

BANK FOR INTERNATIONAL SETTLEMENTS

Filling in the Blanks: Interbank Linkages and Systemic Risk

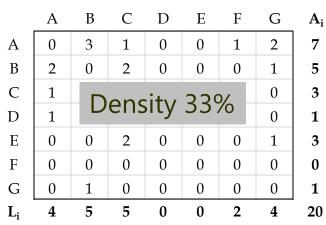
Kartik Anand, Bank of Canada Ben Craig, Deutsche Bundesbank <u>Goetz von Peter</u>, Bank for International Settlements

Cambridge – September 2014

Motivation

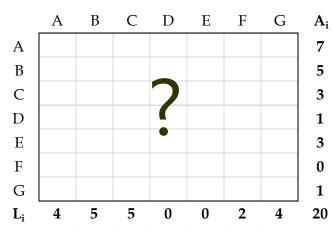
- Interbank contagion is central, but bilateral linkages often unknown
- Standard: estimate counterparty exposures by **maximum entropy**
- Yet spreading exposures as evenly as possible can be misleading:
 - Conceals "true" structure of linkages in network analysis
 - Diversification assumption causes bias in systemic stress tests
- This short paper proposes opposite benchmark: **minimum density**
- Produces a highly concentrated sparse network that
 - Retains some of the original network structure, and
 - Provides useful robustness bounds for systemic stress tests

Actual Data



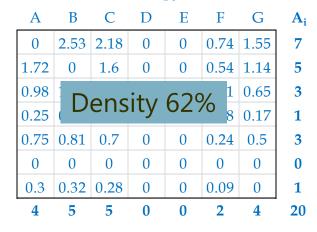
True Network

Observable Interbank Market

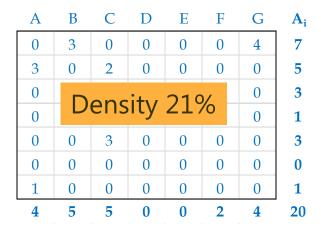


Estimated Networks

Maximum Entropy Solution



Minimum Density Solution



BANK FOR INTERNATIONAL SETTLEMENTS

Roadmap

- Part I: The minimum density approach (MD)
- Part II: Network features of estimated benchmarks (ME, MD) versus the "true" interbank network
- Part III: Performance in a systemic stress test

Part I: Maximum Entropy vs Minimum Density

- Notation:
 - Interbank network: $X \in [0, \infty)^{N \times N}$
 - Bilateral exposures: $X_{ij} \ge 0 \ (X_{ii} = 0)$
 - Interbank assets: $A_i = \sum_j X_{ij}$
 - Interbank liabilities $L_i = \sum_j X_{ji}$ = "marginals"
- Suppose we only know the marginals A_i and L_i for each of the N banks
 → estimate max entropy E and min density solution Z on marginals
- Entropy: find matrix \mathbb{E} that satisfies the marginals, given "prior" $Q_{ij} = A_i L_j$:

$$\min_{\mathbb{E}} \sum_{i,j} E_{ij} \log \frac{E_{ij}}{Q_{ij}} \text{ s.t. } \sum_{j} E_{ij} = A_i \text{ and } \sum_{j} E_{ji} = L_i$$

The Maximum Entropy solution ${\ensuremath{\mathbb E}}$

- Advantages:
 - Implementable using a standard iterative algorithm (RAS)
 - Yields a unique solution for E
- Disadvantages:
 - Is optimal only if *nothing else* is known about a network
 - Completeness contradicts facts of real interbank networks:
 - Sparsity (Bech Atalay 2010), Tiering (Craig von Peter 2014), relationships (Cocco et al 2009), with disassortative features.
 - When diversification reduces contagion, entropy underestimates systemic risk (Mistrulli 2011, Markose 2012)
 - \rightarrow Case for an alternative benchmark

The Minimum Density method

- **Premise**: Network linkages are costly and based on relationships
- **Efficiency:** Minimally connected network s.t. satisfying marginals:

$$\min_{\mathbb{Z}} \sum_{i=1}^{N} \sum_{j\neq i}^{N} c \times \mathbf{1}_{[Z_{ij}>0]} \text{ s.t.}$$
$$\sum_{j=1}^{N} Z_{ij} = A_i \quad \forall i = 1, 2, \dots, N$$
$$\sum_{j=1}^{N} Z_{ij} = L_i \quad \forall i = 1, 2, \dots, N$$
$$Z_{ij} \ge 0 \quad \forall i, j$$

Analogous to transport network design problems: NP-hard (O'Kelly 2012)

Approach guided by two main ideas

• Robust choice under uncertainty \rightarrow multinomial logit function

$$\max_{p \in \Delta} \left[\mathbf{v}' \mathbf{p} - \delta v(\mathbf{p}, \mathbf{q}) \right] \implies p_i^* = \frac{q_i e^{v_i/\delta}}{\sum_{j \in \mu} q_i e^{v_j/\delta}}$$

 Prior ~ economic incentives: focus on disassortative relationships matching large surpluses with small deficits and v.v.

$$Q_{ij} \propto \max\left\{\frac{AD_i}{LD_j}, \frac{LD_j}{AD_i}\right\} \quad \forall i, j \in \mu.$$

- $i \rightarrow j$ if big lender to small borrower, or small lender to big borrower
- Algorithm identifies probable links to load to the maximum extent.

8

21.15

The Minimum Density Algorithm

Complexity rises exponentially (2^N) even before allocating value \rightarrow algorithm

- 1) Compute current deficits $AD_i = (\sum_j Z_{ij} A_i), \ LD_i = (\sum_j Z_{ji} L_i)$
- 2) Select link (i, j) according to probability $Q_{ij} \propto \max\left\{\frac{AD_i}{LD_i}, \frac{LD_j}{AD_i}\right\} \forall i, j$
- 3) Load exposure $Z_{ij} = \lambda \times \min\{AD_i, LD_j\}$ with $\lambda = 1$, or less* If $V(\mathbb{Z}' = \mathbb{Z} + \mathbb{Z}_{ij}) \ge V(\mathbb{Z})$, then accept link Z_{ij}
- 4) Update set of priors Q_{ij} as in steps 1-2)
- 5) Iterate until 100% volume is allocated $\sum \sum Z_{ij} = \sum \sum X_{ij} = \sum A_i$
 - Interbank assets matched: $\sum_{i} Z_{ij} = A_i \quad \forall i$
 - Interbank liabilities matched: $\sum_i Z_{ji} = L_i \quad \forall i$
- * We can generate "low density" solutions using $\lambda < 1$.

Part II: Comparing benchmarks with the original network

• The "true" interbank network X constructed from Bundesbank data

- "Gross- und Millionenkreditstatistik" between 2000+ banks
- All large (≥€ 1.5m) or concentrated (>10% K) exposures
- Consolidated at the bank holding company level ("Konzern") and excluding cross-border linkages
- Basic features: large market (N = 1779), considerable volume (>\$1 trillion), sparse (density=0.59%) core-periphery structure
- Maximum Entropy (ME) blurs network structure (density 93%)
- Minimum Density (MD) solution is "too" efficient (density 0.1%)

Concentration of Value

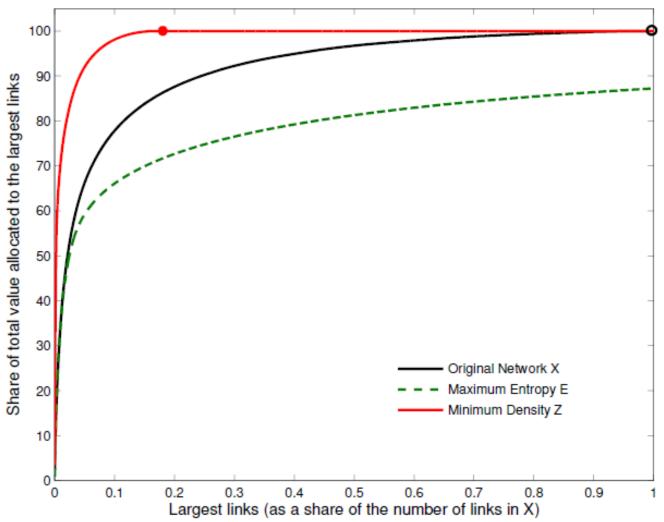


Figure 2: The figure shows the concentration of value on the largest links for the different networks. The x-axis ranks bilateral linkages (in descending order of size) and expresses the first n links as a share of the total number of links in the original network X (18624). The y-axis shows the cumulative share of value allocated to the largest n links, relative to total interbank volume. The dots indicate at which point 100% of volume has been reached. For X this is at unity, for Z this occurs at 0.185, whereas E needs 158 times the number of links in X before reaching 100% of interbank volume.

MD preserves some structural features – ME fails to do so

Network	E	X	\mathbb{Z}	¥
Characteristic	Max Entropy	True Network	Min Density	Low Density
Density, in %	92.8	0.59	0.11	0.61
Degree (average)	1649	10.5	1.94	10.9
Degree (median)	1710	6	1	4
Assortativity	-0.03	-0.53	-0.40	-0.32
Dependence when borrowing, %	12.2	84.7	97.3	93.4
Dependence when lending, $\%$	7.2	45.1	97.4	87.2
Clustering local average, %	99.8	33.4	0.03	7.62
Core size, % banks	92.6	2.5	1.1	2.1
Error score, % links	14.6	9.2	41.2	35.7

Table 1: Comparing basic network features of benchmark estimates with those of the original German interbank network.

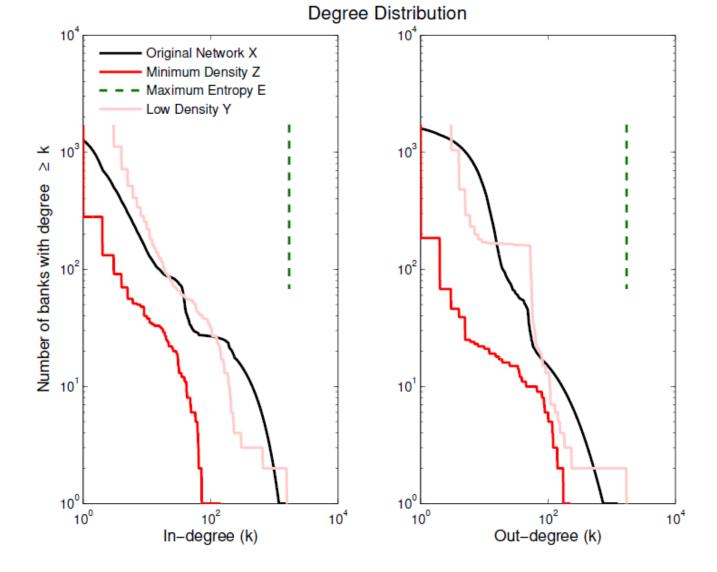


Figure 3: The figure displays the degree distribution in its cumulative form, showing the number of banks with degree greater than the number shown on the x-axis, on a double log scale. A straight line would indicate a Pareto cumulative indicative of a power law distribution. The degree distribution of the original network X has been smoothed to preserve the confidentiality of individual bank data and shows averages at the end-points instead.

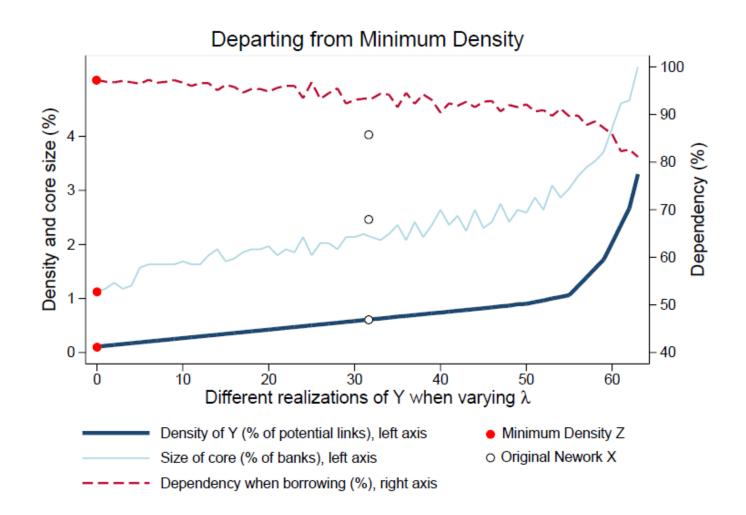
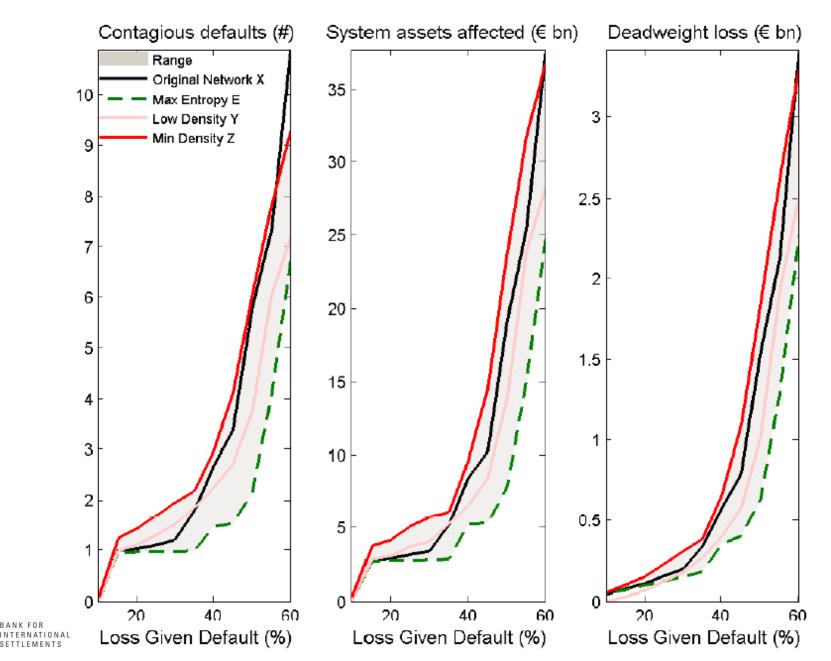


Figure 4: This figure shows three network features for 65 different low density solutions \mathbb{Y} . The implementation here sets $\lambda = 0.5$ for the first k links being filled by the algorithm and $\lambda = 1$ thereafter, with k raised from 0 to 100,000 in 65 (unequally spaced) steps. The first realization (at k = 0) is the minimum density network \mathbb{Z} with the network features shown as red dots (as in Table 1). The black circles indicate the values for the original network \mathbb{X} , plotted at the point where a comparable low density network \mathbb{Y} reaches a density similar to \mathbb{X} (at k=16,000).

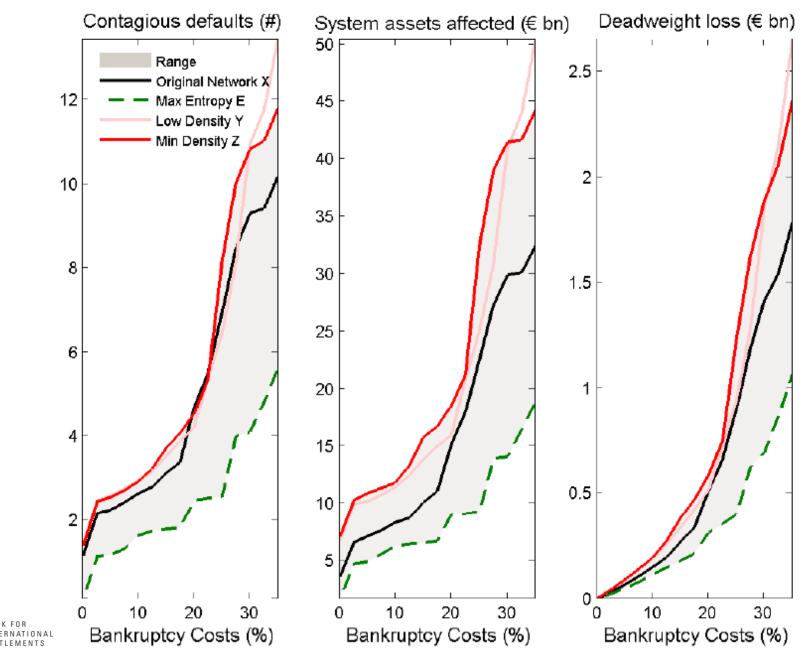
Part III: Performance in systemic stress tests

- Run stress tests to compare ME, MD with "true" network in practice
- Standard simulation methodology ingredients:
 - Trigger: single bank failure (+ a capital shock)
 - Mechanism: (1) sequential default algorithm, and
 - (2) Eisenberg-Noe clearing vector (endogenous LGD + cost β)
- Let each of 1779 banks fail 1x1 and measure contagion (if any):
 - # banks in default as a consequence of contagion (excluding i)
 - System assets affected, and deadweight loss (€ bn)
 - Report average over i's, and repeat for higher LGD or costs β.
- Evaluate how close contagion in \mathbb{E} , \mathbb{Z} is to "true contagion" in \mathbb{X} .

Test 1: Sequential default algorithm



Test 2: Clearing vector methodology (Eisenberg-Noe)



Interpretation

- Results are similar across contagion methodologies...
- ... but differ across interbank networks \mathbb{E} , \mathbb{Z} , \mathbb{X} (the inputs)
- Max entropy \mathbb{E} underestimates systemic stress substantially:
 - Diversified exposures, smaller losses can be absorbed
- Min density \mathbb{Z} overstates contagion for most of parameter space
 - + Concentrated exposures, failure may kill the counterparty
 - Sparsity: fewer conduits for the propagation of losses
 - Former dominates due to negative assortativity in $\mathbb Z$ and $\mathbb X$
- In line with earlier findings on bias (Mistrulli 2011)...
- ...but no tipping point in sight (Nier et al 2007, Gai et al 2011).

Conclusion

- The paper had a simple goal: to provide a meaningful alternative to the maximum entropy benchmark for estimating counterparty exposures
- Min density solution uses information theory and economic rationale
- The solution retains more structural features of the original network
- In stress testing applications:
 - ME understates contagion, whereas MD generally overstates it
 - Using ME & MD jointly delivers a useful confidence interval, and
 - MD also allows for many interior outcomes (low density solutions).

The broad interval shows: pattern of linkages matters for systemic risk!

Thanks for your attention.

