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Why? (1/2)
Considering strategic behavior

Payments are the plumbing of an economy. Policy objective: ensure
the sound functioning of payment systems

To ensure the sound functioning of payment systems→ adequate
risk-assessment

Participants’ decision-making process: crucial to understanding risks

‘Fixed’ behavior may not be an adequate assumption:

actioni
t(historyt) 6= actioni

t(historyt
′)
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Why? (2/2)
Measuring liquidity demand and the timing of payments

Policy objective: reduce systemic risk

To reduce systemic risk: reduce concentration of payments at the end
of the day

Two important policies:
Deferred Net Settlement (settlement at the end of the day)
replaced by Real-Time Gross Settlement

Provision of intraday liquidity (continuous compensation increases
liquidity pressures, private liquidity would be inefficient)

From a central bank’s perspective, interesting to measure (and explain)
the demand for intraday liquidity and the timing of payments
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How?
Overview

Extensive game (over each settlement cycle) with imperfect
information (future incoming payments and payment requests)

Participants choose liquidity to minimize delay and liquidity costs

Payments need to be funded with liquidity, account balances and
received payments

Too many state variables (curse of dimensionality), so an Approximate
Dynamic Programming algorithm is used to solve the model

Pioneering work: competitive multi-agent model of interbank payment
systems (Galbiati & Soramäki, 2011).
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How?
Model description (1/4)

Set of participants N = {1,2, . . . ,N}

T periods (seconds, minutes, etc.) of a business day

Participant i sends payment Si
t to other participants on period t

Participants face budget constraint. Funding sources:
Intraday liquidity provided by the central bank Li

t

Positive account balances they save from previous period Bi
t

Received payments from others on previous period R i
t

Si
t + Bi

t+1 = R i
t + Bi

t + Li
t

where Bi
t+1 ≥ 0∑

t Lt ≤ L
i
, Li

t ≥ 0
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How?
Model description (2/4)

Banks face reputation costs for delaying payment requests and
liquidity costs (Becher et al., 2008)

Objective: fulfill (exogenous) payment requests timely, with minimum
liquidity costs. Unfulfilled payment requests at period t : Oi

t =
(

Oij
t ,k

)
k

Reputation costs of period t :

Reputationi
t =

∑
k

κOij
t ,k

(
1− x i

k

)
where x i

k = 1 if payment is settled, x i
k = 0 otherwise, κ is the “interest

cost” of delaying payments (Galbiati & Soramäki, 2011).
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Model description (3/4)

Settled payments (first-in-first-out algorithm):

x i
k = 1 ⇐⇒

k∑
p=1

Oij
t ,k ≤ Bi

t + Li
t + R i

t

Liquidity costs: an opportunity cost q and a fixed cost F

Liquidityi
t = qLi

t + F1{Li
t>0}

Return function for t ∈ {0, . . . ,T − 1} :

Returni
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How?
Model description (4/4)

End-of-day (Mexican case): account balances should close at zero.
Unpaid intraday credit faces a penalty of twice the overnight interbank
rate r .

Assumptions: at the end of the day, participants pay all pending
requests and borrow missing funds from the central bank or from other
participants at rate r .

Terminal return function is the interest payed from missing funds
(negative if surplus funds):

Terminali
(∑

t

Li
t ,B

i
T+1,R

i
T+1

)
= r

(∑
t

Li
t − Bi

T+1 − R i
T+1

)
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How?
Recursive problem
Given S0 =

(
La

0,B0,R0,O0
)

and assuming individuals take as given the
Markovian process R, the recursive formulation:

Terminal condition:

vT (ST ) = βr

(
La

T +
∑

k

OT ,k − BT − RT − ET (RT+1)

)

Bellman-equation for t < T :

vt (St ) = min
Lt
{return (St ,Lt ) + βEt (St+1)}

s.t. Bt+1 = Bt + Rt + Lt −
∑

k Ot ,kxt ,k ≥ 0
La

t+1 = La
t + Lt

0 ≤ Lt ≤ L− La
t

Ot+1 =
(
Ot ,k ,O′

t+1
)
, k :

∑k
p=1 Ot ,k > Bt + Lt + Rt
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How?
Equilibrium and the curse of dimensionality

If we could solve by backwards induction, we would obtain policy
functions: Li

t
(
Si

t
)
, so that Si

0 → Li
0
(
Si

0
)
→ Si

1 . . .

However, state space (because of Ot ,k ) is too big (millions of years to
solve!)

Approximate dynamic programming (ADP) algorithms allow us to
perform forward induction (avoid looping through all possible states)

Substitute computational problem for statistical problem: estimate
value functions v t+1
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How?
Approximate dynamic programming

Estimate value function using basis functions (linear):

Et (v t+1) = βt + β1La
t + β2Bt + β3Rt + β4

∑
k

(
Ot ,k

)

Estimate parameters β using a policy iteration algorithm, by recursive
least squares (Powell, 2011)

General idea:
fix initial parameters in outer loop
sample different states (m) and calculate m parameters in inner
loop
update new parameters using recursive least squares
use new parameters in outer loop
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How?
Testing the model

Two tests:
1. Compare the model to observed data. Choose a day at random

(January 16th, 2014), and compare two measures (liquidity and
timing-skewness)

2. Compare the model to a simulator, under a stress test. Assume
that the biggest participant of a given day fails at t = 0

Data:
89 participants
Start at 5:00 am, finish at 5:59:30 pm (1,560 30-second periods)
Adapt the model to Mexico: two sources of central bank liquidity

Time-skewness: measures concentration of payments at the end of
the day (0: all payments sent during first period, 1: all payments sent in
last period):

∑
t (1− cum. proportion) / (T − 1)
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Lessons? Model vs Reality (1/2)
The model predicts reasonable time-skewness

Figure : Time-skewness by participant



Lessons? Model vs Reality (2/2)
The model overestimates liquidity (but with some correlation)

Figure : Liquidity demanded by participant



Lessons? Model vs Simulator (1/2)
The model predicts lower change in skewness

Figure : Skewness(failure)-Skewness(original) by participant



Lessons? Model vs Simulator (2/2)
The model predicts lower change in liquidity

Figure : Liquidity(failure)-Liquidity(original) by participant



Lessons?
Summary
Comparison with reality (typical day):

the model predicts reasonable time-skewness
liquidity is overestimated (but with correlation = 0.77)

Model Observed
Time-skewness 0.55967 0.55787

Liquidity 1.98× 1014 1.23× 1011

Comparison with simulator (failure of biggest participant):
the model predicts almost no change in time-skewness or liquidity
simulator: delay in payments and increase in liquidity needs

Model Simulator
∆ Time-skewness 0.00868 0.09423

∆% Liquidity 0.04% 163.95%
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Lessons?
Next steps

Estimate parameters. Challenge: computation time!

Analyze sensitivity to changes in parameters

Try other approximate dynamic programming algorithms

Analyze goodness of fit of the value function estimator

Increase periodicity (from 30-second intervals to 1-second intervals)

Simulate multiple days
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