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1. Introduction

This appendix contains supporting material designed to accompany the investigation presented

in the main paper (Freeman et al. 2016). As such, it should not be read in isolation, but rather

it serves as reference material that provides further background and support for the methods

and techniques employed, presents additional empirical results that confirm the robustness of the

headline findings, and lays out the mathematical derivation of effect size calculations that underly

a number of the results.

In §2 we consider a number of alternative workload specifications, such as those including the

focal patient, calculated using alternative standardization options, different averaging windows,

and considering the possibility of non-linearity. In §3 we provide results based on alternative model

specifications, as well as interaction effects models. In §4 we present results calculated for a number

of additional outcomes, such as the incidence of perineal tears, the Apgar score, and the length of

stay on the delivery unit. In §5 we discuss a number of other potential explanations for the results

reported in the main paper, and show why these are less likely than those hypothesized. In §6 we

present results from empirical tests designed to test for weak or invalid instruments. Finally, in §7
we show how to calculate effect sizes for a Heckman treatment effects (HeckTreat) model.

2. Measuring Workload

In the main paper we are primarily interested in identifying the effect of delivery unit (DU) workload

on midwife rationing and referral behavior. When specifying workload in §5.1 of the main paper
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we briefly discussed the workload measure that we employ, the time-weighted average number of

patients per midwife over the 3-hour period prior to the time of delivery when excluding the focal

patient from the calculation. In this section we discuss the rationale behind the workload measure,

including the level at which workload is measured, the issue of endogeneity bias and how we avoid

this by excluding the focal patient, and the consequence of excluding the focal patient on the

properties of the workload measure. We also demonstrate that the headline findings in the main

paper are robust against alternative specifications of workload.

2.1. Unit- vs. server-level workload

There are two levels at which workload in the DU could have been measured, (i) the unit level,

and (ii) the midwife level. Unit-level workload measures load under the assumption that midwifes

constitute a common resource pool which shares workload, while midwife-level workload measures

the load of a particular midwife as determined by the number of patients to who she was specifically

assigned. In the main paper we selected to take the approach of measuring workload at the unit-

level, and this section lays out the justification for that decision.

• Data issues: In the available data, information is recorded on which midwife was assigned to

which patient at the time of delivery. It is not always the case, however, that the midwife who

performed the delivery will be the same midwife as the one who took care of the patient throughout

the entirety of that patient’s DU stay. The long length of labor, for example, means that patients

may be handed over from one midwife to another at some point during their stay. This may happen,

for example, when the initial midwife ends her shift on the unit or when patients are reallocated

amongst midwives to better cope with the arrival of a new patient who may require particular

midwife expertise. Since information is not available on when each midwife was attached to each

patient, instead only the midwife assigned at the time of birth, it is not possible to accurately

identify the workload of a particular midwife at a specific time.

• Work sharing: While there is a main midwife who is responsible for the care of each patient,

when a particular midwife is busy then it may become necessary for other midwives in the unit

to assume temporary responsibility for the care of her other patients. Sharing of work means that

while midwives working in the DU at the same time may appear to have varying workload levels

when measured at the midwife level, they will in reality often face similar levels of workload. This

is because those midwives who are relatively less busy will tend to pick up additional work from

those who are more busy.

• Patient heterogeneity: Not all patients are equal when it comes to the demand that they place

on a midwife’s time. When work is allocated amongst midwives in the DU, assignment takes into

account the likely resource intensity of patients based on observable factors such as patient history,
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type of onset of labor, whether it is the first or a subsequent delivery, etc. The number of patients

to whom a particular midwife is assigned will therefore often be a poor measure of the actual

demands placed on that midwife. For example, a midwife allocated to one complex patient may

face a similar level of work as a midwife assigned to two non-complex patients, yet a workload

measure calculated at the midwife level would suggest that the former is only half as busy as the

latter.

• Staff experience: Midwives on the DU may have different levels of experience and skill, and

more experienced/skilled midwives may be better at parallel processing than their more junior

colleagues. A more senior midwife may, therefore, be more likely to be assigned to multiple patients,

or to more complicated patients. This means that the number of patients assigned to a particular

midwife may poorly reflect their workload since it does not account for differences in a midwife’s

capacity to cope with multiple or more resource intensive patients.

Based on the reasons outlined above, in this setting it would not be appropriate to use the

number of patients assigned to a particular midwife as a measure of server busyness. In particular,

to do so we would have to assume that patients are allocated randomly to midwives, regardless of

patient needs or midwife experience, that midwives work in isolation without assisting each other

or sharing responsibilities, and that midwives never end their shift until all patients under their

supervision have delivered. In this setting these assumptions are unrealistic, though for servers in

other service settings (such as waiting staff in restaurants (Tan and Netessine 2014) or physicians

in the emergency department (KC 2013)) this may not be the case. The approach that we take,

that more accurately reflects the nature of work and worker behavior in the DU, is to assume that

work is allocated out between midwives in the unit so that each is approximately equally busy,

and that if one becomes more busy then other midwives respond by sharing some of the load.

This means that a workload variable that is measured at the unit level, calculated by dividing the

number of patients by the number of midwives at any point in time, will provide a good snapshot

of the relative busyness of the staff.

While unit-level workload accounts for patient heterogeneity and staff experience at a specified

point in time, it is possible that these factors may cause workload to differ in unobservable ways

over time. In particular, if the DU is equally loaded, with e.g. the same number of staff and number

of patients present on any two days, but on one of those days the cases are more simple and the

other they are more complex, and/or on one of the days the staff are more experienced and on the

other they are less skilled, then the DU will be reported as being equally busy when workload is

measured at the unit level, but the actual busyness of the midwives may be significantly different.

Unlike for a midwife-level measure where patient-staff assignment can be non-random, however,

so long as the underlying distributions of patient risk and of staff experience are equivalent at
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Figure 1 Average time of arrival to DU by hour of day (top) and average number of birth by day of the week

(bottom) with 95% confidence intervals, broken down by patient type.
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different workload levels (i.e. there is no correlation between unobservable factors that might affect

the rationing or referral decision and the workload measure) then this will not cause a bias to

the estimated coefficients of interest. On the staffing side, the “establishment”, which defines the

number and experience level of the midwives who work a particular shift, is stable and is set weeks

in advance of the shift to be worked, and so will be uncorrelated with the patient case-mix. On

the patient side, arrivals to the DU by patients with spontaneous onset of labor occur at random,

following a homogenous Poisson distribution (see §5 of the main paper). Moreover, elective C-

sections are removed from the analysis, while Figure 1 shows that there is no pattern in the arrivals

of induced patients (who are scheduled to arrive at the antenatal unit for the induction) to the

DU across hours of the day or days of the week. This indicates that patient numbers will also be

uncorrelated with the risk profile of the analysis sample.

Together the evidence presented here suggests that it is more appropriate to use a workload

measure calculated at the unit level rather than the midwife level, since this better reflects the

nature of work sharing in the DU, and will also not be affected by heterogeneity in the patient risk

profile or differences in staff experience which may bias the estimated coefficients of interest.
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2.2. Reverse causation and confounding factors

In the main paper we hypothesize and show that an increase in workload leads to a change in the

rate of provision of epidural analgesia (rationing) and the rate of physician-led deliveries (referrals).

One possibility that had to be accounted for was that the decision to provide an epidural or to

refer a patient for a physician-led delivery might have itself brought about a change in workload.

Under such a scenario it could have been argued that instead of workload affecting rationing or

referral behavior, the change in behavior may have itself brought about the change in workload.

This empirical phenomenon is known as reverse causation, and in such a situation the identified

effects can be biased.

In the study context, a patient who receives an epidural is more likely to stay longer in the DU

as the epidural slows the process of labor (see e.g. Anim-Somuah et al. 2011). On the other hand,

a patient who receives a physician-led delivery has their labor prematurely shortened, resulting in

them staying in the DU for a shorter period of time than if they had delivered naturally. Since

the workload measure is calculated as a time-weighted average over the period from three hours

prior until the time of birth, any change in the length of time that the patient spends in the DU

may affect the measure of workload. To see this by way of example, suppose that there are 10

patients and 10 midwives present in the DU. Suppose one patient has just arrived in the DU, while

the other nine have been in the DU for 3+ hours and will stay in the DU for another 3+ hours,

with no other admissions or discharges from the DU in this period. Suppose the latest arrival will

give birth in: (i) two hours without an epidural or physician-led delivery, (ii) three hours with an

epidural, (iii) one hour with a physician-led delivery. Then the time-weighted workload measured

over the three hour period leading up to the time of delivery would equal

(3× 9) + (2× 1)

3× 10
= 0.967

(3× 9) + (3× 1)

3× 10
= 1.000

(3× 9) + (1× 1)

3× 10
= 0.933

for each case, respectively. Observe that the difference here is attributable solely to the length of

time that the focal patient (the most recent arrival) stays in the DU prior to delivery. As can be

seen, the increase in the length of labor and resultant increase in time spent in the DU caused

by the epidural results in an increase in workload (1.000 > 0.967), while the shortening of labor

and time in the DU caused by the physician-led delivery brings about a decrease in workload

(0.933< 0.967).

If reverse causality were to operate in the manner outlined above, as is expected in the DU setting

under study, then workload would be higher when a higher rate of epidurals are provided, and
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workload would be lower when patients are more likely to be referred for a physician-led delivery.

This would cause the estimate of the workload effect in the epidural models to be biased upwards,

and in the physician-led delivery models to be biased downwards. It is important to note that, if

anything, this would make it less likely for the effects identified in the analysis to be observed,

rather than causing these effects. In particular, the signs of the estimated coefficients reported in

§6.2 of the main paper are in the opposite direction to those that would be expected if reverse

causality were driving the results. Specifically, we identify a negative coefficient for the effect of

workload on epidural analgesia, rather than positive, and a positive coefficient for the effect of

workload on physician-led deliveries, rather than negative.

The reverse causation problem will exist for any measure of workload that is calculated over

a time window which extends to a period sufficiently far prior to the time of birth so that the

rationing or referral decision might affect the proportion of time during that window during which

a patient was present in the DU. To tackle this, two approaches could have been taken: (1) Exclude

the focal patient from the workload calculation; (2) Measure workload over a shorter time window

during which it will be unaffected by the rationing/referral behavior of the midwife. To see why

the former would work, observe that in the earlier example excluding the focal patient would have

resulted in workload being equal to 3×9
3×10 = 0.9 in each of the three scenarios. In particular, reverse

causality is not a concern when excluding the focal patient from the workload variable since any

decisions relating to the care of the focal patient will have no affect on the workload measure. To

see why the latter would work, note that if instead we were to measure workload over e.g. only

the one hour period prior to the time of birth then the resultant workload would have been equal

to (1×9)+(1×1)
1×10 = 1.0 in each case. In this example, since the patient would have stayed at least one

hour regardless of the decisions made with respect to their care, there is no opportunity for reverse

causality to arise. This would be the case for the majority of patients in the analysis sample, for

which 99.9% stay in the DU for at least one hour.

In addition to the reverse causation problem, these approaches also help to overcome an issue

arising from the fact that patients who spend longer in the DU, potentially impacting on workload,

may also be more or less likely to receive an epidural or be referred for a physician-led delivery.

In this case the length of stay (LOS) in the DU may have been a confounding factor driving a

spurious relationship between workload and the rationing and/or referral decisions. For epidural

analgesia, clinical guidelines indicate that patients with prolonged labor (and hence who are more

likely to stay longer in the DU) will be more likely to receive this form of pain relief (NHS 2015).

Omitting DU LOS as a control variable could therefore create a spurious positive relationship

between workload and the rate of epidural analgesia, further confounding the bias caused by reverse

causation. For patient referrals to physicians, evidence indicates that patients who have a longer
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Table 1 Average partial effects with and without correction of workload for
endogeneity bias.

Epidural Phys.

Model type Probit Probit BiProbit Probit
Complexity nC C nC C

Original workload -0.025∗∗∗ -0.006 -0.000 0.015∗

Workload incl. focal (3h) -0.011∗ 0.006 0.001 0.016∗∗

Workload incl. focal (1h) -0.018∗∗∗ 0.003 -0.000 0.015∗

nC and C refer to non-complex and complex patient episodes, respectively;
***p < 0.001, **p < 0.01, *p < 0.05

length of labor will be more likely to be referred, since this is an indication that natural labor is

not progressing sufficiently (NICE 2012). In this case a positive relationship between workload and

the referral decision may arise if DU LOS is not controlled for, potentially counteracting the effect

caused by reverse causation. Excluding the focal patient from the workload variable or shortening

the time window over which workload is calculated, however, ensures that workload is uncorrelated

with the length of time that the focal patient spends in the DU, and so removes any potential for

such spurious relationships.

In the main paper the approach that was taken was to exclude the focal patient from the workload

calculation. This choice was made since in order to identify the causal effect of workload on the

epidural decision it is important for the measure of workload to overlap with the time period

during which the epidural decision is most likely to be taken. Since epidural analgesia is rarely

administered close to the time of birth, when it is often contraindicated, a sufficiently long window

over which to perform the time-weighting is required. To see the potential effect of reverse causality

it is helpful, though, to re-run the analysis from the paper under two further scenarios. In both of

these the focal patient is included in the workload calculation, but the first is measured over the

same three-hour time window used in the main paper while the second is calculated over a shorter,

one-hour time window. Based on the discussion above, it should be expected that reverse causality

will be more of a concern for the former than the latter. Reported in Table 1 are the estimated

average partial (marginal) effects (APEs) under these two scenarios, along with the original effects

observed in the main paper.

Inspecting Table 1 we see evidence of potential reverse causation: When including the focal

patient in the estimation for the epidural analgesia decision for the non-complex patient episodes

(PEs), the coefficient estimate is biased upwards, as anticipated, in value from −0.025 when exclud-

ing the focal patient (or −0.018 when including the focal patient but averaging over the shorter

time window of one hour) to the higher value of −0.011. There is no effect, however, when including

the focal patient in the workload measure when estimating the physician-led delivery rate for the

complex PEs (all APEs approx. 0.014). This may be because by not controlling for the confounding
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factor, DU LOS, this serves to counteract the reverse causality issue: patients who stay longer in

the DU are inherently more likely to receive a physician-led delivery due to the fact that a longer

stay indicates that labor may not be progressing appropriately, with the increased stay contributing

to an increase in workload.

Based on the discussion and results presented above, we believe that it is necessary to address

the problems of reverse causality and omitted variable bias caused by not controlling for DU LOS, a

potential confounding factor. The most appropriate way of achieving this was through the exclusion

of the focal patient from the workload calculation. Other methods exist, such as shortening the

time window over which workload is calculated, and these produce consistent results (within 25%

of the original estimates). Even when the reverse causality problem is not addressed, the headline

results reported in the main paper hold up in terms of direction, though the coefficient estimates

are biased and underestimate the true effects.

2.3. Excluding the focal patient with variable staffing

An unintended consequence of excluding the focal patient from the calculation of workload is that

at different points in time the system may be equally loaded and yet it is possible for the values

of workload to differ. This problem arises because the number of midwives present in the DU is

non-constant. To see this, consider a system that is “perfectly staffed”, in the sense that there is a

1:1 ratio between the number of patients and the number of midwives. If there are 10 patients and

10 midwives present at time t, then assuming that focal patient i is in the DU the (instantaneous)

workload for patient i, LOADi(t), will be equal to (10− 1)/10 = 0.9. On the other hand, if there

were 5 patients and 5 midwives then workload instead would equal (5−1)/5 = 0.8. More generally,

if the ratio of patients to midwives at times t= 1,2 are equivalent and given by p, but the number

of midwives present at times t= 1 and t= 2 is given by m1 and m2, respectively, then instantaneous

workload at time t = 1 will be equal to p∗m1−1
m1

and at time t = 2 will equal p∗m2−1
m2

. There will

therefore be a difference in workload of 1
m1
− 1

m2
, despite the fact that the systems are equally

loaded (i.e. have the same proportion of patients to midwives, p).

We argue in this section that so long as the workload variable used in the main paper (workload

excluding the focal patient) is highly correlated and similar in scale to the workload variable of

interest (an unbiased but (partially) unobserved estimate of workload including the focal patient)

then the issue highlighted above will have almost no effect on the results. We estimate the corre-

lation to be > 0.99 and the scales to be within ±2.5%, indicating that the estimated coefficients

will be almost identical to the true coefficients of interest.

To present the argument above in a technically rigorous way, recall that Ni(t) gives the number
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of patients besides focal patient i in the DU at time t and MW (t) the number of midwives. The

instantaneous workload at time t was then expressed as

LOADi(t) =
Ni(t)

MW (t)
,

with

LOADi =
∑

k∈L(b i,bi)

k

bi− b i

∫ bi

b i

1[LOADi(t) = k]dt

the time-weighted average load for a patient i who gives birth at time bi, where b i is the time

three hours prior to birth, L(b i, bi) is the set of all observed values of LOADi(t) between t = b i

and t= bi, and 1[·] is the indicator function. Instantaneous workload including the focal patient at

time t can therefore be expressed as

LOAD+
i (t) =

Ni(t) +1[i∈ P (t)]

MW (t)
=LOADi(t) +

1[i∈ P (t)]

MW (t)
,

where P (t) is the set of patients in the DU at time t so that 1[i∈ P (t)] is equal to one if patient i is

in the DU at time t and zero otherwise. The corresponding time-weighted average load for patient

i is equal to

LOAD+
i =

∑
k∈L+(b i,bi)

k

bi− b i

∫ bi

b i

1[LOAD+
i (t) = k]dt ,

where L+(b i, bi) is the set of all observed values of LOAD+
i (t) between t= b i and t= bi. This can

be re-expressed as

LOAD+
i =LOADi +

∑
k∈M(b i,bi)

k

bi− b i

∫ bi

b i

1

[
1[i∈ P (t)]

MW (t)
= k

]
dt=LOADi +xi ,

where M(b i, bi) is the set of all observed values of 1[i∈P (t)]

MW (t)
between t = b i and t = bi. Note that

xi is independent of the number of other patients in the unit and only depends on the number of

midwives.

Now consider the simple linear regression equations expressed below. In (1) workload includes

the focal patient, while in (2) the focal patient is removed:

EPIi = α0 +α1LOAD
+
i +u1 (1)

EPIi = β0 +β1LOADi +u2

= (β0−β1xi) +β1LOAD
+
i +u2 . (2)

Assume for now that endogeneity/reverse causality is not a concern and that the true effect of

workload on the epidural rate is given by α1, to be estimated in (1). Observe that if xi is equal

to some constant, C say, for all i then we have that α0 = β0 − β1C and α1 = β1. In other words,
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the difference between the workload variable that arises due to the removal of the focal patient is

absorbed in to the intercept term, leaving the estimated slope coefficient unaffected. On the other

hand, if xi is non-constant then cor
(
LOADi,LOAD

+
i

)
6= 1 and SD (LOADi) 6= SD

(
LOAD+

i

)
,

where cor denotes Pearson’s correlation coefficient and SD the standard deviation. This will result

in slope estimates α1 6= β1. If, though, (i) cor
(
LOADi,LOAD

+
i

)
≈ 1 and (ii) SD (LOADi) ≈

SD
(
LOAD+

i

)
then it turns out that the coefficient estimates α1 and β1 will be very similar in value.

To see why this is the case for simple linear regression, note that the slope terms in equations (1)

and (2) can be expressed as α1 = cor
(
EPIi,LOAD

+
i

)
· SD(EPIi)

SD(LOAD+
i )

and β1 = cor (EPIi,LOADi) ·
SD(EPIi)

SD(LOADi)
, respectively (e.g. Duncan 1975, p. 11). Then if conditions (i) and (ii) given above are

satisfied it is easy to see that α1 ≈ β1. This finding can be extended, approximately, to the multiple

linear regression case and similarly to binary choice models such as logit and probit (see e.g. Kim

and Ferree 1981, Winship and Mare 1984).

In the above we assumed endogeneity/reverse causality not to be a concern, meaning that α1 was

assumed to be unbiased. Recall, though, that in the paper we exclude the focal patient from the

workload measure specifically because if they were to be included, as in (1), then this will result in

some estimate for αB1 6= α1, where αB1 is the biased and α1 the true, unobserved, effect. To identify

α1 precisely we would need to calculate LOAD+
i in (1) using unobserved information: specifically,

the value of 1[i ∈ P (t)] at every t and for every i had all patients received identical treatment

(to see why this is the case see §2.2). Without this information – and without an appropriate

instrumental variable to perform the analysis using suitable sample selection methods – then based

on the discussion above it is possible instead to perform this estimation using some other unbiased

variable if it is highly correlated with and similar in scale to the variable of interest.

To see that this is the case for the load measure (calculated excluding the focal patient) used in the

paper, LOADi, suppose that the actual variable of interest is LOADA
i , the (partially) unobserved

workload level if the focal patient neither received an epidural or a physician-led delivery.1 Then we

want to show that cor(LOADi,LOAD
A
i )≈ 1 and SD(LOADi)≈ SD(LOADA

i ). To do this, observe

that the workload variable we estimate when including the focal patient is LOAD+
i = LOADA

i +

ei1[EPI = 1, PHY S = 0] + pi1[EPI = 0, PHY S = 1] + bi1[EPI = 1, PHY S = 1]. Here 1[·] is the

indicator function, making ei the (observed or unobserved) change in the workload variable if the

focal patient only received an epidural, pi the change if the patient received only a physician-led

delivery, and bi the change if the patient received both an epidural and physician-led delivery.

1 Note that the discussion in this paragraph extends to the standardized workload measure used in the main paper
since µ(·) and σ(·), the values of the mean and standard deviation used in the calculation of standardized workload,
are unaffected by whether or not the focal patient is included in the calculation of LOADi.



Freeman, Savva and Scholtes: Supplementary: Gatekeepers at work 11

Then note that LOADA
i =LOAD+

i when the patient does not receive an epidural or a physician-

led delivery. If we can show, therefore, that for this subset of patients cor(LOADi,LOAD
+
i ) =

cor(LOADi,LOAD
A
i )≈ 1 and SD(LOADi)

SD(LOAD+
i )

= SD(LOADi)

SD(LOADA
i )
≈ 1, then this would suggest that the unbi-

ased estimator LOADi is highly correlated with and similar in scale to the variable of interest,

LOADA
i . For our data we calculate a correlation of 0.994 and the ratio of standard deviations to

be 0.977. Based on these results, we would thus expect any effect on the estimated coefficient of

workload caused by excluding the focal patient to be very small.

In addition to the above, to investigate this further we have re-run the analysis from the paper

using a subset of the data for patients who faced similar staffing levels. When the number of

midwives is constant or near-constant then xi in (2) will be near-constant also, meaning that the

effect of excluding the focal patient will be almost entirely absorbed in the intercept term rather

than affecting the estimate of the slope, as described earlier.Therefore, we subset our data to include

all patients for who the average number of midwives present in the three hour window prior to the

time of birth takes values between 7 and 9, resulting in a sample of 8288 non-complex (82.1% of

final sample) and 5205 complex (83.1% of final sample) PEs. In this case, the maximum difference

between the workload of two equally loaded systems that is caused by removing the focal patient

is equal to 1
m1
− 1

m2
= 1

7
− 1

9
= 0.032. Note that this effect is small when compared to the standard

deviation of (non-standardized) workload for our sample, which equals 0.375. As such, any impact

of removing the focal patient on the results calculated using this reduced sample will be negligible.

Based on the discussion above, if the results are significantly affected by the exclusion of the focal

patient from the workload specification then it should be expected that the coefficients estimated

using this reduced sample will be significantly different from those calculated using the original

sample. Results are presented in Table 2. As is shown in Table 2, reducing the sample to include

only those patients for who midwife numbers are similar has almost no impact on the results.

Specifically, the APE of workload on the epidural rate for the non-complex PEs decreases from

-0.025 to -0.026, while the APE of workload on the rate of physician referrals for the complex PEs

stays the same at -0.014. Therefore, putting all of the evidence presented in this section together,

it can be concluded that the results are highly insensitive to the exclusion of the focal patient from

the workload measure.

2.4. Workload specification

Thus far we have shown that the way in which workload is measured overcomes potential endogene-

ity issues and is robust to the removal of the focal patient. This subsection continues the discussion

on the robustness of the results with respect to workload by reproducing the results from the main

paper under alternative workload specifications. These including allowing workload to enter the

models in non-linear form, measuring workload over different time-windows, and using alternative

time frames over which to standardize workload.
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Table 2 Average partial effects when constraining variability in midwife
numbers.

Epidural Phys.

Model type Probit Probit BiProbit Probit
Complexity nC C nC C

Original sample (n= 16,355) -0.025∗∗∗ -0.006 -0.000 0.014∗

Reduced sample (n= 13,493) -0.026∗∗∗ -0.008 0.006 0.014∗

nC and C refer to non-complex and complex patient episodes, respectively; ***p <
0.001, **p < 0.01, *p < 0.05

2.4.1. Non-linear workload Other research has shown that the effect of workload in service

settings such as hospitals and restaurants may be non-linear in the tails (see e.g., Kuntz et al.

2014, Tan and Netessine 2014). This effect is often attributed to differences in worker behavior

when faced with different levels of workload, e.g. a reasonable level of busyness may be required to

increase worker motivation, beyond which competing effects such as fatigue and stress may lead to

a deterioration in quality. Here we set out to determine whether there is evidence of the presence

of a non-linear effect of workload on midwives’ rationing and referral behavior in the DU setting.

There are a number of methods that could be used to investigate non-linearity, such as dividing

the workload variable into a number of binary variables with cuts made at arbitrary percentiles or

fitting a piecewise-linear (segmented) regression model with knots (or breakpoints) as additional

parameters for estimation. Since our dataset is relatively small, however, we eschew these methods

in favour of an approach using generalized additive models (GAMs). These models are similar to

the standard OLS or probit specification, except that the dependent variable is allowed to depend

on some (unknown) smooth function of one or more of the predictors. This allows us to estimate a

non-linear effect of workload on each of the outcome equations by applying a smoothing function

to this variable during estimation. To avoid going into the technical details, we mention only that

these models are estimated using a local scoring algorithm by iteratively fitting weighted additive

models by backfitting using the Gauss–Seidel method (Wood 2011). This is implemented by the

gam function in the mgcv package within the statistical software R version 3.2.2 (Wood 2013).

The plots in Figure 2 show the component smooth function from the fitted GAMs on the scale of

the linear predictor, with two standard error bounds (approx. 95% confidence intervals) indicated

by the shaded region. The estimated degrees of freedom (EDF), reported in the vertical-axis labels,

approximately correspond to the highest order of a polynomial transformation of the workload

variable that would need to be included in the standard OLS/Probit model in order to capture

the non-linear relationship. The EDFs are almost all equal to or close to 1, suggesting that there

is little evidence of deviation from linearity.

Despite a lack of evidence of deviation from linearity, it can be seen in the plots that the

confidence intervals at more extreme levels of workload are reasonably wide. It is feasible, therefore,
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Figure 2 Examining non-linear workload effects.
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that the true effect(s) may be non-linear in the tails but that there is insufficient power in the

analysis from the data to identify this. Increasing the power with more data might help to (partially)

resolve this issue, but in general since we concentrate on reporting the results in the main paper

at or about the mean values of workload the main findings will be relatively insensitive to small

deviations from non-linearity. In particular, results are compared under low- and high-workload

scenarios which fall ±2 standard deviations about the mean (or between the values -1.95 and 1.78)

where it can be seen in Figure 2 that the confidence intervals are relatively narrow. While one

should expect that this linear relationship may begin to break at some extreme values of workload,

and it would be interesting to identify at what point this begins to take effect, this is not the main

focus of this paper and it does not invalidate the main findings presented in the paper.

2.4.2. Alternative workload scenarios In the main paper workload was measured as the

time-weighted load calculated over the three hour period prior to the time of birth. As mentioned

in §5.1 of the paper, a three hour window was a somewhat arbitrary decision that was chosen

because it was aligned with the length of the second stage of labor, the period of active labor

when interventions are most likely. Other time windows could, though, have been used. Measuring

workload closer to the time of birth, for example, will increase proximity to the time at which

the decision of whether to refer a patient for a physician-led delivery is made. At the same time,

however, it will then not overlap with the time at which the epidural is most likely to occur. On

the other hand, measuring over a period further from the time of birth will capture more epidurals

that occur outside of the three-hour window we select, but then will be capture less of the variation

that occurs at the time at which the referral decision is made. With no approach being perfect,
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Table 3 Average partial effects under using alternative workload averaging
windows.

Epidural Phys.

Model type Probit Probit BiProbit Probit
Complexity nC C nC C

Workload, 60 minutes -0.022∗∗∗ -0.001 0.001 0.015∗

Workload, 120 minutes -0.023∗∗∗ -0.003 0.000 0.014∗

Workload, 180 minutes (original) -0.025∗∗∗ -0.006 -0.000 0.015∗

Workload, 240 minutes -0.027∗∗∗ -0.008 -0.001 0.014∗

nC and C refer to non-complex and complex patient episodes, respectively;
***p < 0.001, **p < 0.01, *p < 0.05

for robustness the analysis has been re-run over three other time windows. These range from one,

two and four hours prior to the time of birth up until the time of birth. The resultant coefficient

estimates from theses alternative workload scenarios are reported for the rationing and referral

decisions in Table 3, alongside the original workload estimates.

As is shown in Table 3, regardless of the time window over which workload is measured the results

are entirely consistent with those produced using the three hour averaging window selected for use

in the main paper. The APE of workload on the rate of epidural analgesia for the non-complex

PEs, given in column 2, ranges from −2.2% to −2.7% for every one standard deviation increase

in workload. For the complex PEs, the APE of workload on the rate of referral for physician-led

delivery ranges from 1.4% to 1.5% for every one standard deviation increase, as shown in column

4.

2.4.3. Standardization of workload One issue when working with data measured over time,

especially a long period such as the five year duration of this study, is that the variables of interest

may not be time invariant. If this is the case, then any observed relationship between the dependent

and independent variables of interest may be due to them being correlated with time, rather than

there being any direct causal relationship, i.e. time may be a confounding factor. To see this,

assume that variables Y and X are independent. Now suppose that instead of observing Y and

X directly we instead record some Yt and Xt which evolve over time T in a linear fashion, with

Yt = Y + aT and Xt = X + bT , where a, b are multipliers and X, Y are independent of T . Then

clearly this introduces a time-related dependence between Yt and Xt, with cor(Yt,Xt) 6= 0. In a

simple linear regression model where the estimated effect of independent variable X on dependent

variable Y can be expressed as cor(Y,X) · SD(Y )

SD(X)
= 0, for example. But neglecting to account for

the common response variable, time, can lead to a spurious relationship between Y and X being

inferred since that relationship is instead estimated by cor(Yt,Xt) · SD(Yt)

SD(Xt)
6= 0.

In Figure 3 are plotted mean values for workload, the epidural rate, the rate of referrals for

physician-led deliveries, the post-birth LOS and cost. Each are calculated over distinct time win-

dows spanning 10 days. To these have been added smoothing estimators of the relationship between
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Figure 3 Time dependence of primary covariates.
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each of these variables and time – fitted using natural cubic spines with three degrees of freedom

– together with 95% confidence bands. There is evidence of non-randomness in these plot, an indi-

cation that over the five year time window there have been gradual changes in the scale or rate

of each of these variables. This is not surprising, for example it should be expected that cost will

increase over time, at least in line with inflation. Examining the plot for the primary independent

variable of interest, workload, it can be seen that, approximately, this decreases slowly for the first

two years, before stabilizing for a further two years, and then increasing again in the final year.

Given that there is a clear pattern to workload over time, it is therefore important that steps were

taken to ensure that the relationships to be identified in the main paper were not spurious and

driven by time dependence.

There are two ways in which the time dependence highlighted above can be counteracted. The

first is to include control variables in the models that sufficiently account for changes in the depen-

dent and independent variables over time. This method relies on the relationship between the
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covariates and time being accurately captured. To see how this would work, suppose that the

time dependence is linear as in the example above, and that the relationship of interest is the one

between X and Y . Assume that instead of observing X and Y directly, however, instead we observe

Xt, Yt and T , as defined before. Then to recover an unbiased estimate of the coefficient α1 in the

model

Y = α0 +α1X +u1 ,

it is possible to instead estimate this by

Yt = β0 +β1Xt +β2T +u2

⇐⇒ Y + aT = β0 +β1(X + bT ) +β2T +u2

⇐⇒ Y = β0 +β1X + (β2 +β1b− a)T +u2 .

Since Y is assumed to be independent of T it follows that the sum of the square errors will be

minimized when β2 = a − β1b, and so it can be shown that β1 is an unbiased estimate for the

coefficient α1. Similarly, higher order polynomial could be used to capture a non-linear change in

the dependent or independent variables over time. If the time dependence can not be sufficiently

captured with a trend/polynomial trend term(s), which may e.g. occur if the covariates evolve in a

highly unstable way, then it is possible instead to include fixed effects that act to alter the intercept

for the dependent variable at the specified points in time.

Another method that can be used to break the time dependence between a dependent and an

independent variable is to de-trend either or both of the covariates. To see this, suppose that bT

is subtracted from Xt = X + bT . Then Xt = X and cor(Yt,Xt) = cor(Y + aT,X) = cor(Y,X) +

cor(aT,X) = 0 when X, Y and T are independent. Returning to the simple linear regression

example, this would mean that the estimate of the coefficient would be equal to cor(Yt,Xt) · SD(Yt)

SD(Xt)
=

0, i.e. the true null relationship between the two variables would be identified.

In the main paper both of the approaches described above are employed to ensure that the

relationships identified between workload and the dependent variables of interest are not spuriously

driven by time invariance. Specifically, a daily trend term, along with its square, together with

year-quarter dummies that pick up shocks or larger deviations not accounted for by the trend

terms are included as controls. In addition, the workload variable it standardized by subtracting

the average workload observed over a one year period centered at the time of birth of the focal

patient and dividing through by the standard deviation of workload calculated over that period

(for further detail see the discussion on the calculation of the independent variable in §5.1 of the

main paper). The standardization serves two purposes: (1) Firstly, it makes interpretation of the

results more straightforward, meaning that the reported APE can be interpreted as the change
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Table 4 Average partial effects using alternative standardization periods.

Epidural Phys.

Model type Probit Probit BiProbit Probit
Complexity nC C nC C

Unstandardized workload -0.062∗∗∗ -0.010 -0.002 0.039∗

1-year de-meaned workload -0.061∗∗∗ -0.009 -0.002 0.039∗

90-day standardized workload -0.024∗∗∗ -0.007 0.001 0.014∗

1-year standardized workload (original) -0.025∗∗∗ -0.006 -0.000 0.015∗

nC and C refer to non-complex and complex patient episodes, respectively; ***p < 0.001,
**p < 0.01, *p < 0.05

in the dependent variable that results from a one standard deviation increase in workload, where

the standard deviation of workload is updated over time to account for changes in it’s value; (2)

Secondly, it serves to smooth the measure of workload prior to estimation, making it easier for

time controls to capture any residual differences over times.

To ensure that the results are not sensitive to the process of standardization, however, the

analysis from the main paper has been re-run under three other workload specifications, one in

which no standardization is performed, one where the series is de-meaned but not standardized by

dividing through by the standard deviation, and one where the series is standardized instead over

a 90 day window. The results are reported in Table 4.

When examining Table 4 is is important to note that the APEs reported in rows 1 and 2,

which correspond to workload which is unstandardized and workload which is de-meaned only,

are not comparable to the APEs reported in rows 3 and 4, since the latter have been scaled by

dividing through by rolling estimates of the standard deviation. Comparing unstandardized and

de-meaned workload it can be seen that the de-meaning process has little effect on the coefficient

estimates (both APE approx. -0.062 for epidural rate of non-complex PEs, both APE = 0.039 for

referral rate of complex PEs). This suggests that the regressors in the models that account for

time are controlling sufficiently for any time dependence. Similarly, the results in Table 4 show

that standardizing over a 90 day window or a 1-year window has little impact on the results.

Based on the above, in the main paper the decision was taken to standardize workload over a

1-year time window so as to improve interpretability of results. The 1-year window was preferred

over shorter time frames since it does not smooth potential differences across different seasons of

the year (e.g. summer vs. winter), as all 12 months of a year are included when performing the

standardization. As such, the resultant workload measure corrects only for slow moving changes in

workload over time. It is important to note, however, that the results are insensitive to different

windows of standardization and hold up even when standardization is not performed.
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3. Robustness to Alternative Model types

In this section we confirm the robustness of the results from the main paper by comparing them

against results obtained under alternative model specifications/forms. In 3.1 we discuss how com-

plexity is operationalized in more detail and show that the results hold up under an expanded

definition of complexity that includes other factors that might materially complicate the labor and

delivery process. In 3.2 we introduce variables that control for differences in the rationing and

referral rates across different midwives. In 3.3 we explain that workload on the antenatal unit is

not correlated with DU workload and show that the results are not affected by it’s inclusion as an

additional regressor. Finally, in 3.4 we discuss why the decision was taken to run the regressions

separately on the two samples of non-complex and complex PEs, and show that commensurate

findings would have been obtained had we instead used a single model that included an interaction

between workload the complexity of the PE.

3.1. Measuring complexity

In the main paper it is hypothesized that the effect of workload on rationing and referral decisions is

moderated by, following Shumsky and Pinker (2003), the complexity of the problem/service needs

posed by the customer to the server. In the context of the DU, the ‘problem’ that the midwife must

manage is the process of labor and the delivery of the baby. As such, in differentiating between

non-complex and complex observations in the DU context it was necessary to identify ex-ante

observable factors that contribute towards making the service episode, i.e. the labor and delivery

process, more challenging for the midwife to manage. Since it is the complexity of the patient

episode that is being studied, the induced and non-induced sub-samples are an excellent fit for

this purpose, and far more suitable than a measure based on the risk profile of the mother. In

particular, as described in the paper:

“Women with spontaneous onset of labor tend to have less complex deliveries than induced

patients as induction changes the birth process in several ways (Lothain 2006). First, following

induction, contractions become stronger and more frequent more quickly and labor will last

longer than after spontaneous onset. As a result, the uterine muscle cannot relax as much

between contractions, causing stress on the uterus and baby. Second, induced mothers do

not benefit from the natural hormonal response to spontaneous contractions, which makes

labor more difficult to manage and more painful for the mother. As a consequence, induced

mothers will be offered epidural analgesia more readily; in other words, epidural analgesia is

less discretionary for these more complex cases. Equally importantly, the mode of labor onset

is readily observable by the midwife, and inductions are sufficiently frequent to provide the

requisite statistical power.”
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Specifically, inductions change the birth process itself and, through this, serve to increase the

complexity of the service episode (in this case the complexity of labor and the delivery).

It is important to recognize why a measure of complexity defined using other factors, such as

those known to be associated with patient risk, would not be appropriate. There are, for example,

maternal factors and comorbidities that are associated with greater risk during pregnancy, such as

first pregnancy over the age of 35, gestational diabetes, eclampsia, etc. Yet while it is certainly the

case that risk factors must be managed appropriately during the pregnancy, they do not materially

affect the labor and delivery process itself. In particular, the mechanics of labor are unlikely to

be materially different for two otherwise identical women if, say, one has gestational diabetes and

the other does not. It is certainly the case that such risk factors must be managed appropriately

during the pregnancy. However, on arrival in the DU their is no reason to expect that patients with

a higher risk profile will be treated any differently or be more or less susceptible to workload than

others since their service needs, as they relate to labor and the delivery process, will be essentially

identical. This is not the case, though, for induced patients who, as described above, experience a

more complex process of labor than their non-induced counterparts.

While maternal risk factors do not capture ‘problem’ complexity in this setting, it is worth con-

sidering whether there are any factors related to the pregnancy that can be used to add additional

patients into the subsample of complex PEs. Doing so serves two purposes: First, it addresses the

concern that the differential effect of workload on the non-complex and complex PEs may be more

to do with the induction process itself, rather than complexity; Second, it increases the power of

the subsample of complex PEs and so makes the empirical identification of an effect more likely, if

one exists. Factors that have a material impact on the complexity of the labor and delivery process

from the midwife’s perspective are rare and occur with low frequency, but two others that have

been identified are:

1. Breech presentation of the baby, and

2. A multiple birth.

A breech occurs when the baby exits the pelvis with buttocks or feet first, rather than with the

normal head first presentation. This occurs at rate of 2.15% in the final analysis sample of 16,355

patients. A multiple birth occurs when the mother delivers two or more babies, and occurs at rate

of 1.33% in the final analysis sample. For these complications of pregnancy, both the labor and

delivery process/problem become significantly more complex for a midwife to manage (Ball and

Washbrook 1996). Therefore, as was the case for induced patients, there should be expected to be a

difference in the rationing (of epidural analgesia) and referral (for a physician-led delivery) behavior

of the midwife for these patients, relative to their non-complex counterparts. Specifically, there will

be less discretion in the provision of epidural analgesia to a breech or multiple birth patient, and
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Table 5 Average partial effects using different measures of complexity.

Epidural Phys.

Model type Probit Probit BiProbit Probit
Complexity nC C nC C

Original sample -0.025∗∗∗ -0.006 -0.000 0.015∗

Expanded complex subsample -0.027∗∗∗ -0.004 -0.000 0.014∗

nC and C refer to non-complex and complex patient episodes, respectively; ***p <
0.001, **p < 0.01, *p < 0.05

so the decision should be expected to be unaffected by midwife workload. In addition, owing to the

increased demands they place on a midwife and the greater their likelihood of eventually ending up

requiring an physician-led delivery, these patients are expected to be referred at a higher rate when

midwife workload increases. Results using this expanded sample of complex (and reduced sample

of non-complex) PEs are presented in Table 5, together with results using the original definition

of complexity used in the main paper.

As can be seen in Table 5, expanding the definition of complexity has almost no impact on the

results. Given this, and the additional insight provided earlier as to how the definition of complexity

in this context relates to the complexity of the labor/delivery process rather than the risk profile of

the patient, it follows that operationalizing complexity by way of the distinction between induced

and non-induced patients enables us to effectively capture how complex a service episode was from

the midwife’s perspective. While the subsample of complex PEs could be expanded to include

breech and multiple births, this would have a negligible impact on the results.

3.2. Accounting for midwife effects

It is clear that different midwives will have different skill sets and that these might impact on the

rate at which particular midwives ration the provision of epidural analgesia or refer patients for

a physician-led delivery. If in addition midwives work regular shift patterns and workload during

particular shifts is, on average, slightly higher or lower than the across shift mean, then one could

argue that factors related to the midwife might act as correlated omitted variables (i.e. correlated

with both the dependent variables of interest and the independent variable of interest, workload,

and so bias the coefficient estimate of workload). In §2.1 of this document the fact that midwife

working schedules are established weeks in advance of the shifts to be worked is discussed, making it

unlikely that there should be any such bias. However, since information is available on the midwifes

present in the DU, it is possible to confirm this by introducing fixed effects for each midwife as

control variables in the models.

One problem with including midwife fixed effects is that there are a large number of midwives

who delivered only a small number of babies during the sample period. This may be because they

were e.g., bank staff, agency staff (i.e., temporary staff who work for an agency and are brought
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Table 6 Average Partial Effects Controlling for Midwife Effects.

Probit BiProbit

(1) Epidural (2) Phys. (3) Epidural (4) Phys. (1) Epidural (2) Phys.
Complexity nC nC C C nC nC

Std. workload -0.020∗∗∗ -0.005 -0.002 0.014∗ -0.018∗∗∗ -0.001
(0.005) (0.004) (0.007) (0.006) (0.004) (0.004)

Epidural – 0.205∗∗∗ – 0.207∗∗∗ – 0.196∗∗∗

– (0.010) – (0.011) – (0.010)
Dist. to home -0.017∗∗∗ -0.007 0.004 -0.003 -0.017∗∗∗ –

(0.005) (0.004) (0.007) (0.006) (0.004) –

2–4h op. tht. use -0.035∗ 0.010 0.031 -0.022 -0.029† –
(0.017) (0.016) (0.025) (0.020) (0.015) –

Inst. op. tht. use -0.004 -0.087∗∗∗ -0.020 -0.092∗∗∗ -0.003 -0.085∗∗∗

(0.009) (0.009) (0.013) (0.012) (0.009) (0.009)

N 10,091 10,091 6,264 6,264 10,091
Log-lik -5,213.91 -4,493.87 -3,779.73 -2,845.59 -9,701.88
Pseudo-R2 0.115 0.323 0.129 0.323 –
ρ – – – – -0.431∗∗∗ (0.094)

nC and C refer to non-complex and complex patient episodes, respectively; Robust standard error in paren-
theses for Probit; Bootstrapped standard error in parentheses for BiProbit, 1,000 simulations; Likelihood ratio
(Pr >χ2) < 0.0001 in all models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

in to fill vacancies at short notice, often at great expense), midwives on a temporary trial, student

midwives, recent hires, etc. Therefore, in order to add fixed midwife effects the 325 unique midwives

that are observed must be reduced to a smaller subset of those who performed deliveries in the

DU most frequently. A cutoff of 164 deliveries (1% of the sample) is used and an “Other” category

introduced in which all of those midwives who delivered fewer than 164 babies are collected. To

augment this we introduce dummy variables that capture (a) the grade band of the midwives, (b)

the age of the midwives, and (c) the experience of the midwife, as measured by the amount of time

that they have been a registered midwife. Note that these covariates are not included in the models

reported in the paper as the effects are, for the most part, insignificant or only weakly significant.

Updated results for the effects of workload on the rationing (epidural) and referral (physician-led

delivery) decisions are presented in Table 6. Probits (1)-(2) and BiProbits (1)-(2) give the APE of

workload on the epidural and physician-led delivery rate for the non-complex PEs, after controlling

for midwife fixed effects. Probits (3)-(4) gives the equivalent for the complex PEs. Since the results

do not change in any material way, in the main paper we opted to use the simpler models.

3.3. Controlling for antenatal unit workload

In the main paper the measure of workload that is used accounts for the number of patients in the

DU relative to the number of midwives available. It is plausible that workload in other units of the

hospital – particular the number of patients present in the antenatal unit and waiting in the waiting

lounge – might also have an impact on rationing and referral behavior. Batt and Terwiesch (2015)

show, for example, that service times in an emergency department are affected by congestion in
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Table 7 Average Partial Effects Controlling for Antenatal Unit Occupancy.

Probit BiProbit

(1) Epidural (2) Epidural (3) Phys. (1) Epidural (2) Phys.
Complexity nC C C nC nC

Std. workload -0.026∗∗∗ -0.006 0.013∗ -0.023∗∗∗ -0.001
(0.005) (0.007) (0.006) (0.004) (0.005)

Antenatal occupancy 0.006 0.001 0.007 0.005 0.006
(0.004) (0.006) (0.005) (0.004) (0.004)

Dist. to home -0.017∗∗∗ 0.004 -0.002 -0.017∗∗∗ –
(0.005) (0.007) (0.006) (0.004) –

2–4h op. tht. use -0.035∗ 0.025 -0.019 -0.028† –
(0.018) (0.025) (0.021) (0.015) –

Inst. op. tht. use -0.006 -0.017 -0.098∗∗∗ -0.005 -0.087∗∗∗

(0.009) (0.014) (0.012) (0.008) (0.009)

N 10,091 6,264 6,264 10,091
Log-lik -5,317.82 -3,835.31 -2,927.05 -9,884.88
Pseudo-R2 0.097 0.117 0.304 –
ρ – – – -0.448∗∗∗ (0.091)

nC and C refer to non-complex and complex patient episodes, respectively; Robust standard error
in parentheses for Probit; Bootstrapped standard error in parentheses for BiProbit, 1,000 simulations;
Likelihood ratio (Pr >χ2) < 0.0001 in all models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

the waiting room. In the DU setting it is possible that if staff know that there are many expectant

mothers building up in other units – who will be coming to the DU soon – then they may “feel

the pressure”. In particular, they may elect not to engage in high resource activities recognizing

that it is possible that those resources will be needed by other patients very soon. If occupancy in

the DU and on the antenatal unit are correlated, also, then omitting to control for antenatal unit

workload might bias the estimated coefficient for DU workload.

In order to test whether there is any evidence of an effect as described above, a variable that

captures the effect of antenatal workload is introduced into the model specification. The results are

presented in Table 7. It is important to note that as information is not available on the number of

staff members in the antenatal unit it is necessary to instead use occupancy, as measured by the

number of patients present in the antenatal unit, as a proxy for workload, recognizing that this does

not also account for staff (resource) availability. Other than the lack of an adjustment for staffing,

antenatal workload is measured in the same way as for DU workload, taking the time-weighted

occupancy (excluding the focal patient) over the three hour period prior to the time of delivery by

the focal patient, and de-trending the series by subtracting by the 1-year rolling mean antenatal

unit occupancy and dividing through by the standard deviation.

The results reported in Table 7 show that antenatal unit occupancy is not statistically significant

(even at the 10% level) in all of the model estimations, and that DU workload (Std. workload)

does not change significantly with the inclusion of this additional regressor, changing from the

original value of −0.025 to that of −0.026 in Probit (1) and from 0.014 to 0.013 in Probit (3), while

remaining insignificant in Probit (2) and BiProbit (2).
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It is likely that the reason for the lack of an effect of antenatal unit workload is that the majority

of the arrivals to the DU occur randomly from the community when labor starts spontaneously.

For the remainder, it is very difficult to predict how long it will take for a patient induced in

the antenatal unit to begin labor and be transferred to the DU – Figure 1 in §2.1, for example,

shows no apparent pattern in the arrival times of induced patients to the DU. In fact, in regressing

DU occupancy against antenatal unit occupancy (not shown) we find antenatal workload not to

have any explanatory power. Putting this together with the results in Table 7, this suggests that

the midwives are not affected by antenatal workload when making a decision on the DU. It is

important to recognize, though, that in other settings where there is more pressure to service

“waiting” customers as soon as possible (e.g. when a queue builds up for a table in a restaurant)

then this pressure might affect the gatekeeping behavior of the server.

3.4. Interaction effect models

In the main paper separate models were estimated for the subsets of non-complex and complex PEs.

If the independent variables were to act in a similar way on both segments then this method would

be inefficient, reducing the sample size (by splitting it in to two subsamples) and increasing the

confidence intervals about the coefficient estimates. An alternative to this specification would have

been to run a single model estimating coefficients jointly for both segments. In order to identify

a differential effect of workload for the non-complex and complex PEs in such an estimation an

interaction could be introduced between workload and complexity. By way of example, for the

service configuration decision this model would be written:

EPI∗i =α0 +αT
1 Wi +α2ZLOADi +α3COMPLEXi +α4 (ZLOADi×COMPLEXi) + δi

EPIi =1[EPI∗i > 0],

where δi ∼ N (0,1), EPI∗i is a latent variable, the vector Wi contains the set of controls,

COMPLEXi is a dichotomous variable taking value 1 if the PE is complex and 0 otherwise, EPIi

is the observed dichotomous variable indicating epidural administration, and 1[·] is the indicator

function. The coefficient α4 then identifies the extent to which the workload effect for a complex

PE differs from that of a non-complex PE, given by α2.

While the model detailed above would have made it easier to interpret and compare the effects

of workload across the two subsamples – and in general interaction effect models are preferable to

subset analysis – for the purposes of the analysis performed in the paper this would have meant

that it would not be possible to estimate the endogeneity corrected models since the following

would have to be assumed:
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1. Homoskedasticity of errors: more specifically that the correlation coefficient is identical for

both the non-complex and complex sub-samples, which is shown not to be the case in the main

paper; and

2. That the same instrumental variables could be used (i.e. that they were relevant and valid)

for both the non-complex and complex samples, which we know not to be the case since we select

particular IVs for use in particular models.

Despite the inappropriateness of the interaction modeling approach for the purposes of the main

paper, though, to check for consistency it is helpful to re-run the analysis for the simpler Probit

models in which endogeneity is not accounted for. The estimated effects are reported in Table 8

for both the rationing and referral decisions under a probit model specification.

The results in Table 8 support the findings from the main paper. Probit (1) shows that higher

workload reduces the epidural rate for the non-complex PEs (APE=−0.026, p -value< 0.001), but

the positive interaction between workload and the complexity dummy (APE= 0.022, p -value =

0.003) cancels out the effect of workload for the complex PEs, indicating that workload has no

effect on the epidural rate during these episodes. In Probit (2) it can be seen that workload

reduces the rate of referrals for physician-led deliveries for the non-complex PEs (APE=−0.011,

p -value = 0.013), while the positive interaction effect between workload and the complexity dummy

(APE= 0.021, p -value< 0.001) indicates that higher workload leads to a net increase in the referral

rate for the complex PEs. Results are similar when adding the rationing (epidural) decision as an

additional regressor in the referral equation in Probit (3). Note that while the results are consistent,

the fact that it is not possible to account for endogeneity prohibits the use of interaction-type

models in the main paper.

4. Other Outcome Measures

In §7.3 of the main paper three other outcome measures that were investigated were discussed.

These were:

1. The incidence of third and fourth degree perineal tears;

2. The Apgar score recorded for the baby 5 minutes after birth; and

3. The length of time the patient spent in the DU.

The estimation results for these models are presented in this section. In addition, results are

reported when estimating post-birth LOS using an alternative measure that is calculated as the

number of full nights spent in the hospital post-delivery, rather than the number of hours used in the

main paper. Summary statistics for these four additional outcome measures and their correlations

with the primary covariates reported in the main paper are presented in Table 9.
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Table 8 Average Partial Effects in Interaction Effect Models.

Probit

(1) Epidural (2) Phys. (3) Phys.
Complexity All All All

Std. workload -0.026∗∗∗ -0.011∗ -0.007
(0.005) (0.004) (0.004)

Workload×High complexity 0.022∗∗ 0.025∗∗∗ 0.021∗∗

(0.008) (0.007) (0.007)
High complexity 0.239∗∗∗ 0.021∗ -0.026∗∗

(0.009) (0.008) (0.008)
Epidural – – 0.196∗∗∗

– – (0.007)

Dist. to home -0.008∗ -0.007† -0.005
(0.004) (0.004) (0.004)

2–4h op. tht. use -0.016 0.001 0.004
(0.015) (0.013) (0.012)

Inst. op. tht. use -0.007 -0.097∗∗∗ -0.095∗∗∗

(0.008) (0.007) (0.007)

N 16,355 16,355 16,355
Log-lik -9,283.93 -7,994.19 -7,611.50
Pseudo-R2 0.130 0.263 0.298

Robust standard error in parentheses; Likelihood ratio (Pr > χ2) < 0.0001
in all models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

Table 9 Descriptive Statistics and Correlation Table for the Additional Outcome Measures.

Descriptive statistics Correlation table

Variable Mean SD Min Max (1) (2) (3) (4) (5) (6)

(7) 3rd/4th degree perineal tear 0.04 0.19 0.00 1.00 0.02∗ -0.02∗ -0.01 -0.01 0.01 0.00
(8) Apgar score < 9 0.03 0.18 0.00 1.00 -0.01 0.00 0.03∗∗∗ 0.10∗∗∗ -0.02∗∗ -0.01
(9) DU LOS (hours) 17.69 14.63 2.26 99.22 0.01 0.25∗∗∗ 0.32∗∗∗ 0.22∗∗∗ -0.02∗ 0.03∗∗∗

(10) Post-birth LOS (nights) 1.62 1.66 0.00 11.00 -0.01 0.05∗∗∗ 0.14∗∗∗ 0.32∗∗∗ -0.04∗∗∗ 0.04∗∗∗

(1) Std. workload, (2) Complex PE, (3) Epidural, (4) Phys.-led delivery, (5) Inst. op. tht. use, (6) 2–4h op. tht. use
***p < 0.001, **p < 0.01, *p < 0.05.

4.1. Perineal tears

The rate of perineal tearing is commonly used as a quality indicator for cross-hospital comparison

and features on the list of 26 hospital safety indicators compiled by the US Department of Health &

Human Services Agency for Healthcare Research and Quality (AHRQ 2013). Precautionary action

against tearing is difficult owing to the challenge in predicting if and how it will occur prior to labor

(Williams et al. 2005); however, there is evidence that appropriate midwifery care during labor can

reduce the likelihood of a tear (Aasheim et al. 2011). As such, if there is an effect of workload on

the incidence of tearing then it should be expected that this will be positive in direction.

In order to examine the effect of workload on the tear rate of patients, it is necessary to exclude

from the analysis sample any patient who gives birth by way of an elective C-section. This is

because it only possible for a perineal tear to occur in patients who give birth vaginally. The results

of the estimations using these reduced samples are provided in Table 10. Evidence suggests that

higher levels of workload leads to an increase in the tear rate for complex PEs (APE= 0.011,
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Table 10 Average Partial Effects for Perineal Tears.

Probit

(1) Tear (2) Tear (3) Tear (4) Tear
Complexity nC C nC C

Std. workload 0.001 0.011∗∗∗ 0.001 0.011∗∗

(0.003) (0.003) (0.003) (0.003)
Epidural – – -0.008 -0.018∗∗

– – (0.005) (0.006)
Phys. delivery – – – 0.019∗

– – – (0.008)

N 8,061 4,993 8,061 4,993
Log-lik -1,506.26 -750.37 -1,505.29 -743.61
Pseudo-R2 0.074 0.126 0.075 0.134

nC and C refer to non-complex and complex patient episodes,
respectively; Robust standard error in parentheses; Likelihood
ratio (Pr > χ2) < 0.0001 in all models; ***p < 0.001, **p < 0.01,
*p < 0.05, †p < 0.10.

p -value = 0.001 in Probit (4)), but not for the non-complex PEs (APE = 0.001, p -value = 0.715 in

Probit (3)).

Unfortunately, due to the relative infrequency of tearing, occurring in only 4.1% of births for

non-complex PEs and 3.3% for complex PEs, it is difficult to use a bivariate probit model as it

becomes challenging empirically to accurately estimate the correlation coefficient, ρ. In particular,

in running BiProbit models the estimated 95% confidence intervals for ρ for the non-complex PEs

is ρ∈ [−0.559,0.585], while for the complex PEs ρ∈ [−0.371,0.647]. The wide confidence intervals

for ρ make it hard to estimate the effect of midwife rationing and referral decisions on the tear

rate, as the lack of precision in ρ leads to a great deal of uncertainty in the coefficient estimates of

these covariates. This means that it is not possible to accurately identify the direct and indirect

effects of workload. Given this, in Table 10 we report only basic probit models for the non-complex

and complex PEs, and cannot comment specifically on how workload induced changes in midwife

behavior affect this outcome. However, it is clear that when introducing the epidural decision as a

control in the model for the non-complex PEs, i.e., when going from Probit (1) to Probit (3), there

is no change in the direct workload effect, and similarly when adding the physician-led delivery

decision in the model for the complex PEs, i.e., when going from Probit (2) to Probit (4). This

indicates that even if there were an effect of workload through the rationing or referral decisions

on the tear rate it is likely to be small.

4.2. Apgar score

The Apgar score is a number between 0 and 10 that is used to quickly summarize the health of

newborn babies immediately after birth. Five factors are used to evaluate a baby’s condition, each

scored between 0 and 2, with 2 being the best score. The five factors are the appearance, pulse,

grimace response, activity, and respiration of the baby. The higher the total score, the better the
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Table 11 Average Partial Effects for Apgar Score.

Probit

(1) Apgar (2) Apgar (3) Apgar (4) Apgar
Complexity nC C nC C

Std. workload -0.003 0.002 -0.003 0.001
(0.002) (0.002) (0.002) (0.003)

Epidural – 0.017∗∗∗ 0.004 0.013∗∗

– (0.005) (0.004) (0.005)
Phys. delivery – – – 0.015∗

– – – (0.006)

N 9,976 6,195 9,976 6,195
Log-lik -1,351.15 -821.75 -1,350.67 -817.89
Pseudo-R2 0.068 0.087 0.068 0.092

nC and C refer to non-complex and complex patient episodes, respec-
tively; Robust standard error in parentheses; Likelihood ratio (Pr >χ2)
< 0.0001 in all models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

indication that the newborn is in good health (Apgar 1953). The Apgar score reported in our data

is the score taken 5 minutes after birth, at which point most babies have a near normal score.

Due to the relative infrequency of low Apgar scores we have converted the score from a continuous

to a binary form, with any score less than 9 assigned a value of 1, and any score of 9 or 10 (in

most cases the reasons newborns score 9 instead of 10 is due transient cyanosis, which is prevalent,

and causes many newborns to lose 1 point – see e.g. Montgomery 2000) assigned a value of 0. 184

observations are dropped from this analysis as Apgar score information was not available.

As was the case for perineal tears, only a small proportion of babies are assigned a low Apgar

score (3.3% for both the non-complex and complex PEs) making it empirically challenging to

estimate a bivariate probit model due to the difficulty in identifying the correlation coefficient, ρ,

and so leading to poor specificity for the independent variables of interest (i.e., the rationing and

referral decisions). However, there is no evidence – see Table 11 – of a direct workload effect, and,

as was the case for tears, the fact that the coefficient estimates of workload do not change when

including epidural and physician-led deliveries as additional regressors indicates that even if there

were a workload induced effect of rationing/referral behavior on the Apgar score, the effect size

would be small.

4.3. DU length of stay

The delivery unit length of stay (DU LOS) is a measure of throughput, capturing the length of time

that a patient spends in the DU during birth before being discharged to the postnatal unit. The

longer that the patient spends in the DU, the more of the midwife’s expensive time and resource

that they consume. In order to identify if there is an effect of workload on throughput through a

change in rationing of referral behavior by the midwife, the results of estimations examining this

effect are reported in Table 12, where DU LOS is measured as the natural logarithm of the number

of hours that the patient spent in the DU.
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Table 12 Coefficient Estimates in Statistical Models for Delivery Unit LOS.

OLS HeckTreat

(1) DU LOS (2) DU LOS (3) DU LOS (4) DU LOS (1) Epidural (2) DU LOS (3) Phys. (4) DU LOS
Complexity nC C nC C nC nC C C

Std. workload -0.009 0.010 0.004 0.009 -0.083∗∗∗ 0.027∗∗∗ 0.064∗∗ 0.017∗

(0.006) (0.007) (0.006) (0.007) (0.015) (0.007) (0.023) (0.008)
Epidural – 0.406∗∗∗ 0.501∗∗∗ 0.388∗∗∗ – 1.342∗∗∗ 0.689∗∗∗ 0.446∗∗∗

– (0.013) (0.011) (0.013) – (0.023) (0.041) (0.029)
Phys. delivery – – – 0.089∗∗∗ – – – -0.195

– – – (0.015) – – – (0.122)
2–4h op. tht. use 0.009 0.022 0.027 0.024 -0.050 – – –

(0.023) (0.027) (0.021) (0.027) (0.044) – – –
Inst. op. tht. use 0.004 -0.007 0.007 0.001 0.001 0.014 -0.332∗∗∗ –

(0.012) (0.014) (0.011) (0.014) (0.029) (0.013) (0.052) –

N 10,091 6,264 10,091 6,264 10,091 6,264
Log-lik -7,868.29 -3,745.04 -7,064.91 -3,728.39 -12,067.48 -6,393.67
Adj-R2 0.147 0.352 0.276 0.356 – –
ρ – – – – -0.819∗∗∗ (0.012) 0.360∗ (0.143)

nC and C refer to non-complex and complex patient episodes, respectively; Robust standard error in parentheses; Likelihood ratio (Pr >χ2) < 0.0001
in all models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

As can be seen, before running endogeneity corrected (HeckTreat) models there appears to be

a significant effect of the epidural analgesia decision (coef= 0.501, p -value< 0.001 in Probit (3))

and the physician-led delivery decision (coef= 0.089, p -value< 0.001 in Probit (4)) on DU LOS

for both the non-complex and the complex PEs. In particular, patients who are rationed less or

referred more experience an increase in the time that they spend in the DU. As was the case for

post-birth LOS and cost, as described in the main paper, there is a risk that these effects are driven

by reverse causality and/or omitted variable bias: Patients may receive an epidural or physician-led

delivery because they are expected to have a longer labor and stay longer, and unobserved risk

factors that may increase/decrease the patients likelihood of receiving an epidural or physician-led

delivery may also affect their DU LOS. To try to account for the endogeneity it is necessary to

estimate HeckTreat models. As reported in §7.3 of the main paper, however, there are problems

in using the IVs in these estimations due to the fact that the time at which the IVs are measured

overlaps with the time over which DU LOS is being measured. As such, we do not comment on

the results here, but report them for the sake of completeness.

4.4. Post-birth LOS measured by number of nights

The measure of post-birth LOS used in the main paper was calculated as the number of hours

between the time at which the patient gives birth and the time at which they are discharged from

the hospital. One potential problem with this is that the time of day or day of week at which the

patient gives birth may introduce a degree of noise into the post-birth LOS measure. For example,

suppose that the hospital policy is that a patient should stay 2 nights after giving birth. Then a

mother who e.g. gives birth naturally at 12:01am on a Monday will spend all day Monday, Tuesday

and part of Wednesday in the hospital. Whereas a mother who gives birth at 11:58pm on that
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same Monday will likewise be discharged on the same Wednesday, perhaps at the same time (after

the physician conducts their discharge rounds). Yet this second patient will experience a post-birth

LOS almost 24 hours shorter, due to the (random) time at which the baby was born.

The problem highlighted above is particular the case in the U.S., where most insurance companies

stipulate that patients may stay two nights in the hospital after a vaginal delivery and three nights

after a C-section. The guidelines in the UK, however, where the study DU is located, are not as

rigid. The latest guidelines from the National Institute of Clinical Excellence, for example, stipulate

(Ritchie et al. 1996, p. 54): “Length of stay in a maternity unit should be discussed between the

individual woman and her healthcare professional, taking into account the health and well-being

of the woman and her baby and the level of support available following discharge.” Moreover, in

the econometric specification are time-of birth fixed effects measured in two-hour blocks. These

account for any systematic difference in the post-birth LOS of mothers delivering at different times

of the day. Roughly speaking, with this control in place the estimation compares the post-birth

LOS of a patient delivering between 12:01am and 02:00am, say, on a busy day with that of another

patient delivering at the same time-window but on a non-busy day.

An alternative way of calculating post-birth LOS, however, would have been to look at the

number of nights that the patient stayed in the hospital after delivery. This can be measured as the

number of times after delivery that the patient experienced midnight in the hospital during their

stay. For example, if a patient gave birth at 20:00 on 1st January and was discharged at 08:00 on

3rd January then the number of nights they would be considered to have stayed would be 2, once

for passing midnight on 1st January and the other for crossing midnight on 2nd January. In Table

13 are results from OLS models (Poisson models produce similar results – not reported here) in

which post-birth LOS is measured as the number of nights instead of the number of hours.

As is shown in Table 13, the results are qualitatively similar to those reported in the paper. For

example, we find that epidural analgesia and physician-led delivery both increase the number of

nights stayed, consistent with the results presented in the main paper. However, possibly due to

the insufficient variation in the nightly measure of post-birth LOS, we do not identify a statistically

significant workload effect at the nightly level. This finding is unsurprising given that the effect

of workload on post-birth LOS reported in the main paper was shown to be in the magnitude of

hours rather than days.

5. Alternative Explanations

In the main paper the increase in the rate of referrals to physicians at higher levels of workload

was described as a lever used by midwives to relieve workload pressure and free up capacity to

tend to the needs of other (non-referred) patients. In this section we discuss two other potential
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Table 13 Coefficient Estimates in Statistical Models for Post-birth LOS
Measured in Nights.

OLS

(1) PbLOS (2) PbLOS (3) PbLOS (4) PbLOS
Complexity nC C nC C

Std. workload -0.013 -0.010 -0.005 -0.021
(0.016) (0.022) (0.016) (0.021)

Epidural – 0.414∗∗∗ 0.337∗∗∗ 0.282∗∗∗

– (0.039) (0.032) (0.039)
Phys. delivery – – – 0.638∗∗∗

– – – (0.046)
2–4h op. tht. use -0.045 -0.016 -0.034 -0.002

(0.059) (0.084) (0.059) (0.082)

Inst. op. tht. use -0.078∗∗ -0.073† -0.076∗∗ -0.015
(0.029) (0.041) (0.029) (0.041)

N 10,091 6,264 10,091 6,264
Log-lik -17,655.40 -11,059.56 -17,603.00 -10,958.07
Adj-R2 0.366 0.237 0.372 0.261

nC and C refer to non-complex and complex patient episodes, respectively;
Robust standard error in parentheses; Likelihood ratio (Pr >χ2) < 0.0001 in all
models; ***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.10.

explanations for the increase in the rate of referrals at higher levels of load – one being that

this is instead attributable to changes in physician (specialist) rather than midwife (gatekeeper)

behavior, and the second being that there is an unobserved deterioration in quality at higher levels

of workload that create a need for additional referrals – and discuss why these are less likely than

the hypothesized behavior.

5.1. Interdependence of upstream and downstream workload

In the service setting that we study the decision as to whether a patient should be referred to a

physician is made by the midwife, but whether or not the patient actually receives physician-led

care is dependent also on the availability of the physicians and on whether the physician judges

the referred patient to require their care. This means that if upstream (midwife) and downstream

(physician) workload are interdependent then it is possible that the observed increase in referrals

at higher workload may be attributable to changes in physician behavior rather than changes in

referral behavior by the midwives. Therefore, it is important that, as far as possible, we are able

to isolate the effect of workload specific to the midwives. This can be achieved by controlling for

the workload of the physicians.

However, accounting for physician workload fully is difficult as demand is not readily observed.

In particular, unlike demand for midwives – which can be inferred directly using the number of

patients in the DU (since every patient must be assigned a midwife) – for the physicians, the

number of patients in the DU will instead be a poor measure of load since not every patient

interacts with a physician. Moreover, obstetricians and physicians working in the DU may also
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perform other duties and care for patients not physically present in the DU, such as working in

gynecology, performing prenatal checks, conducting postnatal examinations and discharges, etc.

This means that workload as measured by the number of patients in the DU will only be weakly

correlated with the actual workload of the physicians.

If we assume that the workload of physicians that takes place outside of the DU is exogenous and

uncorrelated with DU workload – which is not unreasonable given the random nature of arrivals to

the DU, with any residual correlation accounted for with time-fixed effects – then the component

of a physician’s workload that needs to be accounted for is that which is caused by the patients

present in the DU. However, data is unfortunately not available on the time that a physician spent

with each patient. Therefore, it is necessary to account for this instead using control variables that

we know to be highly correlated with this work.

To identify these control variables it is helpful to consider the nature of the work performed by

physicians in the DU. For a simple natural birth a physician will have limited involvement with

the patient since labor and the delivery will be midwife-led. It is only when responsibility for the

birth is passed from a midwife to a physician in more difficult cases that a physician becomes

significant involved and so will experience a non-negligible increase in her workload. Therefore, the

main demand placed on physicians by patients in the DU can be approximated by the number

of instrumental deliveries or C-section that are performed. By controlling for the busyness of the

operating theater at the times at which the rationing and referral decisions are made, as we do,

we therefore are able to control for a large portion of the variation in physician workload caused

by patients in the DU. Any residual differences in physician availability across different times of

the day are also accounted for with time-of-day fixed effects. This means that the residual effect

of workload that we estimate in the analysis in the main paper can be primarily attributed to the

midwife, rather than the physician, as desired.

Finally, it is worth noting that while it is possible that downstream workload may increase with

upstream workload in ways that we have not been able to capture using the controls described

above, there is no reason to believe that physicians should respond to an increase in their workload

by offering to perform more assisted deliveries, since this would only serve to make them even

busier. Therefore, if anything, it is more likely that any change in physician behavior would serve

to dampen the effect that we observe and are attributing to gatekeeping behavior, rendering our

estimate a conservative estimate of the effect of workload on the midwives’ referral behaviour.

5.2. Unobserved deterioration in service quality

Workload has been shown, both in the operations management and the medical literature, to

have an adverse effect on service quality and clinical outcomes (Needleman et al. 2011, KC and
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Terwiesch 2009, Kuntz et al. 2014). An alternative explanation for the increase in referrals at higher

load, therefore, may be that as the midwives become busier they are unable to monitor patients

as closely or provide as high quality care. If this causes an increase in risk to the patients, then

the physicians may have to intervene in order to maintain high quality patient outcomes. Then,

as a result of model specification error, the observed effect of workload on the referral rate may

instead be explained by a common response variable, the unobserved health status of the patient

(or baby), which is the true causal factor. While this does not invalidate the empirical results,

it does bring into question the interpretation of the results. Why does workload result in more

physician referrals? Is it because of the midwife pushing work to the physician when she becomes

too busy? Or is it because the midwife’s quality of service degrades and so the physician must

actively intervene?

If patients were put more at risk at higher workload then one should also expect there to be a

deterioration in outcomes correlated with that risk. If this were not the case then there would be

no need for the physician to intervene. Evidence from two measures of service quality – that we

report on in the main paper and elsewhere in the supplementary material – suggests that this is

not the case. In particular:

• Post-birth LOS: In §7.2.1 of the paper we show that there is no evidence that increased

workload in the DU leads to an increase in post-birth LOS of the complex cases, neither directly

or indirectly. This indicates that patients with complex needs who are in the DU when it is busy

stay no longer in the hospital after delivery than those that give birth when the DU is quieter. If

the risk profile of the patients were increased at higher workload, however, we would expect them

to stay longer in the hospital after delivery since they require more careful observation, further

tests, and more time to recover.

• Apgar score: In §4.2 of the supplementary material we show that there is no evidence that

workload affects the likelihood of a baby being born with a lower Apgar score (a summary measure

of the health status of newborn babies immediately after birth). If the risk profile of the babies

were increased at higher workload, however, then one would expect it to be reflected in the Apgar

score, which measures factors that include the appearance, pulse, grimace response, activity, and

respiration of the baby.

This provides some evidence against the argument that quality of care in the DU deteriorates,

in an unobservable way, at higher levels of workload. It is possible, though, that these additional

risks may not be substantial enough to manifest themselves in worse outcomes. For example, it

is plausible that factors such as increase heart rate for the baby and mother could necessitate

physician intervention. While it is not feasible to consider every possible variable that might signal
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Table 14 Average Partial Effects in Statistical
Models for Fetal Distress

Probit

(1) Distress (2) Distress
Complexity nC C

Std. workload -0.007 0.007
(0.005) (0.006)

N 10,091 6,264
Log-lik -5,792.20 -3,541.51
Pseudo-R2 0.070 0.091

nC and C refer to non-complex and complex
patient episodes, respectively; Robust standard
error in parentheses; Likelihood ratio (Pr > χ2)
< 0.0001 in all models; ***p < 0.001, **p < 0.01,
*p < 0.05, †p < 0.10.

a deterioration in service quality, we have identified one factor in the data that we believe should

be highly correlated with quality of care: the reported incidence of fetal distress in labor.

Fetal distress is reported if there are signs during labor that suggest that the fetus may not be

well. Examples of such signs include elevated or decreased fetal heart rate, decreased movement

felt by the mother and signs of acidosis in the fetal blood. Fetal distress occurs at a rate of 31.0%

in the final analysis sample of 16,355 patients. Care by a certified midwife has been shown to

be associated with a lower risk of diagnosis of fetal distress (Butler et al. 1993) and appropriate

response to fetal distress by midwives can reduce distress and associated C-sections (Gagnon et al.

1997). Therefore, if at higher levels of workload there is a deterioration in monitoring and service

quality that necessitates an increase in referrals to physicians, this would be expected to be reflected

by an increase in the observed rate of fetal distress. There is no evidence that this is the case,

however: In Table 14 the APE of workload on the reported rates of fetal distress is shown to be

insignificant for both the non-complex (APE=−0.007, p -value = 0.134) and complex (APE= 0.007,

p -value = 0.248) patient episodes.

In summary, we find no evidence in the data that there is any systematic deterioration in the

health status of the patients or the babies at higher levels of workload that would be driving the

increase in referrals. This suggests instead that the midwife protects against the potentially adverse

impact of excess load on patient safety by pulling on the two levels at her disposal: the service

configuration decision and the referral decision. Overall, therefore, we claim that the results we

observe are more likely to be driven by the hypothesized behavioral change, though we acknowledge

that it is possible that a small component of this effect may be driven by an unobserved increase

in patient risk.
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6. Relevance and Validity of the Instruments

One of the principal findings in the main paper is that workload can have a surprisingly large effect

on the provision of discretionary components of a service, e.g. epidural analgesia, and through this

can, unexpectedly, reduce the likelihood of a customer experiencing an undesirable outcome, such

as an unnecessary physician-led delivery. Given that endogeneity of the epidural analgesia variable

was a concern when estimating its effect on the rate of physician-led deliveries, this was corrected

for in the paper by specifying a recursive bivariate probit (BiProbit) model. When doing so we

explained that in order to improve the estimation it was desirable (though not strictly necessary)

to find instrumental variables (IVs). These IVs are designed to be included in the estimation

of the potential endogeneous regressor, but excluded from the estimation of the outcome. Two

instruments that were identified for the epidural/physician-led delivery BiProbit models were (i)

the number of operating theaters in use in the 2-4 hour period prior to the time of birth of the

focal patient, and (ii) the distance between the patient’s place of residence and the hospital. In this

section formal testing is performed to determine the relevance and validity of these instruments.

6.1. Tests of under- and weak identification

The underidentification test is a Lagrange multiplier (LM) test to determine whether the equation

is identified. Specifically, the test determines whether the excluded instruments are correlated

with the potential endogenous regressor, i.e. that the excluded instruments are “relevant” in the

selection (first-stage) equation. “Weak identification”, on the other hand, arises when the excluded

instruments are correlated with the endogenous regressors, but only weakly. Estimators can perform

poorly when instruments are weak: estimates may be inconsistent, tests for the significance of

coefficients may lead to the wrong conclusions, and confidence intervals are likely to be be incorrect.

Here we describe how we test for both of these properties.

First it is important to note that the majority of tests are based on a linear IV regression

model where the dependent variable in the outcome equation and the endogeneous variable are

continuous. In order to perform formal testing we therefore follow convention and treat the binary

epidural analgesia and physician-led delivery variables as continuous. While this means that the

true critical values of the tests and significance levels may differ from those that are reported here,

we note that differences in estimated parameters that arise from using a continuous rather than

binary model specification are often small, and that the estimated coefficients using these models

(not shown) are consistent with those reported in the main paper.

In testing for both underidentification and weak identification we use the method of Sanderson

and Windmeijer (2015), implemented in and reported by the ivreg2 command in Stata 12.1 (Baum

et al. 2010). The Sanderson-Windmeijer (SW) first-stage chi-squared Wald statistic is distributed
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as chi-squared with (IE−NEN +1) degrees of freedom under the null that the particular endogenous

regressor of interest is underidentified, where IE is the number of excluded instruments (= 2 here)

and NEN is the number of endogenous regressors (= 1 here). For the model under investigation,

the SW Chi-sq statistic is calculated to take a value of 15.91 with 2 d.f., which has corresponding

p -value = 0.0004. This means that there is strong evidence to reject the null hypothesis of under-

identification at e.g. the 1% significance level, and so it is possible to conclude that the excluded

instruments are “relevant”.

Turning next to the issue of weak identification, the SW first-stage F -statistic is the F form of the

SW chi-squared test statistic and can be used as a diagnostic for whether a particular endogenous

regressor is “weakly identified”. In particular, the F -statistic can be compared against the critical

values for the Cragg-Donald F -statistic reported in Stock and Yogo (2005) to determine whether

or not the instruments perform poorly. The relevant test has null hypothesis that the maximum

bias of the IV estimator relative to the bias of ordinary least squares, i.e.

∣∣∣∣ E[β̂IV ]−β
E[β̂OLS]−β

∣∣∣∣, is b, where

b is some specified value such as 10%. For a single endogenous regressor, assuming the model to

be estimated under limited information maximum likelihood, the critical F -values are 8.68, 5.33

and 4.42 for maximum biases of b= 10%, 15%, and 20%, respectively. If the estimated F -statistic

is less than a particular critical value then the conclusion is that the instruments are weak for

that level of bias. Here, the estimated SW F -statistic is equal to 7.89, indicating a maximal bias

of between 10% and 15%. This indicates that there is no evidence to suspect that our models are

heavily affected by the problem of weak instruments.

6.2. Testing for overidentification

In addition to the excluded instruments being “relevant”, it is also important to check that they

are “valid”, i.e. (1) uncorrelated with the error term (i.e. orthogonal to epsilon) and (2) correctly

excluded from the output equation (i.e. only indirectly influence dependent variable y). A joint

null hypothesis test that (1) and (2) are satisfied, i.e. of the overidentifying restrictions, is the

Sargan-Hansen (SH) test (Sargan 1958, Hansen 1982). A rejection of the SH test raises doubts

about the validitiy of the instruments. Under the null, the test statistic is distributed as chi-squared

with degrees of freedom equal to the number of (I−N) overidentifying restrictions, where I is the

number of instruments (II included and IE excluded) and N is the number of regressors (NEN

endogeneous and NEX exogenous). In the models in the paper II = NEX and so the degrees of

freedom is equal to II −NEN = 2− 1 = 1. When I =N the model is exactly identified and the SH

test cannot be performed.

The Sargan-Hansen test statistic is reported in the output when using the ivreg2 command

in Stata 12.1 (Baum et al. 2010), and takes value 2.72, with corresponding p -value = 0.10. This

is insignificant at the 5% significance level, and so we do not reject the null hypothesis that the

overidentifying restrictions are satisfied, i.e. the evidence suggests that the instruments are “valid”.
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7. Effect Size Calculations for HeckTreat Models

We report below the method for calculating the effect size under a HeckTreat model. While the

method for doing this for a BiProbit model is well documented, this is not the case for the HeckTreat

model and so the derivation is provided below in order to elucidate this process.

The HeckTreat model can be expressed as:

yi =xiβ + δzi + εi

zi =1[z∗i > 0]

z∗i =wiγ +ui

(εi, ui)∼N
((

0
0

)
,

(
σ ρ
ρ 1

))
.

We are interested in the marginal effect of the regressors on yi in the observed sample. For a

particular regressor, xik, this is equal to

∂E [yi|wi, xi, zi]
∂xik

.

To find this, start by observing that

E [yi |wi, xi, zi] = P [zi = 0 |wi]E [yi |wi, xi, zi = 0] +P [zi = 1 |wi]E [yi |wi, xi, zi = 1] .

Solving for the component parts, we get

P [zi = 0 |wi] = P [z∗i ≤ 0 |wi] = P [wiγ +ui ≤ 0 |wi] = P [ui ≥−wiγ |wi] = 1−Φ(wiγ) ,

and a similar derivation gives P [zi = 1 |wi] = Φ(wiγ). Using the moments of the incidentally trun-

cated bivariate normal distribution (Theorem 19.5 in Greene 2008) gives

E [yi |wi, xi, zi = 0] = xiβ−σρ
φ (wiγ)

1−Φ(wiγ)

E [yi |wi, xi, zi = 1] = xiβ + δ+σρ
φ (wiγ)

Φ(wiγ)
.

Putting this together it follows that

E [yi |wi, xi, zi] = (1−Φ(wiγ))

[
xiβ−σρ

φ (wiγ)

1−Φ(wiγ)

]
+ Φ(wiγ)

[
xiβ + δ+σρ

φ (wiγ)

Φ(wiγ)

]
= [xiβ−Φ(wiγ)xiβ−σρφ (wiγ)] + [Φ(wiγ)xiβ + Φ(wiγ) δ+σρφ (wiγ)]

= xiβ + δΦ(wiγ) .

This means that the total change of a regressor xik that appears in both xi and wi on y is

∂E [yi|wi, xi, zi]
∂xik

= βk + δγkφ (wiγ) , (3)

where βk and γk are the coefficient estimates for xik in the outcome and selection equations respec-

tively, and δ the coefficient for the endogenous regressor z in the outcome equation. The term βk

is the direct effect of workload on y; δγkφ (wiγ) is the indirect effect of workload through z.
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