dichotomous ”high/low” variable, which does not rule out a linear relationship
between occupancy levels and mortality. Our study goes beyond these papers in that we estimate
a continuous nonlinear occupancy model that supports the existence of a safety tipping point.

In summary, the main contribution of this paper is to point out that there are good opera-
tional reasons to expect the effect of occupancy on mortality to exhibit a threshold phenomenon:
Occupancy has no discernable effect on mortality up to a tipping point, beyond which it affects
mortality significantly. By not taking this phenomenon into account previous studies either could
not detect an effect or overestimated effects at low occupancy levels and underestimated the sever-
ity of very high utilization. We provide evidence for the existence of safety tipping points and
discuss managerial implications.
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3. The Tipping Point Hypothesis
In most countries hospital planning focuses on bed capacity as the primary metric for sizing hospital
departments; requisite staffing and other resources are largely calculated on a per-bed basis, using
ratios that depend on departmental characteristics (Rechel et al. 2010). Consequently, as the volume
of patients in a department approaches full bed capacity, workload pressure builds up across the
unit as all resources become stretched. Capacity utilization – measured as the percentage of beds
occupied – is therefore a useful aggregate measure of workload pressure in hospital departments.

Occupancy levels in acute hospitals show significant variation as demand for urgent care is unpre-
dictable. Such variation is managed by drawing on variability buffers. The first and most obvious
buffer is built-in excess capacity: Hospital plans are typically based on average bed occupancy
levels in the order of 85% to 90%, thus providing a capacity buffer for demand peaks (Green 2004).
A second class of buffers relates to managerial actions when occupancy levels rise. Managers can
ask staff to work overtime, deploy flexible staff from elsewhere in the hospital or hire temporary
staff from nursing banks or medical locum agencies. In 2004–2005 UK hospitals spent 9.4% of
their nursing budget on temporary nursing staff (Department of Health (UK) 2006). In addition,
hospitals can manage demand by canceling scheduled elective cases at short notice in response to
unexpected surges in emergency admissions. UK hospitals, for example, cancel between 0.7% and
1.0% of elective patient admissions at the last minute for reasons unrelated to the circumstances
of the scheduled patient (Department of Health (UK) 2012). The third class of buffers relates to
responses by front-line staff. Doctors and nurses are willing to work harder and for longer in times
of crisis (Scott et al. 2006). In fact, many nurses choose their profession based on an intrinsic
motivation to care for people in need. Doctors undergo a substantial socialization process during
their long professional training (Laine and Davidoff 1996). The values and professional norms of
healthcare workers instil a strong motivation and willingness to “go the extra mile”, which provides
an important human variability buffer.

As workload increases, healthcare professionals are forced to ration access to care and, in doing
so, will give priority to sicker patients. KC and Terwiesch (2012) and Long and Mathews (2013)
provide evidence of active rationing from busy intensive care units (see also Berk and Moinzadeh
(1998) and Padma et al. (2004)). While rationing can have a negative effect on the less sick, the
ability to prioritize is an important variability buffer, helping to shelter the most critically ill. All
these variability buffers are drawn on simultaneously as system load increases and allow a hospital
department to cope with a wide variation in occupancy levels while safeguarding the most critical
aspect of clinical care: the avoidance of death.

However, as occupancy levels continue to rise the organization’s variability buffers become
depleted; all beds are filled and additional patients need to “board” in other departments, no more
elective patients can be canceled at short-notice, and qualified agency staff are scarce or resources
to hire them are limited. Yet demand for hospital care is at times unrelenting. Acute care hospitals
cannot turn emergency patients away. When the variability buffers are depleted, resources need
to be rationed more aggressively; doctors and nurses begin to cut corners even for more seriously
ill patients, using service quality as an implicit variability buffer (Oliva and Sterman 2001, Hopp
et al. 2007).

In addition to cutting corners as a conscious response to excessive workload, doctors and nurses
are exposed to workload-related stress, which causes their performance to deteriorate. Lazarus and
Folkman (1984) point out that stress results from an “imbalance between demands and resources”
and occurs when “pressure exceeds one’s perceived ability to cope”; this is precisely the case when
workload becomes excessive and the ability to cope by exploiting buffers reaches its limits. This
effect was pointed out by Piquette and Reeves (2009), who observed that, in the context of crit-
ical care, “individual distress occurred in unexpectedly high demands unmatched by appropriate
resources.” At the biological level, workload stress leads to elevated stress hormone levels, specif-
ically those of cortisol (Dickerson and Kemeny 2004, Sonnentag and Fritz 2006), which impairs
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workers’ cognitive abilities, especially memory and attention, and the quality of their decision-
making (Lupien et al. 2007). In addition, teamwork deteriorates: Piquette and Reeves (2009)
observed that “emotional distress was strongly contagious to other team members, [. . . ] disruptive
for teamwork and deleterious for individual and collective performance.” The consequent negative
impact of stress on clinical outcomes is well documented in the medical literature. Dugan et al.
(1996) show for example that nursing-related stress is strongly associated with the propensity of
adverse incidents; Buckley et al. (1997) show that haste and stress were causative factors in 17%
of 281 critical incidents.

In summary, as system utilization increases to moderately high levels, managers respond by
exploiting resource buffers and well-motivated employees work harder. Quality of care can largely be
maintained and safety is not negatively affected. However, at very high utilization levels, variability
buffers are depleted and managerial response is inhibited. If utilization exceeds this critical tipping
point, managers are unable to respond. The pressure is passed on to front-line staff, who are unable
to escape it. They then respond in two ways: First, by consciously cutting corners, using quality as
an implicit variability buffer; and second, by subconsciously committing more errors as a result of
elevated stress hormone levels. As a consequence, quality of care and safety will deteriorate during
periods of high utilization. The following empirical study provides evidence for this tipping point
phenomenon.

4. Empirical Study

4.1. Data from German Hospital Departments
We use data from German hospitals, which are particularly suited for a multi-hospital department-
level analysis for two reasons. First, the organizational structure of German hospitals is firmly
regulated, leading to rigid and fairly homogeneous departmental organization across hospitals. The
structural similarity begins at the top: Almost all German hospitals have the same top management
team structure, consisting of a commercial director, a medical director, and a nursing director,
each with well-defined roles and obligations across the hospital. The departmental structure below
the top team is also standardized, including general services, such as kitchen and laundry, large
diagnostic divisions, such as radiology and pathology, and the clinical departments, including gen-
eral surgery and general medicine, as well as specialist departments. These bed-bearing clinical
departments are the focus of our study and system utilization is measured at the level of these
organizational units. Importantly, every department has a clinical director – the Chefarzt – who,
as lead physician, has ultimate clinical responsibility for all patients and is the superior of all doc-
tors in the department. The clinical director also has budgetary responsibility for her department.
Although there is a cautious trend toward the use of interdisciplinary beds, the system remains
rigid and the vast majority of patients and resources are managed at the level of these clinical
departments. In particular, any responses to occupancy variations are most likely to be managed
at departmental rather than hospital level.

Second, in contrast to the US and UK, German hospital discharge records contain standardized
department codes, including departmental referrals during a hospital episode. Earlier multi-hospital
mortality studies concentrated on the effect of aggregate hospital occupancy (e.g. Schilling et al.
(2010)). In contrast, we measure daily occupancy at the level of departments within hospitals. This
is important because managers and clinicians are most likely to respond to occupancy levels in
their department. Aggregate hospital occupancy measures the departmental load that is relevant
for a particular patient with significant error, which leads to attenuation bias and underestimated
effect sizes (Wooldridge 2002).
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Our initial database consists of standardized discharge records of 101 German hospitals, covering
all patients discharged from the hospital during a specific period. The database contains data for
12 months for 72 hospitals, covering 1 January to 31 December of either 2004 or 2005, while 29
hospitals are observed for 24 months, from 1 January 2004 to 31 December 2005, totalling 1,415,754
patient episode records across 624 hospital departments. Since high occupancy is unlikely to impact
the mortality risk of relatively healthy patients, we select a subsample of patients with high mortal-
ity risk and focus on patients with six primary diagnoses identified by the US Department of Health
as conditions “for which mortality has been shown to vary substantially across institutions and for
which evidence suggests that high mortality may be associated with deficiencies in the quality of
care” (Agency for Healthcare Research and Quality 2006): Acute myocardial infarction (AMI),
congestive heart failure (CHF), gastrointestinal hemorrhage (GIH), hip replacement after fracture
(HIP), pneumonia (PNE) and stroke (STR). To increase the homogeneity of the sample, we remove
all hospitals that do not have emergency admissions, such as rehabilitation clinics, as such hospitals
are unlikely to have critically ill patients. For departments with a small volume of these high-risk
patients, mortality is rare and department fixed effects together with patient covariates can pre-
dict survival perfectly. This leads to numerical instability of the maximum likelihood optimization
procedure. We therefore exclude all departments for which the department is a perfect predictor
of patient survival.

The fact that the entire patient population for each hospital department is included allows us
to calculate daily midnight patient counts for each hospital department from 1 January. However,
at the end of the observation period we do not have data about patients who are admitted but
not discharged during the observation period. As a consequence, calculated occupancy rates start
dropping during the final month of a hospital’s observation period. We therefore restrict our sample
to patients admitted between 1 January and 30 November of a hospital’s observation period. The
removal of patients who were admitted during the final month of hospital observation is prudent
in light of an average length of stay of 12 days for our chosen subsample. The remaining sample
consists of 82,280 patients in 256 departments of 83 hospitals.

It would be preferable to conduct analyses at the level of single hospital departments and single
conditions. However, such subsamples have insufficient size to lead to statistically significant results.
Although mortality is relatively high amongst the conditions in our sample, the event of interest
– avoidable death due to high occupancy – is rare. Estimates of rates of avoidable deaths range
widely in the medical literature, depending on the context; Gruen et al. (2006) studied a sample of
trauma deaths and estimated that 2.64% were avoidable; Healey et al. (2002) investigated deaths
in several surgical departments and found that between 19.0% and 44.1% were avoidable.

A sample size estimation reveals the magnitude of the associated statistical challenge. The sim-
plest specification is a logistic regression model of the form logit(Yi) = α+ βXi + γZi, where Yi is
a dichotomous variable indicating the death of patient i, Xi is the occupancy covariate, and Zi

is a vector of control covariates. For ease of interpretation, we assume that Xi is a dichotomous
variable with value 1 if patient i experienced occupancy levels above a threshold beyond which we
believe mortality will be affected. The logistic sample size formula of Hsieh et al. (1998) can then
be used for a power analysis for a significant two-tailed Wald test for the null hypothesis H0 : β = 0.
The required sample sizes for 80% power at a 5% significance level depends on the unknown effect
size, i.e. the excess mortality of those patients who experience occupancy levels above the tipping
point. If a patient population mortality of 5% rises to 5.5% for the subpopulation above the tip-
ping point and if 15% of patients experience such high occupancy levels, then the required sample
size exceeds 85,000. The required sample size increases further if the occupancy variable Xi and
the controls Zi are correlated (Hsieh et al. 1998) or if the population mortality is lower than 5%.
The required sample size decreases if the effect size is larger or if more patients are exposed to
occupancy levels above the tipping point. In conclusion, mortality studies of the type we conduct
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in this paper require large samples of high-risk patients. Since only a relatively small proportion of
any single hospital’s patients will have a sufficiently high mortality risk, we have to combine data
from multiple hospitals and multiple patient segments.

4.2. The Need for a Survival Analysis
Figure 1 gives an initial indication of the tipping point on the basis of raw data and illustrates
the importance of accounting for time already spent in the hospital in the statistical analysis.
The figure is based on a patient-day data set, where each observation corresponds to a record of
one full in-patient day for a particular patient, including an appropriate measure of occupancy
experienced by the patient up to this observation day. Figure 1 is based on peak occupancy, defined
as the maximum of all midnight occupancy levels experienced by the patient up to the beginning
of the observation day. We will discuss occupancy measures in more detail in Section 4.3. The left-
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Figure 1 Uncontrolled association between day of stay, peak occupancy, and mortality

hand graph of Figure 1 shows how mortality varies across the deciles of peak occupancy, initially
decreasing but with a surprisingly marked increase at the 10th decile. The fact that mortality
decreases with peak occupancy is to be expected: First, as the middle graph in Figure 1 shows,
the mortality risk decreases with the length of stay as most deaths occur during the first few days
of the stay, when a patient is most critically ill. Second, as illustrated by the right-hand graph,
peak occupancy increases over time: The longer a patient stays in hospital the more likely it is
that she will be exposed to high occupancy levels at some point during her stay. The combination
of decreasing mortality and increasing peak occupancy with time results in a decrease in mortality
with peak occupancy, as indicated in the left-hand graph up to the ninth decile of peak occupancy.
This expected trend, however, is starkly reversed at the tenth decile, in accordance with the tipping
point hypothesis.

The simplest mortality model focuses on patient episodes as the units of observation, survival
as a dichotomous episode outcome, and an appropriate aggregate measure of occupancy during
the patient episode as the independent variable of interest (e.g. KC and Terwiesch (2009)). This
model is problematic in our context as it requires the aggregation of occupancy over a patient’s
episode. The natural aggregate occupancy metric is the average occupancy over the patient’s stay.
The standard deviation of this metric, however, depends on the length of stay of the patient: The
fewer days the patient spends in the hospital, the larger the variation of the average occupancy over
these days will be. Therefore the distribution of the episode-averaged occupancy metric across the
patients in the sample will contain an over-proportional number of patients with short length of
stay in both tails. At the same time, mortality is higher for patients with a short length of stay for
two reasons. First, death curtails length of stay and, second, as shown in Figure 1, patients are most
likely to die early on in their stay. Combining these two facts – the higher frequency of patients
with short length of stay in both tails of the distribution of average occupancy and the higher
mortality amongst patients with a shorter length of stay – leads to a non-linear effect of occupancy
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on mortality. This nonlinear effect, however, is a consequence of the aggregation mechanism – the
averaging of occupancy – not of occupancy per se and would lead to the identification of a spurious
tipping point. Note that one cannot use length of stay as a control variable in a patient-level
model of mortality because mortality curtails length of stay, which leads to reverse causality. It
is important to use a model that incorporates the time-varying nature of occupancy and survival
analysis is therefore the natural modeling choice. We have chosen a discrete-time survival model
based on patient-days as units of observation, which takes account of the effect of time spent in
the hospital and treats occupancy as a time-varying covariate. We explain the survival model in
more detail in Section 5.

The dependent variable of interest in the discrete survival model is a patient’s probability of
death during a full day in hospital; the causal variable of interest is peak midnight occupancy
experienced by the patient prior to the observation day. It is important to note that the admission
day is not a full day in hospital. A patient who arrives in hospital with a stroke at 6pm is, ceteris
paribus, less likely to die on the admission day than on the first day of her hospital stay because
she spends only six hours in hospital on that first day. In fact, the time spent in hospital on
the admission day varies by patient. This makes the inclusion of the admission day problematic
because we cannot estimate the probability of death on a full day for these patients. In addition
to this methodological concern with the inclusion of the admissions day, there is also a contextual
concern. Death on the day of admission is less likely to be caused by the conditions in the admitting
department and more likely by the conditions in the emergency department or operating theaters
if an emergency operation is necessary. We do not have information about these conditions. In view
of these methodological and contextual concerns, we discard the patient’s admission day, beginning
patient observation at midnight after admission, and study the adverse effect of departmental
occupancy on the population of patients who survive their admission day.

Occupancy may affect patients differently at different stages of their hospital stay. Specifically,
patients are likely to be more critically ill during the early phase while they recover during the
later phase of their stay. Convalescent patients are not as care-intensive with regard to monitoring
requirements and will be less vulnerable to deviations from optimal care. However, when patients
stay considerably longer than expected, this is an indication that they are more severely ill. Since
peak occupancy up to the t-th day of the hospital stay is a monotone function of t, this change in
the risk profile of the remaining patients at high values of t could potentially cause the ”Bathtub”-
curve of mortality as a function of peak occupancy, as observed in the left-most graph in Figure 1.
To rule out this cause and increase the homogeneity of the patient-day sample, we restrict our
survival analysis to the first week of a patient’s hospital stay, which, as shown in the death rate
histogram in Figure 1, is the most critical period of a patient’s stay. The first seven days is a
prudent estimate of this critical phase, in light of an average length of stay of 12 days.

All admitted patients are observed daily at midnight over the first seven days of their stay or
up to their death or discharge if this occurs before the end of the seventh day in hospital. After
the seventh day, patients are not observed further. Such prescribed follow-up periods are common
in clinical and epidemiological studies and are known as administrative or type I censoring (Klein
and Moeschberger 1997). Table 1 contains summary statistics of the patient-day sample.

4.3. Occupancy as a Time-varying Covariate
As occupancy refers to the percentage of used capacity, we need to first measure capacity for
hospital departments. The natural measure is the number of beds in operation; however, this
number is rarely available as public documents refer to the number of certified hospital beds.
Interviews with hospital managers revealed that this number can deviate significantly from the
number of beds in operation that are fully resourced and readily available for patients, and is
therefore not a reliable measure of operational capacity. In addition, certified bed numbers, while
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Table 1 Descriptive statistics of sample

Condition Patients Percentage Emergency Age Mortality Length 7-day 7-day 7-day
of full admissions (mean) of stay mortality discharges patient-
sample (days) days

AMI 12,811 15.6% 53.1% 68.1 9.4% 10.0 5.9% 39.8% 69,985
CHF 17,852 21.7% 44.5% 74.9 9.0% 11.4 4.8% 29.7% 109,089
GIH 9,029 11.0% 48.5% 64.9 5.2% 9.2 2.8% 50.9% 48,128
HIP 7,974 9.7% 66.8% 73.5 5.3% 17.0 2.4% 10.9% 52,795
PNE 14,610 17.8% 50.5% 63.8 11.5% 11.7 6.2% 27.2% 91,179
STR 20,004 24.3% 61.9% 69.7 10.5% 13.5 6.5% 20.6% 126,404

Full sample 82,280 100.00% 53.7% 69.4 9.1% 12.1 5.2% 29.1% 497,580

available in aggregate for hospitals, are not available at the department level, where we wish
to measure occupancy. In the absence of reliable operational bed numbers, we therefore use the
maximal daily midnight patient count in the department over the department’s observation period
as a measure of the department’s capacity. For each day of the patient’s stay we then calculate the
daily capacity utilization as the ratio of the midnight patient count at the beginning of the day
and the department’s capacity.

In the survival analysis framework, where we observe patients daily, occupancy is a time-varying
covariate. A critical question is how exposure to varying occupancy levels over time should be
measured for an individual patient. The midnight patient count at the beginning of day t would
appear to be a natural candidate to affect mortality on day t. However, with this occupancy metric
we would only capture the immediate effect on the observation day; lagged effects, two or three
days hence, would be discarded. In view of the rareness of avoidable deaths, it is unlikely that we
will have enough power in our data to detect this immediate occupancy effect. A second candidate
is the average occupancy experienced up to the beginning of day t. However, the use of this metric
is problematic within a tipping point model and is likely to lead to the spurious detection of a
nonlinear effect discussed in Section 4.2. The time dummies in the survival model do not control
for this effect because they only affect the intercept of the occupancy curve but not its shape. We
would therefore estimate a nonlinear effect for time-averaged occupancy, even when occupancy has
no effect.

We choose the maximal midnight occupancy level up to the beginning of day t as the measure
of the occupancy experienced to date by a patient in the hospital on day t. This peak occupancy
metric has the advantage of being monotonically increasing over the stay in the hospital, which
captures an important lag effect: Exposure to high occupancy on day t can lead to death at a later
day and cannot be “undone” by low occupancy after day t. This monotonicity property of the
time-varying exposure also introduces a positive correlation with time, which is itself negatively
correlated with mortality. Since the resulting correlation between peak occupancy and mortality is
negative, the detection of a positive effect of peak occupancy on mortality beyond a tipping point
will only become more difficult, which renders significant estimates conservative.

4.4. Control Variables
The need for risk-adjustment of patient-level data is comprehensively discussed in the literature
(Iezzoni 2003). Our discharge records contain several variables that allow us to control for patient
heterogeneity. Beside the primary medical condition and the individual risk factors age, gender, and
emergency admission, the presence of secondary diagnoses is an important source of heterogeneity.
To account for these comorbidities we follow Needleman et al. (2011) and use indicator variables
for a list of coexisting conditions (Elixhauser et al. 1998), adapted to the German context following
Quan et al. (2005). In addition, we control for admission from another hospital with a dichotomous
variable and for departmental transfers within the hospital prior to the observation day with a
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time-varying exposure dummy that takes the value 1 on all days following the first departmental
transfer within the hospital.

We include day-of-stay dummy variables to model the baseline mortality hazard over the patient
stay. To account for differential baseline risk across the six conditions, we interact the day-of-stay
with the primary condition. Seasonal effects must also be controlled for as there might be times
of the year when certain conditions occur more frequently or in a more severe way, e.g. through
the winter months, and when occupancy in hospitals is also higher. Time-of-year can therefore
confound results. To control for potential temporal correlations, we include dummy variables for
the month of the year and for the observation year 2005. We also control for the weekday of
the admission to account for the so-called weekend-effect discussed in the medical literature (e.g.
Bell and Redelmeier (2001)): Patients who are admitted on weekends have a higher mortality risk
relative to weekday admissions, even after controlling for their individual risk factors. Finally, we
control for the weekday of the observation day.

We use department dummy variables to control for organizational heterogeneity in an aggregate
way, as departments will have differences in case-mix, size, and staff endowment. We use department
rather than hospital fixed effects because departments are fairly autonomous units in our context,
as explained in Section 4.1. To account for potential correlations between the error terms of patients
in the same department we cluster standard errors at the department level. The table in the
Appendix summarizes the control variables included in the models and shows their correlations
with daily mortality and peak occupancy.

5. Econometric Specification
We wish to estimate the association between the occupancy levels that patients experience during
their hospital stay and the probability of in-hospital survival. As occupancy levels are most reli-
ably calculated on the basis of midnight counts, a discrete-time survival analysis using patient-day
observations is a natural modeling framework for this purpose. The population of interest in this
study consists of patients who are admitted to hospital with one of the six high-risk conditions
discussed in Section 4.1, and who survive until midnight on their day of admission to the hospital.
By beginning our observation at midnight following admission we ensure that all observation peri-
ods have equal length. We follow up patients for seven days after admission and wish to estimate
patient i’s discrete mortality hazard on day t after admission

hit = P [Ti = t | Ti > t− 1,Xit], t= 1, . . . ,7, (1)

where Ti denotes the day of death of patient i, counted from the day of admission, and Xit is a
covariate vector that is observable at the beginning of day t. The time-varying covariate vector
Xit includes dummy variables for each period t, which captures a baseline hazard model as a time-
dependent intercept, as well as a component Xjit for peak occupancy experienced by patient i up
to the beginning of day t. The most common logit, probit, and cloglog specifications for the discrete
time hazards (Singer and Willett 2003) give very similar results. We report results for the probit
specification

P [Yit = 1 | Xit] = Φ(Xitβ), (2)

where Yit is the observed dichotomous mortality variable, taking the value 1 if patient i dies on
day t and 0 otherwise, and Φ is the standard normal cumulative distribution function.

5.1. The Tipping Point Model
We use a piecewise linear specification to estimate a potential tipping point with respect to occu-
pancy. Specifically, assuming the peak occupancy that patient i experienced during their stay up
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to day t is stored in the jth component Xjit of the covariate vector Xit, we use the parametric
specification

βj1Xjit +βj2max{Xjit −βj3,0} (3)

to model the tipping point βj3. Here, βj1 is the slope of the line to the left of the tipping point and
βj2 captures the change in slope of the line as Xjit exceeds the tipping point βj3. We estimate all
three parameters βj1, βj2, and βj3.

The tipping point model is parsimonious with the minimum number of required parameters –
one for the tipping point, and one for the behavior of the function on either side of the tipping
point – and has several advantages over the more common polynomial specification of a nonlinear
effect: First, it treats the tipping point explicitly as a parameter, which will allow us to estimate
confidence intervals for the tipping point; second, its estimates have an immediate interpretation;
and third, the shape of the piecewise linear function can be asymmetric, with different slopes
on either side of the tipping point. In contrast, polynomial models, with maxima and minima as
candidates for tipping points, exhibit symmetric second-order behavior and therefore symmetric
shapes in the vicinity of these tipping points. The disadvantage of the piecewise linear model is
that the term βj2max{Xjit − βj3,0}} in (3) renders the probit maximum likelihood problem non-
concave. Fortunately, concavity is restored once the tipping point βj3 has been fixed in (3). In
order to optimize the likelihood function, we first estimated the remaining parameters repeatedly
for a range of tipping points βj3 and then used a procedure suggested by Muggeo (2003) to check
optimality and estimate the standard error of the tipping point estimate.

5.2. Average Partial Effects
In view of the difficulty of interpreting coefficient estimates in generalized linear models, it has
become customary to base statistical inference on average partial effects (APE) (Wooldridge 2002).
Given probit estimates β̂ based on (2), individual patient-day-level partial effect estimates

∇XP [Yit = 1|Xit] = ϕ(X ′
itβ̂)β̂

are aggregated to average partial effects

APE(β̂) =
1

N

∑
(i,t)

ϕ(X ′
itβ̂)β̂, (4)

where ϕ(z) = Φ′(z) is the standard normal density and the sum is taken over all N patient-days
(i, t) in the sample. The APE has a natural population-based interpretation as the proportional
effect of a unit increase in a covariate across all patient-days (Wooldridge 2002). The asymptotic
variance-covariance matrix of the APE can be obtained via the delta method and is of the form
MV̂M ′, where V̂ is the variance-covariance matrix of the probit coefficient estimates,

M =
1

N

∑
(i,t)

ϕ(X ′
itβ̂)[I −X ′

itβ̂β̂
′Xit], (5)

and I is the identity matrix (see Chapter 2.6.6. of Green and Hensher (2010)). In the context of
the tipping point model, we are interested in the average partial effect of peak occupancy below
and above the tipping point. In order to compute these average partial effects, we have to average
over the appropriate subsample of patient-days with peak occupancy above and below the tipping
point, rather than over the entire sample. Note, however, that model (3) does not provide a direct
estimate of the slope above the tipping point βj3; instead this slope is the sum of the two correlated
estimates βj1 and βj2. Furthermore the slope βj1 applies to occupancy below and above the tipping
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point. We therefore re-estimate the model for the already optimized tipping point βj3 using the
following reparametrization of (3):

β̃j1min{xjit, βj3}+ β̃j2max{xjit −βj3,0}. (6)

In this model β̃j1 = βj1 estimates the slope below the tipping point βj3, while β̃j2 = βj2 + βj1

estimates the slope above the tipping point. We cannot use this parametrization of the tipping
point model for the estimation of the tipping point as Muggeo (2003)’s standard error estimation
for the tipping point does not apply to this model. However, once the tipping point has been
estimated on the basis of (3), we can fix it and re-estimate the remaining parameters using the
new parametrization (6). We then calculate average partial effects associated with β̃j1 and β̃j2 via
(4) and (5) by averaging over the relevant subsamples of patient-days with peak occupancy below
or above the tipping point.

5.3. Discharge as a Competing Risk
Observations of patients are censored in two ways in our model. First, we follow patients only
during the first week of their stay in hospital and discard observations beyond the first week. This
so-called type I censoring is non-informative, i.e. censoring of a patient provides no information
about the survival probability of this patient beyond the censoring time (Klein and Moeschberger
1997). Standard survival analysis methods allow for such uninformative right-censoring. However,
in our context there is another form of censoring, namely discharge from hospital. This censoring
mechanism is informative; knowing that a patient has been discharged home provides information
about her health status and thus her survival prospects. In order to treat discharge properly as
informative censoring, we use a competing risk model, with discharge as the competing risk, and
estimate the subdistribution hazard, a concept introduced by Fine and Gray (1999), which has
found widespread applications in biostatistics and epidemiology (Lau et al. 2009). Rather than
censoring discharged patients on the day of discharge, the Fine-Gray approach maintains the
records of the discharged patients in the data beyond the time of discharge. This is operationalized
by duplicating the patient’s records on the day of discharge and censoring the patient at the end
of the seven-day follow-up period. Estimation is achieved by applying model (2) to the expanded
data set.

The expansion of the risk set on day t by all patients who were discharged prior to day t changes
the hazard definition. The standard mortality hazard – the probability that a patient survives day
t in the hospital, conditional on having survived up to the end of day (t− 1) – is estimated by
h(t) = Nt

Rt
, where Nt is the number of patients in the sample who die on day t of their hospital stay

and Rt is the number of patients in the sample who are still in the hospital at the beginning of day t
of their stay. If we keep the records of discharged patients in the data set after their discharge date,
as proposed, we enlarge the risk set on day t and estimate hs(t) =

Nt
Rt+Dt

instead, where Dt is the
number of patients who were discharged prior to the t-th day of their stay. This quantity estimates
the Fine-Gray subdistribution hazard, which is the probability of dying on day t given that either
(a) the patient is still in hospital at the beginning of day t or (b) the patient has been discharged
prior to day t (Lau et al. 2009). The fact that the discharged patients are maintained in the risk
set is equivalent to assuming that all patients discharged before day seven of their hospital stay
would have survived in the hospital up to the end of the follow-up period of seven days had they
not been discharged, and would not have been exposed to further variation in occupancy levels.
Using the subdistribution hazard in our context therefore leads to a conservative estimate of the
mortality risk, accounting for the unknown correlation between discharge risk and mortality risk.
We refer the reader to the original paper Fine and Gray (1999) and the survey article Lau et al.
(2009) for more details on the method. We explain and analyze an alternative to the Fine-Gray
approach in Section 7.1 as part of our robustness checks.
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6. Results
We estimated the discrete subdistribution model (2) using the probit command in STATA, Version
13. Table 2 shows the estimation results for the variables of interest. The Linear Model includes peak

Table 2 Seven-day in-hospital survival estimates for peak occupancy before observation day

Linear Model Tipping Point Model
Coefficient Average Coefficient Average
estimate partial effect estimate partial effect

Peak occupancy 0.127* 0.0024*
(0.0561) (0.0011)

Tipping point 0.925
(0.0184)

Peak occupancy 0.0374 0.0007
below tipping point (0.0647) (0.0012)
Peak occupancy 1.772*** 0.0337***
above tipping point (0.442) (0.0091)
Patient days 557,828 557,828
Number of parameters 366 368
Log-liklihood -22,143.46 -22,137.26
p-value of LR test 0.002
*p < 0.05, **p < 0.01, ***p < 0.001, robust standard errors in parentheses, clustered by hospital departments

occupancy up to the observation day as a linear covariate. The estimated coefficient (beta=0.127,
p = 0.024) is statistically significant at the 5% level. The slope estimates in the Tipping Point
Model refer to the parametrization (6). The tipping point and its standard error were estimated
using the alternative parametrization (3), as proposed in Muggeo (2003). We first estimated the
model for fixed tipping points with a 1% spacing at 85%, 86%,..., 98%, resulting in a maximal
likelihood at 92%, and then used the procedure suggested by Muggeo (2003) to further optimize
locally in the vicinity of 92% and to calculate the standard error of the final estimate. The tipping
point was estimated at 92.5%, with a 95% confidence interval of [88.9%, 96.0%]. In contrast to the
linear model, the tipping point model renders peak occupancy below the tipping point statistically
insignificant (beta=0.0374, p= 0.56). The effect of peak occupancy above the tipping point, how-
ever, is statistically highly significant (beta=1.772, p < 0.001). The overall model fit is significantly
improved relative to the linear model (deviance = 12.4, p= 0.002). These estimations support the
tipping point hypothesis.

6.1. Effect Size Estimations
Of the 557,828 patient-days in our sample, 71,510 (12.8%) were associated with historical peak
occupancy above the estimated tipping point. The average historical peak occupancy on these
days was 95.8% and the average daily mortality rate on these days was 0.00757, i.e. on average
757 of 100,000 patients who had experienced occupancy above the tipping point in the past died
each day. Table 2 reports the average partial effects for the Tipping Point model, as explained in
Section 5.2. The average partial effect estimate of peak occupancy above the tipping point is 0.0337
with a 95% confidence interval of [0.016,0.052]. This suggests that a reduction of peak occupancy
above the tipping point by one percentage point, reducing average occupancy from 95.8% to 94.8%,
would reduce the daily mortality rate on these days by 0.000337 (95% CI=[0.00016,0.00052]). On
aggregate, the daily loss of 757 patients per 100,000 patients would be reduced by 39 patients (95%
CI=[16,52]): a reduction of the death rate by 6.2% (95% CI=[2.9%,9.5%]). This is a clinically
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significant effect associated with a modest one percentage point reduction in peak occupancy above
the tipping point. A comparison of the average partial effects in Table 2 shows that the linear
model overestimates the effect of a reduction of occupancy below the tipping point and severely
underestimates the effect above the tipping point.

The tipping point model suggests an alternative estimation of the total number of avoidable
deaths in the sample: Our model allows us to predict the mortality hazard on each observed patient-
day for varying levels of peak occupancy. For each patient-day with a peak occupancy value above
the estimated tipping point level of 92.5% we can compare the predicted mortality hazard hit (1)
with the predicted hazard h′

it if peak occupancy is reduced to the tipping point level. Summing up
the differences between these two hazards over all patient-days in the sample provides an estimate
of lives saved if no patient had experienced peak occupancy above the tipping point. For our sample
this results in 78 lives saved out of 4,247 deaths: an overall reduction in mortality by 1.8%. In other
words, one in 55 deaths in the sample is accounted for by occupancy above the tipping point.

Since peak occupancy can only have an effect on avoidable deaths, it is useful to relate this
estimate to avoidable death estimates in the medical literature. Such estimates vary significantly,
depending on the context(see Lessing et al. (2010) for a review). Combining an extreme estimate
of a 44.1% avoidable death rate (Healey et al. 2002) with the estimated one in 55 deaths due to
high occupancy results in a combined estimate of 4.2% avoidable deaths due to high occupancy.
Combining our estimate with a more realistic assumption that one in 10 deaths are avoidable in
our high-risk sample would suggest that 18% of these avoidable deaths are associated with peak
occupancy above the safety tipping point.

So far, we have only discussed the size of the effect of high occupancy on all patients. However,
82.6% of patients in our sample did not experience occupancy above the tipping point. If we
relate the estimated 78 saved lives to the 541 deaths among the 14,321 patients who experienced
occupancy levels above the tipping point, the size of the effect becomes substantially larger: 14.4%
of deaths among these patient could have been avoided if no patient had been exposed to occupancy
above the tipping point.

7. Robustness Checks
7.1. Discharge as a Selection Problem
Patients are discharged as their health status improves and this discharge trigger may well be
affected by occupancy levels. When occupancy is high, doctors make space for new patients by
discharging some patients earlier (KC and Terwiesch 2012). There is some evidence that doctors
choose less ill patients for early discharge (Long and Mathews 2013). We have dealt with discharge
as a competing risk, based on the subdistribution approach of Fine and Gray (1999). In this section
we analyze an alternative way of dealing with discharge by extending the probit model (2) to
account for endogenous discharge decisions in a bivariate probit model with selection (Green 2003).
As in the standard probit model, we assume that death occurs on day t when a latent sickness
status Y ∗

it becomes positive. Analogously, discharge on day t is triggered by a second latent variable
S∗
it, which is interpreted as the difference between the clinician’s utilities from keeping patient i in

hospital beyond day t or discharging her on day t. If S∗
it > 0, then the patient is kept in hospital

beyond day t, otherwise she is discharged on day t. Both latent variables are assumed to depend
on individual covariates and random errors

Y ∗
it = Xitβ+ ϵit

S∗
it = Zitγ+ νit.

(7)

As in the probit model (2), both error terms are assumed to follow standard normal distributions.
However, some of the unobserved factors that explain the latent sickness status may also affect
the discharge decision. We therefore allow for correlated errors and assume them to be sampled
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from a bivariate normal distribution with a correlation coefficient ρ that needs to be estimated. By
allowing for correlated errors in the simultaneous equations, we lift relevant unobserved information
from the discharge equation to the mortality equation.

In a standard bivariate probit model, one observes each of the four combinations of the two
events, discharge and death. In our context, however, we do not observe the combined outcome –
death and discharge – but only one of three event combinations:

1. patient i was discharged on day t
2. patient i was not discharged on day t and died on day t
3. patient i was not discharged on day t and survived day t.

This leads to a bivariate probit model with selection (see Chapter 21.6.4 of Green (2003)). This
model allows us to test for confounding by discharge in our sample by testing whether ρ is signifi-
cantly different from zero.

Although the bivariate model is, in principle, identified by its bivariate normality assump-
tion, robust identification benefits greatly from covariates that satisfy an exclusion restriction
(Wooldridge 2002). Such variables are significant predictors in the discharge equation but are
excluded from the mortality equation in the sense that they have vanishing coefficients in the pop-
ulation model of this equation. The former condition is testable, while the latter is an untestable
assumption. We make use of two covariates for which we believe an exclusion restriction is plausi-
ble. The first covariate is a dichotomous variable that takes the value 1 if the observation day is a
Sunday. Patients are unlikely to be discharged on Sundays because administrative staff is unavail-
able and staffing is generally lower and focused on clinical care. It is plausible to assume that, after
controlling for the control variables, patients are not more or less likely to die on Sundays than on
weekdays.

The second variable with an exclusion restriction is the discharge rate of the other patients (i.e.
excluding the observed patient) on the day of observation. This variable captures the general dis-
charge behavior of clinicians and should be related to the observed patient’s discharge probability.
We believe it is plausible to assume that this variable satisfies an exclusion restriction for the out-
come equation, i.e. that an individual patient’s probability of dying on day t does not depend on
the rate at which other patients in the department are discharged, after controlling for the other
variables in the mortality equation. To make discharge comparable between departments, we calcu-
lated the z-score of the number of discharges for each day in each department by normalizing daily
discharge numbers with respect to the average number of discharged patients and the associated
standard deviation in the department during the observation period for the department. Formally,
we calculate the following variable for patient i in department j on day t of her stay:

zijt =
dijt − (d̄j − 1)

σj

, (8)

where dijt is the number of other patients (excluding patient i) discharged on day t of patient i’s
stay in department j, and d̄j and σj are the average and standard deviation of the daily discharge
numbers in department j during the observation period. We use d̄j−1 instead of d̄j in the numerator
because the variable relates to all patients except patient i.

We estimated the bivariate model using the heckprob command in STATA, Version 13. The
occupancy tipping point estimate of 92.4% and the slope estimates for peak occupancy in the
mortality equation are similar to the estimations in Table 2, with an insignificant left slope (beta=-
0.0518, p= 0.45) and a highly significant right slope (beta=1.568, p < 0.001). The selection effect, as
identified by the correlation coefficient between the error terms in the two equations, is significant
(rho=0.272, p < 0.01), as are the two variables with exclusion restrictions in the selection equation,
the Sunday indicator variable (beta=0.256, p < 0.001), and the discharge rate of the other patients
(beta=-0.213, p < 0.001). In summary, the selection model provides very similar results to the
subdistribution hazard model.
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7.2. Proportional Hazards
The survival model assumes that the effect of peak occupancy before the observation day is the
same for all observation days during a patient’s stay in the hospital. To test this proportionality
assumption, we divide the seven-day observation window into an early phase, from the first to the
third day of stay, and a late phase, from the fourth to the seventh day, and code phase-dependent
slopes on either side of the tipping point using a phase dummy variable (Singer and Willett 2003).
The tipping point estimate remains at an occupancy level of 92.5% and the estimated coefficients
for peak occupancy below the tipping point are 0.032 (sd=0.074, p > 0.1) for the early phase and
0.0436 (sd=0.089, p > 0.1) for the late phase, while the coefficient estimates for peak occupancy
above the tipping point are 1.957 (sd=0.623, p < 0.01) for the early phase and 1.662 (sd=0.636,
p < 0.01) for the late phase. A Wald test does not reject the equal coefficient hypothesis for the
two phases (p= 0.95). We are therefore satisfied that the proportionality assumption is tenable in
our case.

7.3. Expanded Follow-up Period
Recall that we chose the seven-day follow-up period because we expect unobserved heterogeneity
amongst patients to increase with time spent in hospital. While most patients with the considered
conditions are severely ill during the early phase of their stay, they separate into two groups
during the later phase: those who are convalescent and therefore not as vulnerable and not as
care-intensive, and those who were particularly ill at the outset and are therefore still in hospital.
For very long lengths of stay, the latter, sicker patients may in fact dominate the patient pool
and, in conjunction with the monotonically increasing peak occupancy, cause a tipping point. As
a robustness check, we estimated a model over a 14-day follow-up period. The model estimates
a significant tipping point at 92.1% with left slope 0.126 (sd=0.0579, p = 0.03) and right slope
1.36 (sd=0.326, p < 0.001). To test the proportionality assumption, we then allowed for different
slopes in the first and second week of the patient’s stay, as in Section 7.2. The tipping point
changed to 93.0%. A Wald test failed to reject the hypothesis of equal slopes only marginally
(p=0.07), indicating that the proportional hazards assumption will become violated as we expand
the follow-up period. This provides additional justification for our choice of a seven-day follow-up
period.

7.4. Multiple Tipping Points and Smooth Splines
To test whether models with multiple tipping points or smooth curves would fit the data better,
we used a model selection procedure suggested by Royston and Sauerbrei (2007), implemented
in the STATA command uvrs, which chooses amongst alternative spline models with multiple
breakpoints. We allowed for a maximum of 10 spline pieces with nine breakpoints located at the
10th, 20th,..., 90th percentiles of peak occupancy. The algorithm chooses the best-fitting model by
comparing successively increasingly complex spline models, i.e. models with an increasing number
of breakpoints across the possible locations, with the most complex model, i.e. the model with nine
breakpoints. The algorithm stops when this most complex model does not provide a significantly
better fit at the 5% significance level, based on the chi-square statistic of log-likelihood differences.
If all goodness-of-fit tests are significant, the most complex model is chosen. We first estimate linear
spline models, i.e. continuous models with linear pieces between the breakpoints. This method
identifies the piecewise linear model with a single tipping point at the 90th percentile of peak
occupancy as the best fit. Repeating this procedure with cubic instead of linear splines allows for
nonlinearity between breakpoints but forces smoothness at breakpoints. The resulting best-fitting
cubic spline also has a single tipping point at the 90th percentile of peak occupancy, but has lower
likelihood than the piecewise linear model: The advantage of nonlinearity between breakpoints is
insufficient to compensate for the forced smoothness at the breakpoints. We are therefore satisfied
that the piecewise linear model with a single tipping point is appropriate.
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8. Managerial Implications of the Tipping Point
Our empirical study provides evidence that occupancy levels above a tipping point are associated
with a substantial increase in in-hospital mortality. If the tipping point is reached frequently, the
hospital will experience a sustained quality problem, which may even lead to its closure (Ruef and
Scott 1998). Two natural managerial levers are capacity increases and capacity pooling with nearby
hospitals; the first will reduce occupancy levels across the board, while the second will reduce
the variability of occupancy levels. Both actions imply that fewer patients exceed the occupancy
tipping point. We estimate the effects of these interventions on the basis of our data and discuss
the value of flexibility in the context of capacity increase.

8.1. Rigid Versus Flexible Capacity
In this section we analyze the effect of a 1% increase in hospital system capacity on mortality,
and the associated cost. We consider two options: a rigid capacity expansion with fully staffed
beds, and a semi-flexible capacity expansion, where beds are fully resourced with the exception
of staffing, which is flexibly deployed in response to occupancy surges. Increasing system capacity
by 1% reduces peak occupancy for all patient-days by a factor of 1/1.01. Our model allows us to
predict the corresponding changes in daily mortality hazards, which we sum up across the sample
to obtain the number of saved lives in our sample. Increasing capacity across the sample by 1%
reduces the number of patients who were exposed to occupancy above the tipping point from 14,321
to 12,039: a reduction by 15.9%. The model predicts that 21 lives could have been saved with a
1% increase in capacity, amounting to 3.9% of the 541 patients who died after having experienced
occupancy above the tipping point. Note that these 21 saved patients account for 26.9% of the 78
patients that could have been saved if no patient had been exposed to occupancy levels above the
tipping point (see Section 6.1). For the cost-benefit analysis, we annualize the number of saved
deaths, accounting for the fact that observation periods differ by departments in the sample. This
results in 22.13 lives saved per annum in the hospitals in our sample.

We estimate the annual costs of a 1% increase in capacity using national average costs (German
Bureau of Statistics 2013) and department-specific staffing information from published hospital
reports. We differentiate between clinical staff costs, related to doctors and nurses, and other infras-
tructure and overhead costs of capacity, such as beds, space or support services. We consider two
options: fixed staffing and flexible staffing. The fixed staffing option assumes that both clinical staff
and other infrastructure costs in the department are increased by 1%, while for the flexible staffing
option only infrastructure costs are increased by 1% and clinical staff costs are only increased by
1% on days when occupancy is above the tipping point.

For the fixed capacity option, we first increase medical staffing in all departments by 1%. For
the 14 departments where we did not have staffing information, we used the mean of the staffing
unit of per capacity of the other departments of the same type. On aggregate, a 1% increase in
clinical staffing in all departments in our sample requires 52 doctors and 164 nurses. Based on
national average costs this results in total costs of 13.8M Euros. Taking account of departmental
capacities and department-type specific national cost averages, we calculated costs for support
services (radiology, pathology, anaesthesia) of 4.6M Euros, administrative overheads and logistics
(e.g. kitchen services, energy, building maintenance) of 10.0M Euros, and capital costs of 2.0M
Euros. Capital costs are based on investment costs of 0.2M Euros per bed and a depreciation period
of 25 years (Bavarian Ministry of Finance 2013). All other on-costs were calculated on the basis
of national average costs of the three most frequent conditions (diagnosis-related groups) in the
department (InEK GmbH 2013). In summary, the estimated total annual cost of a 1% capacity
expansion in the sample departments amounts to 30.4M Euros, of which 13.8M Euros are costs
of additional departmental medical staff. In relation to the 22.13 saved lives associated with a 1%
capacity increase, this amounts to a cost of 1.37M Euros per live saved. This is a very conservative
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estimate of the benefits of a 1% capacity increase, as it is likely that for each avoidable death
there are many more adverse events that result not in death but in harm and associated additional
medical, legal, and reputational costs. In addition, the capacity expansion will not only benefit the
patients with one of the six conditions considered in this paper but all patients in the department.

The tipping point phenomenon suggests installing semi-flexible capacity and employing this
capacity only when occupancy reaches the safety tipping point. We can estimate the associated
costs by assuming that the required infrastructure is installed but its departmental medical staffing
remains flexible. The total costs of capacity without medical staffing is 16.6M Euros. Since only
4.0% of departmental days in the sample had occupancy above the tipping point, this reduces
staffing costs to 0.8M Euros, giving a total cost of 17.4M Euros, or 0.79M Euros per saved life;
semi-flexible capacity is 42.7% cheaper than fixed capacity and achieves, due to the tipping point
characteristic, the same mortality reduction.

8.2. Capacity Pooling
As capacity expansion is associated with high costs, we study the effect of pooling as a potentially
less costly alternative. Pooling reduces the variability of demand and therefore of occupancy levels,
which in turn reduces the propensity of a patient experiencing occupancy levels above the tipping
point. Pooling is often implemented at the hospital level through cooperation agreements. Such
agreements can include transfers of patients before or following admission, as well as transfers of
staff to cover shortages at a partnering hospital. Hitherto, the main rationale for such cooperation
is cost-reduction; the safety aspect, due to reducing the proportion of days with occupancy levels
above the tipping point, is less appreciated. We can estimate this effect within our sample.

In order to achieve synergies from pooling, especially for emergency patients, pooled hospitals
should be in close proximity so that ambulance diversions in response to high occupancy levels do
not cause inappropriate delays. We use German zip-codes to estimate the distances between the
hospitals in our sample. This allows us to group the 83 hospitals into clusters. We do this step-wise,
starting from single hospital clusters by merging two clusters if they contain two hospitals that are
less than 30 km apart. This leads to 43 hospital clusters for our sample, of which the largest consists
of 18 hospitals. The maximum distance between any two hospitals within any of the clusters is
53 km. We then recalculate daily occupancy levels for each department type across the hospitals
in the clusters by pooling departmental capacities: For each day of the year we added midnight
patient counts across departments of the same type in the cluster and divided these by the sum of
the capacities of these departments to obtain cluster occupancy levels. Pooling reduces the 71,510
patient-days with peak occupancy above the estimated tipping point to 50,302 patient-days: a
reduction of 30%. At the patient level, 14,321 patients were exposed to occupancy above the tipping
point on some day of their first seven days in the hospital. After pooling, this number is reduced
to 10,114 patients. We can calculate the number of saved lives by calculating for each patient-day
the difference between the model-predicted mortality hazard for the realized peak occupancy level
and for the pooled peak occupancy and summing up the differentials over all patient-days. This
resulted in an estimated 27 lives saved by pooling. As we had estimated earlier that 78 patients
could have been saved if no patients had been exposed to occupancy above the tipping point, this
occupancy effect can be reduced by 34.4% by pooling alone.

These estimated benefits of pooling are only indicative and discard important costs, such as
additional cost of patient transport. Also, even if pooling of hospitals is desirable, it may not be
easy to implement. Hospitals that compete fiercely, as is often the case in large cities, are less likely
to cooperate; insurance companies may have different agreements with different hospitals, which
can lead to reimbursement problems; patients will often be involved in the choice of hospital and
may wish to go to a specific hospital, even if it is running at high capacity. Despite these limitations,
the analysis above suggests that safety can be a powerful rationale for pooling in addition to the
prevalent cost argument.
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8.3. Daily staffing variation
Needleman et al. (2011) show in the context of a single medical center that staffing below target
during a patient’s stay affects mortality. We do not have daily departmental staffing data, which is a
limitation that our study shares with other multi-center studies of occupancy effects. The inclusion
of seasonal variables, such as admission day of the week, controls to some extend for systematic
variations in staffing. However, it is conceivable that current or anticipated future occupancy levels
affect daily staffing levels. Management may react to current high occupancy or anticipated future
high occupancy by scheduling additional staff, either from less busy units in the hospital or from
nursing pools or nursing agencies. This managerial response would lead to increased staffing when
occupancy rises. At the same time, staff response to high occupancy might lower staffing levels.
Green et al. (2012) report within the context of an emergency department that while absenteeism
was not correlated with current workload after controlling for fixed effects, high anticipated future
workload was associated with an increased rate of absenteeism. This potential causal effect of
current or anticipated future occupancy on daily staffing levels does not invalidate our estimations
of the occupancy effect, but rather points to staffing variation as a potential mechanism through
which occupancy affects mortality; occupancy is still the root cause of mortality (see e.g. Section
3.2.3 in Angrist and Pischke (2009)). Nonetheless, it would be important to know whether daily
staffing variation mediates the occupancy effect, as this would provide additional insight into
how staffing after an occupancy peak can be used to reduce mortality. While we do not expect
significant correlation between daily occupancy and daily staffing, after controlling for seasonal and
department fixed effects, in the German hospital context during our observation period 2004/05,
such correlations may well be present today as working conditions have deteriorated in the wake
of cost-cutting efforts (Zander et al. 2013) and managerial response mechanisms, such as the use
of nursing pools, have improved over the past decade.

9. Conclusion
Hospitals cannot turn away patients with acute conditions and therefore have to deal with surges
in demand, leading to spikes in occupancy levels. When occupancy is very high, the managerial
ability to respond by exploiting variability buffers becomes constrained as these buffers become
depleted. The strain is passed on to employees, who are forced to ration limited resources to
cope with excessive demand, while stress impairs their cognitive abilities. In combination, these
effects lead to safety tipping points in hospitals. Neither the organization nor its clinical staff are
able to absorb a further increase in occupancy beyond the safety tipping point without significant
deterioration in the quality of care. Our empirical analysis demonstrates that such tipping points
exist. In our sample, a patient’s mortality risk begins to increase significantly with occupancy when
occupancy levels exceed a tipping point of 92.5%. Our results provide ammunition for operations
managers when their finance colleagues argue that capacity can be reduced while activity levels
are maintained. When this is done, more patients will experience an unsafe day in the hospital,
i.e. a day when occupancy levels exceed the safety tipping point. In our sample 17.4% of patients
experienced days with occupancy above the estimated tipping point and one in seven deaths among
these patients in our sample is accounted for by high departmental occupancy.

The existence of safety tipping points is important. Earlier studies had neglected this phe-
nomenon and either did not find a relationship between occupancy and mortality or exaggerated
the effect at low occupancy levels and underestimated the effect at high levels. This is particularly
relevant in the debate about capacity pooling as the associated reduction in occupancy variability
reduces the propensity of a patient to experience occupancy above the tipping point. In a sim-
ulation of capacity pooling, we have estimated that in our sample 34.4% of the deaths that are
accounted for by occupancy could have been avoided if capacity had been pooled. This significant
safety effect of capacity pooling is not apparent in a linear occupancy model, where a gain from
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avoiding high occupancy in one hospital is offset by the loss in increasing occupancy in another.
This adds an important safety dimension to the cost-reduction benefits of the capacity pooling of
healthcare services.

A further important implication of the safety tipping point is that it has a marked effect on
the value of semi-flexible capacity, specifically capacity with flexible medical staffing. Within the
context of our data, we have argued that an increase in capacity with flexible staffing, triggered by
occupancy levels, may be more than 40% cheaper than rigid capacity and achieve the same safety
improvement in terms of mortality reduction.

We have pointed out the statistical challenges in estimating occupancy tipping points with
respect to mortality, and specifically the fact that avoidable mortality is a rare event that requires
large samples. It was necessary to assemble a multi-hospital department-based dataset for our
analysis. There are, however, other less severe but more frequent indicators of quality deterioration,
such as readmission to hospital, operating theater, or ICU, patient falls, medication errors, or
patient complaints, which are routinely recorded by hospitals (KC and Terwiesch 2012, Kim et al.
2013, Long and Mathews 2013). While they are rarely associated with a patient’s death, these
events are indicative of poor clinical quality and are likely to be affected by occupancy levels.
These events are sufficiently frequent to have potential for department-level tipping point analyses,
similar to the analysis conducted in this paper. The strength of a department-level analysis would
be further enhanced by including data on day-to-day variations of staffing levels, which is currently
not available in a sufficiently standardized form for multi-hospital studies. Results of such analyses
could be very powerful in providing sorely needed evidence to guide the design of departmental
escalation policies and process re-engineering efforts, as summarized by feedback we received from
the clinical director of a large medical department: “The tipping point is the point at which further
reductions in staff are associated with worse outcomes. If we could identify what factors altered the
tipping point, we might be some way to understanding how to improve outcomes with less staff –
to increase efficiency. What are those factors - cultural, technological, skill mix, experience?” More
research is required to answer this question.
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Appendix: Control Variables

Correlations
Mean (SD) Died Peak occupancy

Peak occupancy .791 (0.125) -0.0053***
Conditions
AMI (reference) 0.153 0.0058*** 0.0194***
CHF 0.218 -0.0032*** -0.0330***
GIH 0.111 -0.0145*** -0.0509***
HIP 0.099 -0.0159* -0.0498***
PNE 0.177 0.0081*** -0.0066***
STR 0.242 0.0126*** 0.0934***
Age categories
< 10 0.029 -0.0082*** -0.0613***
>= 10 and < 20 0.007 -0.0056*** -0.0141***
>= 20 and < 30 0.010 -0.0065*** -0.0084***
>= 30 and < 40 0.020 -0.0096*** -0.0087***
>= 40 and < 50 0.052 -0.0124*** 0.0154***
>= 50 and < 60 0.088 -0.0138*** 0.0165***
>= 60 and < 70 0.194 -0.0163*** 0.0360***
>= 70 and < 80 (reference) 0.289 -0.0049*** 0.0104***
>= 80 and < 90 0.244 0.0260*** -0.0175***
>= 90 0.068 0.0313*** -0.0241***
Elixhauser comorbidities
Congestive heart failure 0.239 0.0114*** -0.0033*
Cardiac arrhythmias 0.282 0.0100*** 0.0210***
Valvular disease 0.107 -0.0105*** 0.0103***
Pulmonary circulation disorders 0.029 0.0009 0.0223***
Peripheral vascular disorders 0.067 0.0034* 0.0229***
Hypertension, uncomplicated 0.432 -0.0204*** 0.0572***
Hypertension, complicated 0.082 -0.0090*** 0.0175***
Paralysis 0.150 0.0085*** 0.0556***
Other neurological disorders 0.116 0.0074*** 0.0173***
Chronic pulmonary disease 0.118 -0.0027* 0.0100***
Diabetes, uncomplicated 0.157 -0.0024 0.0184***
Diabetes, complicated 0.110 0.0000 -0.0120***
Hypothyroidism 0.033 -0.0074*** 0.0082***
Renal failure 0.143 0.0072*** 0.0194***
Liver disease 0.032 0.0031* 0.0038**
Peptic ulcer disease excluding bleeding 0.007 -0.0038** -0.0048***
AIDS/HIV 0.001 -0.0010 0.0045***
Lymphoma 0.006 0.0005 0.0149***
Metastatic cancer 0.013 0.0167*** 0.0025
Solid tumor without metastasis 0.025 0.0121*** 0.0059***
Rheumatoid arthritis/collagen, vascular diseases 0.013 -0.0051*** 0.0109***
Coagulopathy 0.030 0.0123*** 0.0258***
Obesity 0.100 -0.0160*** 0.0198***
Weight loss 0.023 0.0188*** -0.0148***
Fluid and electrolyte disorders 0.166 0.0192*** -0.0094***
Blood loss anemia 0.011 -0.0029* -0.0025
Deficiency anemias 0.019 -0.0039** -0.0035**
Alcohol abuse 0.038 -0.0041** 0.0051***
Drug abuse 0.005 -0.0037** 0.0056***
Psychoses 0.006 -0.0027* -0.0017
Depression 0.036 -0.0111*** 0.0033*
Day of stay
Day 1 (reference) 0.148 0.0246*** -0.0143***
Day 2 0.145 0.0083* -0.0680***
Day 3 0.144 -0.0008 -0.0174***
Day 4 0.142 -0.0020 0.0219***
Day 5 0.141 -0.0054*** 0.0500***
Day 6 0.140 -0.0112*** 0.0711***
Day 7 0.139 -0.0141*** 0.0877***
Admission period
January (reference) 0.096 -0.0004 -0.0059***
February 0.093 0.0019 0.1021***
March 0.103 0.0049*** 0.1094***
April 0.089 -0.0004 -0.0147***
May 0.090 -0.0008 -0.0275***
June 0.085 -0.0014 -0.0127***
July 0.083 -0.0008 -0.0444***
August 0.082 -0.0003 -0.0765***
September 0.082 -0.0001 -0.0241***
October 0.088 -0.0007 0.0065***
November 0.088 -0.0013 0.0226***
December 0.021 -0.0020 -0.0966***
Year 2005 0.556 -0.0007 0.1069***
Admission day of the week
Monday 0.178 -0.0036** 0.0580***
Tuesday 0.161 -0.0047*** 0.0400***
Wednesday 0.152 -0.0001 0.0149***
Thursday 0.156 -0.0018 -0.0077***
Friday 0.147 -0.0007 -0.0756***
Saturday 0.103 0.0063*** -0.0547***
Sunday (reference) 0.104 0.0070*** 0.0130***
Observation day of the week
Monday 0.139 0.0003 -0.0553***
Tuesday 0.147 0.0001 0.0124***
Wednesday 0.148 -0.0017 0.0391***
Thursday 0.148 0.0002 0.0468***
Friday 0.154 -0.0031* 0.0337***
Saturday 0.136 0.0026 -0.0237***
Sunday (reference) 0.128 0.0018 -0.0592***
Other controls
Gender (male=1) 0.498 -0.0113*** 0.0284***
Emergency admission 0.534 0.0178*** 0.0280***
Admission from another hospital 0.064 -0.0080*** 0.0276***
Departmental transfer within hospital 0.057 0.0086*** 0.0549***
255 department dummies not reported
30 interactions of day-of-stay and conditions not reported
Patient days 557,828 557,828 557,828
*p < 0.05, **p < 0.01, ***p < 0.001


