Similarity-based & Statistically Validated
Networks in Finance

Rosario Nunzio Mantegna

Central European University, Budapest, Hungary
Palermo University, Palermo, Italy

23 Sep 2014 Financial Risk & Network Theory - Cambridge



Outline

* I will discuss the concept of similarity based networks
and their use in finance;

* [ will present the methodology of statistically validated
networks by discussing its application to syndicated loans
and the interbank market.
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Two different approaches in building networks

Event or relation Similarity-based networks

defined networks

J

Example: 1) Consider
Portfolio of bank 1
portfolio of bank j

portfolio of bank m

2) Estimate similarity/distance
between each pair of banks;

3) Extract a weighted network from
a similarity/distance matrix.

.
.
Y N
1
1

Example:
nodes are banks
links are credit relationships
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The first investigation of a correlation based networks
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Fig. 1. (a) Minimal spanning tree connecting the 30 stocks used to compute the Dow Jones Industrial Average. The 30
stocks are labeled by their tick symbols. The distance between the stocks is bounded as: CHV-TX 0.90 < d(i,7) < 0.95;
XON-TX 0.95 < d(i,j) < 1.00; KO-PG 1.00 < d(7,j) < 1.05; MMM-GE-KO, DD-GE-T, AA-IP and MRK-KO-MCD
1.05 < d(i,7) < 1.10; CAT-IP-MMM, AXP-JPM-GE-GM, BA-GE-UTX, DD-XON and MO-PG 1.10 < d(z, j) < 1.15; DIS-
GE-EK, DD-UK, BS-IP-ALD and GE-WX 1.15 < d(i,j) < 1.20; AA-GT, GE-IBM, KO-Z and IP-S 1.20 < d(i,j) < 1.25. (b)
Hierarchical tree of the subdominant ultrametric space associated with the minimal spanning tree of a). In the hierarchical tree,
several groups of stocks homogeneous with respect to the economic activities of the companies are detected: (i) oil companies
(Exxon (XON), Texaco (TX) and Chevron (CHV)); (ii) raw material companies (Alcoa (A A) and International paper (IP)) and
(iii) companies working in the sectors of consumer nondurable products (Procter & Gamble (PG)) and food and drinks (Coca
Cola (KO)). The ultrametric distance at which individual stocks are branching from the tree is given by the y axis.

R.N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B 11, 193-197 (1999)
23 Sep 2014 Financial Risk & Network Theory - Cambridge



Filtering the correlation matrix using
single linkage clustering

By starting from a correlation matrix
(which 1s a similarity measure)

AlIG IBM | BAC | AXP | MER | TXN | SLB MOT | RD OoXY
AIG 1 0413 | 0518 | 0.543 | 0.529 | 0.341 | 0.271 | 0.231 | 0412 | 0.294
IBM 1 0471 | 0537 | 0.617 | 0.552 | 0.298 | 0.475 | 0.373 | 0.270
BAC 1 0.547 | 0591 | 0400 | 0.258 | 0.349 | 0.370 | 0.276
AXP 1 0.664 | 0422 | 0.347 | 0.351 | 0414 | 0.269
MER 1 0.533 | 0344 | 0462 | 0440 | 0.318
TXN 1 0.305 | 0.582 | 0.355 | 0.245
SLB 1 0.193 | 0.533 | 0.592
MOT 1 0.258 | 0.166
RD 1 0.590
0):44 1

dij = 2 (1 - IO ij )
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MER
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BAC
AXP
IBM
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MER
BAC
MOT
MER
RD
TXN

pij
0.664
0.617
0.592
0.591
0.590
0.582
0.552
0.547
0.543
0.537
0.533
0.533
0.529
0.518
0475
0.462
0.440
0.422

0.820
0.875
0.903
0.904
0.905
0914
0.947
0.952
0.956
0.962
0.966
0.966
0.970
0.982
1.025
1.037
1.058
1.075



The hierarchical tree obtained from single linkage clustering
algorithm has information equivalent to a simplified matrix
having only n-1 distinct elements. It can be proven that such
a matrix 1s an ultrametric matrix when a distance is defined
between each pair of elements.

AIG | IBM | BAC | AXP | MER | TXN | SLB | MOT | RD OXY
AIG 1 0.543 | 0.543 | 0.543 | 0.543 | 0.543 | 0440 | 0.543 | 0.440 | 0.440
IBM 1 0591 | 0.617 | 0.617 | 0.552 | 0440 | 0.552 | 0.440 | 0.440
BAC 1 0.591 | 0.591 | 0.552 | 0440 | 0.552 | 0.440 | 0.440
AXP 1 0.664 | 0.552 | 0.440 | 0.552 | 0.440 | 0.440
MER 1 0.552 | 0.440 | 0.552 | 0.440 | 0.440
TXN 1 0440 | 0.582 | 0440 | 0.440
SLB 1 0.440 | 0.590 | 0.592
MOT 1 0.440 | 0.440
RD 1 0.590
OXY 1
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Kruskal's algorithm of the Minimum Spanning Tree

I Define a similarity measure between the elements of the system I
I Construct the list S by ordering similarities in decreasing order I
Starting from the first

element of S,
add the corresponding link
if and only if
the graph is still a Forest or a Tree

Minimum Spannig Tree
MST
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Correlation based trees and hierarchical trees do

NOT carry the same amount of information.

CSL
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AIG | IBM | BAC | AXP | MER | TXN | SLB | MOT | RD (0044
AIG 1 0413 | 0.518 | 0.543 | 0.529 | 0.341 | 0.271 | 0.231 | 0412 | 0.294
IBM 1 0471 | 0.537 | 0.617 | 0.552 | 0.298 | 0.475 | 0.373 | 0.270
BAC 1 0.547 | 0.591 | 0.400 | 0.258 | 0.349 | 0.370 | 0.276
AXP 1 0.664 | 0.422 | 0.347 | 0.351 | 0414 | 0.269
MER 1 0.533 | 0.344 | 0.462 | 0440 | 0.318
TXN 1 0.305 | 0.582 | 0.355 | 0.245
SLB 1 0.193 | 0.533 | 0.592
MOT 1 0258 | 0.166
RD 1 0.590
OXY 1

AIG | IBM | BAC | AXP | MER | TXN | SLB | MOT | RD oXY
AIG 1 0.543 | 0.543 | 0.543 | 0.543 | 0.543 | 0.440 | 0.543 | 0.440 | 0.440
IBM 1 0.591 | 0.617 | 0.617 | 0.552 | 0440 | 0.552 | 0.440 | 0.440
BAC 1 0.591 | 0.591 | 0.552 | 0440 | 0.552 | 0.440 | 0.440
AXP 1 0.664 | 0.552 | 0.440 | 0.552 | 0440 | 0.440
MER 1 0.552 | 0.440 | 0.552 | 0.440 | 0.440
TXN 1 0440 | 0.582 | 0.440 | 0.440
SLB 1 0.440 | 0.590 | 0.592
MOT 1 0.440 | 0.440
RD 1 0.590
OXY 1
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The minimum spanning tree is the most basic and robust way
to obtain a similarity based network. There are many generalizations

of this basic approach. A prominent one is the Planar Maximally
Filtered Graph.

I Define a similarity measure between the elements of the system I
I Construct the list S by ordering similarities in decreasing order I
Starting from the first Starting from the first
element of S, element of S,
add the corresponding link add the corresponding link
if and only if if and only if
the graph is still a Forest or a Tree the graph is still Planar (g=0)
I I
Minimum Spannig Tree Planar Maximally
MST Filtered Graph
PMFG

M. Tumminello, T. D1 Matteo, T. Aste and R.N.M., PNAS USA 102, 10421 (2005)
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Planar graphs

A graph 1s planar 1f its edges can be embedded on a surface of
genus 0, 1.e. a surface like a plane or a sphere, without intersections
of the edges.
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Partial correlation network
The partial correlation coefficient

p(X.Y:Z)

between variables X and Y conditioned on the variable Z is the
Pearson correlation coefficient between the residuals of X and Y
that are uncorrelated with Z

Wed investigated the quantity
d(X,Y:Z)=p(X,Y)-p(X)Y:Z)

This 1s an estimation of the correlation influence of Z on the
correlation of pair of elements X and Y

It should be noted that d(X,Y:Z) assumes non negligible values
only when ,O(X Y ) is significantly different from zero.

IKenett DY, Tumminello M, Madi A, Gur-Gershgoren G, Mantegna RN, et al. (2010) Dominating Clasp
of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market.
- PLoS ONE 5(12): €15032. doi:10.1371/journal .pone.0015032



The number of d(X,Y:Z) elements is cubic in N.
In fact different elements are N (N-1) (N-2)/2

We therefore investigate the overall effect of stock Z on
correlation of stock X with all other stocks except Z.

Specifically, we investigate

d(X:2)=(d(X.Y:Z)),

=X ./

We use this directed similarity measure to obtain
a Partial Correlation Planar Graph

23 Sep 2014 Financial Risk & Network Theory - Cambridge 13



The Partial Correlation Planar Graph (economic subsectors)
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A statistical assessment of links of similarity based networks
can be performed by using bootstrap replicas

Data Set Pseudo-replicate Data Set
V. |V, |V, v, Vi |V, |V, v,
t, || 0113 | 1.123 | -0002 | .. 0.198 1567 | 0.789 | 0.842 | ..| -0.234
t, || 1.567 | 0789 | 0.842 | ..| -0.234 0.113 | 1.123 | -0.002 | .. 0.198
t, || 1.065 |-1962 | 0.567 | ..| 1.785 1065 | -1962 | 0.567 | ..| 1.785
t, || 1.112 | 0998 | -0424 | ..| 2.735 0.113 | 1.123 | 0002 | ..| 0.198
t; || -0211| 0312 | -0217 | ..| 0.587 0479 |-1.828 | -2.041 | ..| -0.193
T || 0479 | -1.828 | -2.041 | ..| -0.193 4 0479 | -1.828 | -2.041 | ..| -0.193

23 Sep 2014
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M surrogated data matrices are constructed, e.g. M=1000.
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Statistical reliability of the minimum

\ -

spanning tree
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M. Tumminello, C. Coronnello, S. Micciche, F. Lillo and R.N.M., Int. J. Bifurcation Chaos 17,
2319-2329 (2007).
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Bootstrap vs correlation
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Edge filtering 1s also relevant in networks

Several networks are pretty dense and it is quite difficult to
detect their internal structures.

One recent approach? able to detect internal structures of networks
1s the approach of statistically validated networks.

In statistically validated networks the scientific question 1is:

Is it possible to detect interaction among nodes of the network
that are over- expressed or under-expressed with respect to a
null hypothesis taking into account the heterogeneity of the
system?

YTumminello M, Micciche S, Lillo F, Piilo J, Mantegna RN (2011) Statistically Validated Networks in
Bipartite Complex Systems. PLoS ONE 6(3): e17994. doi:10.1371/journal.pone.0017994

23 Sep 2014 Financial Risk & Network Theory - Cambridge 18



In several cases the problem of statistically validating a link
can be mapped into a urn problem

Lending Packages Projected network of lending banks
banks

1/ 7v
Example: >< |

The investigated system concerns
syndicated loans.

. - The database 1s the DealScan database
6 T~ of Thomson Reuters

13
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A statistical validation of co-occurrence

Suppose there are N loan packages 1n the investigated set. Suppose we
are interested to evaluate against a null hypothesis the co-occurrence
of lending banks in the same package. Let us call N, the number of
packages that bank A has subscribed and N the number of packages
that bank B has subscribed. Let us call X the co-occurrence of the
presence of both banks in loan packages.

Total # of packages
#ot The question 1s:
packages Ny hat is th b
subscribed wnat 1S the probabulity

M by bank B of X under the null
A e.’ # of co- hyPOth.eSli Ofrandom
occurrence of  'matching:
banks A and B in
subscribed

# of packages N, subscribed by bank A packages

23 Sep 2014 Financial Risk & Network Theory - Cambridge 20



The probability that banks A and B are both subscribing
X packages 1s given by the hypergeometric distribution

(NA\ N-N,

Hypergeometric X \Ny-X

P(X| =

distribution: (XANN,Ny) [N )
\Np

Expected number of

co-occurrence: (X) = Ex P(xIN,N,,Ny)

It 1s therefore possible to associate a p-value to an empirically
observed value

N,\N-N,
p-value associated to a detection of ST R VI
co-occurrence > X: p=1- 2
i=0
N B)

23 Sep 2014 Financial Risk & Network Theory - Cambridge 21



Corrections for multiple hypotheses testing,

and network construction
We can therefore statistically validate a link between two vertices
(in the present case two banks) if the associated p-value 1s below a
given threshold showing that the co-occurrence cannot be explained
by the heterogeneity of the system taken as a null hypothesis.

By doing a two tail analysis we can also detect under-occurrence
so that detecting the avoidance or minimization of interaction.

To perform the statistical validation of all pairs of vertices a large
number of tests need to be performed. One therefore needs a
multiple hypothesis test correction.

The most restrictive correction 1s the Bonferroni correction redefining
the statistical threshold as 6=0.01/T where T is the number of tests to be
done.

Another type of correction (less restrictive) 1s the so-called

False Discovery Rate correction.
23 Sep 2014 Financial Risk & Network Theory - Cambridge 22



DealScan network of banks performing syndicated loans?

Network 1987 Statistically validated network
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syndicated loans, manuscript in preparation
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Statistically validated network of DealScan lending banks

@
Year 2012 / 2

Over-expressed link

Under-expressed link

lcc comprising 460 (of 583) banks and 2195 links ® Lending bank

23 Sep 2014 Financial Risk & Network Theory - Cambridge 24



The methodology of statistically validated networks 1s quite
flexible and can be easily applied also to directed networks
when the underlying network register directional events.

Example: credit relationships in the interbank market.

Suppose there are N credit Total # of transactions ¥ ol
. . . . . transactions
relationships 1n the investigated set. Supposg of bank i as a

We are interested to evaluate lender

the null hypothesis of the
co-occurrence of random pairing of
lending and borrowing between a
pair of banks. Let us call K the
number of credits relationships of
bank 7 as a lender and M the

# of transactions
between the two
banks

# of transactions of bank j as a borrower

: : : -value
number of credit relationships of P , |
bank j as a borrower. X is the number OVER-expression:  UNDER-expression:
of credit relationships with i lender ( M\ N-M ( M ( N-M )
. & i K-i X ] K-i
n=1- N =
and j borrower. p=1-2 ( - p=2 ( - )
23 Sep 2014 Financial Risk & Netwo : i



By using this approach wed have shown that the e-MID market
presents statistically validated links

Original network Bonferroni network
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Figure 8. In the top-left panel, we show the number of links observed in the original network. In the top-right
panel, the number of over-expressed links (red) and under-expressed links (blue) observed in the Bonferroni
network is reported. In the bottom panel, we show the ratio between the number of over-expressed links observed
in the Bonferroni and in the original network. The dotted line refers to the August 2007 market freezing, while
the dashed line refers to the Lehman’s bankruptcy. These data refer to the lender-aggressor dataset. The analysis
is performed on the Italian segment of the e-MID market.
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A simple model of dynamic network of the interbank market
showing statistically validated links’.

At each transaction a lender and a borrower that aim to do a
transaction are selected. The probability that the selected
lender accept the selected borrower is proportional to

an attractiveness w common to all borrower and to a trust
proxy of the specific borrower obtained by considering the
number of past credit relationships commonly undertaken.
The trust 1s built within a memory time interval which is a
parameter of the model.

Yori, G., Mantegna, R.N., Marotta, L., Micciche, S., Porter, J. and Tumminello, M.
Networked relationships in the e-MID interbank market: A trading model with memory,
Journal of Economic Dynamics and Control, (in press) http://dx.doi.org/10.1016/j.jedc.2014.08.016
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By calibrating the
simulations of this
model on the
e-MID data

we obtains?

Yori, G., Mantegna, R.N.,
Marotta, L., Micciche, S.,
Porter, J. and Tumminello,
M., Networked relationships
in the e-MID interbank
market: A trading model
with memory,

Journal of Economic
Dynamics and Control,

(in press)

23 Sep 2014

100

i
(=

LENDER aggressor - links

original network

@—@ real data
m—m Q-2 w=1

3-maintenance periods

Financial Risk & Network Theory - Cambridge

0 10 20 30 40
Bonferroni network
- ' l ' l ' l ' -
0 10 20 30 40
fraction
B \ | \ | \ | \
0 10 20 30 40

28



Conclusions

* Similarity based networks are quite informative in
finance;

* Different networks can highlight different
information;

e Statistically validated networks are able to detect
over-occurrence and under-occurrence of events or
relationships and can be useful to highlight the
presence of a networked structure of markets.

23 Sep 2014 Financial Risk & Network Theory - Cambridge
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