All-or-nothing payments and financial network fragility

Ivana Ruffini David Marshall Dominic Anene September 9, 2015

The views expressed herein are the authors' and do not necessarily reflect the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Roadmap

Background	4
Research questions	6
Literature	7
Framework	8
Results	15
Next Steps	20
Summary	22

Background

- G-20 Mandate: most swap contracts to be centrally cleared
 - Dodd-Frank Act Title VII, EMIR
 - Presumption: central clearing more robust than bilateral
 - Key tradeoff:
 - Benefits of multilateral netting, vs.
 - Danger of concentrating risk in a single node
 - Requires pre-funded default fund
 - Resources used for default fund not available to satisfy CM obligations

Background

- Relative robustness of central clearing depends on payout practice in the event of a default
 - <u>Pro rata</u>: defaulter's remaining resources are distributed to obligors in partial satisfaction of obligations
 - Plausible for time horizon months or years
 - Bankruptcy proceeding
 - <u>All-or-nothing</u>: no partial payments in default
 - Realistic for time horizon up to a few days
 - No incentives for partial payment
 - Explains liquidity hoarding behavior

Research questions

- For a given bilateral financial network, when does central clearing improve robustness?
 - Impact of network topology?
 - Distribution of liabilities
 - Distribution of connections
 - Opportunities for multilateral netting
 - Impact of payout practice in the event of default?
 - All-or-nothing vs. pro-rata
 - "Stress test" framework choose calibrations that put

the bilateral network close to default

Literature

- Generalized Eisenberg and Noe, (2001) framework
- CCP risk management practices:
 - CME Group, LCH.Clearnet, ICE Clear Credit rule books
 - Duffie and Zhu, (2011); Pirrong, (2011); Ross, (2015)
 - Insolvency reports MF Global, Lehman Brothers
- Contagion due to interconnectedness:
 - Brazil Cont, Moussa, and Santos, (2012)
 - CDS: Markose et al., (2009); Peltonen et al., (2013)
- Network topology and network resilience:
 - Acemoglu et al., (2013); Georg, (2011); Gai and Kapadia, (2010)

- Generalized Eisenberg and Noe structure
 - Nagents
 - e_i = exogenous resources of agent I
 - $L_{ij} \ge 0$ = amount owed by agent *i* to agent *j*

$$L = \begin{bmatrix} 0 & L_{12} & \cdots & L_{1N-1} & L_{1N} \\ L_{21} & 0 & \cdots & L_{2N-1} & L_{2N} \\ \vdots & & & \vdots \\ L_{N1} & & L_{NN-1} & 0 \end{bmatrix}$$

- New node (CCP) is introduced as a single counterparty
 - CCP must have a matched book (total payments due from CCP = total payments due to CCP)

$$\sum_{i=1}^{N} L_{N+1,i}^{ccp} = \sum_{i=1}^{N} L_{i,N+1}^{ccp}$$

$$L^{ccp} = \begin{bmatrix} 0 & 0 & \cdots & 0 & L_{1,N+1}^{ccp} \\ 0 & 0 & \cdots & 0 & L_{2,N+1}^{ccp} \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & L_{N,N+1}^{ccp} \\ L_{N+1,1}^{ccp} & L_{N+1,2}^{ccp} & \cdots & L_{N+1,N}^{ccp} & 0 \end{bmatrix}$$

Monte Carlo stress test methodology:

- Draw random scale-free adjacency matrix
- Draw random obligations
 - Gamma, Uniform
- Compute corresponding centrally cleared network
- Size default fund according to "cover-2" standard
 - Individual node's default fund contribution proportional to node's gross obligations
- Each node's baseline external resources = default fund contribution plus minimum additional to ensure no defaults.
- Stress the baseline:
 - Reduce resources of the three most central nodes by random shock.
 - Compute clearing vector under pro rata, all-or-nothing
 - Compare aggregate defaults: bilateral vs. centrally cleared.

Measure of relative CCP robustness =

(Fraction of obligations defaulted on in bilateral case) – (Fraction of obligations defaulted on under central clearing)

- Depends on payment assumptions when a participant defaults
 - Bilateral case: does defaulter pay remaining resources to obligors on a pro-rata basis?
 - Central clearing: will a defaulting clearing member make a partial payment to the CCP?
 - (Assumption regarding CCP payout in the event of a CCP default don't materially affect relative CCP robustness.)

Results

Relative Robustness of Central Clearing

Obligation/exposure distribution	Payout assumptions	Prob. CCP more robust
	Bilateral AON; Clearing Member AON	57%
Gamma	Bilateral AON; Clearing Member Pro-Rata	62%
Gamma	Bilateral Pro-Rata; Clearing Member AON	23%
	Bilateral Pro-Rata; Clearing Member Pro-Rata	40%
	Bilateral AON; Clearing Member AON	64%
Uniform	Bilateral AON; Clearing Member Pro-Rata	64%
	Bilateral Pro-Rata; Clearing Member AON	26%
	Bilateral Pro-Rata; Clearing Member Pro-Rata	31%
	Bilateral AON; Clearing Member AON	59%
Uniform: Squared for big banks	Bilateral AON; Clearing Member Pro-Rata	62%
	Bilateral Pro-Rata; Clearing Member AON	14%
	Bilateral Pro-Rata; Clearing Member Pro-Rata	18%

Results

Regress CCP Robustness in the Monte Carlo simulations on benefits from ML netting and size of default fund

- Measure of benefits from ML netting: total bilateral obligations minus CCP obligations
- Depends on obligation/exposure distribution

Regressor	Obligation/Exposure Distribution			
	Gamma	Uniform	Uniform: Squared for big banks	
Benefits from ML Netting	0.001	0.0026	0.002	
Size of Default Fund	0.0006	0.0032	-0.0009	

Regress CCP Robustness on Network Characteristics

Characteristic	Measure	Sign
Interconnectedness	Number of waves in bilateral defaults	Pos
Fragility	Max eigenvalue of relative exposure matrix	Pos
Maximum obligation		Pos
Out degree Concentration	Herfindahl index	Pos
Out-degree Concentration	Maximum out-degree	Pos
Obligation concentration	Herfindahl index	Pos
Maximum exposure		Neg
In degree Concentration	Herfindahl index	Neg
in-degree Concentration	Maximum in-degree	Neg
Exposure concentration	Herfindahl index	Neg

Results (draft)

 Comparison of pro-rata to all-or-nothing payment assumption (example)

# Nodes	# Edges	Avg. Degree	Total Value		Shock	(
40	51	1.275	595	Fail 2 random nodes			
Payment Assumption	Network Structure	Defaulted Value	% of Total Value	# of Defaulted Nodes	% of Defaulted Nodes	# of Default Waves	CCP Defaults?
PRO-RATA	Bilateral	19.39	3.26%	6	15%	1	n/a
	Centrally Cleared	14.59	2.45%	2	5%	0	NO
ALL-OR-NOTHING	Bilateral	564	94.79%	33	82.5%	5	n/a
	Centrally Cleared	170	28.57%	19	47.5%	2	YES

Results (draft)

 Probability distribution of failures in a CCP network compared to the Bilateral network stressed – same shock

	Payment Assump	Uniform Dist.	Gamma Dist.	
1	Bilateral (pro-rata)	vs. CCP (pro-rata) & CM_(pro-rata)	77.43%	78.83%
2	Bilateral (pro-rata)	vs. CCP (pro-rata) & CM (AoN)	92.88%	93.61%
3	Bilateral (pro-rata)	vs. CCP (AoN) & CM (AoN)	100.00%	
4	Bilateral (AorN)	vs. CCP (pro-rata) & CM (pro-rata)	0.07%	1.18%
5	Bilateral (AorN)	vs. CCP (pro-rata) & CM (AoN)	1.34%	2.37%
6	Bilateral (AorN)	vs. CCP (AoN) & CM (AoN)	33.76%	55.00%

Next Steps

Network fragility in a network with multiple CCPs

Impact of settlement banks on network fragility

Summary

- Pro-rata vs. all-or-nothing
- Bilateral vs. centrally cleared
- Policy:
 - Should we mandate Central Clearing?
 - PFMI Cover 2?
- One size doesn't fit all
 - In a substantial fraction of simulations bilateral is more robust than CCP

"Thus, for the system to be safer it is not sufficient to ensure that trades are standardized and that they are mandated to be cleared through CCPs, but also it is necessary that CCPs be "bullet proof."

William C. Dudley, Remarks at the Harvard Law School's Symposium on Building the Financial System of the 21st Century, Reforming the OTC Derivatives Market (March 22, 2012)

