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Prediction

Use financial networks for predictive modeling



Prediction is very difficult, especially about the future. 

(Niels Bohr)

Human Behaviour



Prediction

Parsimony

Predictive modeling



Predictive modeling
Prediction is the estimation of the probability of a 

(future) event given the available information about 

other (past) events
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We must estimate from data the most likely probability 

distribution of the system of events
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Bayes’ formula

High dimensional problem!     (especially for big data)



Predictive modeling
Prediction is not only about the future, 

from

we can predict the values of the variables XB for any 

kind of scenario of the variables XA

We can estimate the effects of events in XA on XB
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Predictive modeling

The conditional probability

is a tool for:

- test hypothesis

- quantify risk 

- stress testing

- analyze scenarios
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Predictive modeling

Predicted future values of variables XB given past values 

of X
-
A are the expectation values 
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Uncertainty about the future given the past is quantified 

by the conditional entropy
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This is the regression and for linear models (multivariate 

Gaussian) this is the linear regression formula



Predictive modeling

The reduction of uncertainty on variables XB given the 

knowledge of the past of variables X
-
A discounting for 

their past  X
-
B is

H(X
B

| X
B

- )-H(X
B

| X
A

- ,X
B

- ) =TE(X
A
®X

B
)

Thisis the tranfer entropy that for liner models (multivariate 

Gaussians) coincides with Granger causality



Graphical models

To construct the joint multivariate distribution we make 

use of the structure of conditional dependency
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Graphical models

If these inference networks are chordal (or 

decomposable) we then have
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The joint probability 

distribution of the entire 

system (large number of 

variables) can be estimated 

form the probability 

distributions of cliques and 

separators (small number 

of variables) 

S. L. Lauritzen, Graphical Models (Oxford:Clarendon, 1996)

Alexander Denev Probabilistic Graphical Models: A New Way of Thinking in Financial Modelling (Risk Books, 2015)



Graphical models

This is great… however to establish conditional 

dependency 

is very hard… actually it is as hard as computing the 

entiere joint distribution function!

Building the exact inference network is an impossible 

task for a large number of variables



Information filtering networks
To solve this problem we propose to build the inference 

structure for the graphical model as an 

Information filtering network 

• Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph" 

Journal of Comlex Networks (2016) arXiv preprint arXiv:1505.02445 (2015).

• Nicoló Musmeci,, Tomaso Aste, and Tiziana Di Matteo. "Relation between financial market structure and the real economy: 

comparison between clustering methods." PloS one 10.3 (2015): e0116201.

• F. Pozzi, T. Di Matteo, and TA , “Spread of risk across financial markets: better to invest in the peripheries”, Scientific Reports 3 

(2013) 1665.

• W.M. Song, T. Di Matteo and T. Aste, “Hierarchical information clustering by means of topologically embedded graphs”, PLoS

ONE, 7 (2012) e31929 

• M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna, “A tool for filtering information in complex systems” Proceedings of 

the National Academy of Sciences of the United States of America 102, 10421 (2005).

TA, T. Di Matteo and S. T. Hyde, Complex networks on hyperbolic surfaces Physica A 346 (2005) 20-26.



Information filtering networks



Information filtering networks
Connect the nearest vertices 

eucleadean distance = most correlated

hyperbolic distance = mutual information

Keep the graph chordal
clique forests

Add other constraints
max clique size (2 = MST)

planarity (TMFG)

information criteria (e.g. Akaike)

These are fast algorithms O(N2)
(topological & homological measures, betty numbers, cycles and cliques retrieved from construction)

Massara, Guido Previde, Tiziana Di Matteo, and TA. "Network Filtering for Big Data: Triangulated Maximally Filtered Graph" 

Journal of Comlex Networks (2016) arXiv preprint arXiv:1505.02445 (2015).



Clique forest
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Graphical Model
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Only low-dimensional 

local probabilities 

must be estimated



Prediction

Parsimony

Predictive modeling
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By constraining the model to reproduce observed 

moments while maximizing Shannon-Gibbs entropy

(maximum Entropy method), at the second order, we 

have that the model must be a multivariate Gaussian:

LoGo
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We keep only the significant interactions 

and set to zero (Max Ent.) the uncertain 

ones: Ji,j = 0  iff Xi , Xj conditionally 

independent 

Ji,j is sparse and it has the structure given 

by the information filtering network 



Ji,j is computed form local inversion of the covariance 

matrix over the clique forest

J
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We obtain a sparse inverse covariance (our graphical 

model) by doing local inversion only 

Super-fast algorithm O(N) even O(logN) if parallelized

LoGo

W. Barfuss, GP Massara, T Di Matteo & TA “Parsimonious modeling with Information Filtering Networks” arXiv preprint 

arXiv:1602.07349 (2016).



Observation

Model

Prediction & Testing
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P a s t

F u t u r e

Statistical description 

Test: 
is our model, built form past observations, associated with a 
large likelihood for future observations?
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is our model, built form past observations, associated with a 
large likelihood for future observations?
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is our model, built form past observations, associated with a 
large likelihood for future observations?
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Linear Model

Test: 
is our model, built form past observations, associated with a 
large likelihood for future observations?
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LoGo - TMFG

State-of-the-art sparse model (G-lasso)

LoGo - MST

Linear Model

Test: 
is our model, built form past observations, associated with a 
large likelihood for future observations?



Prediction
In which sense we predict? 

With p(Xfuture|Xpast) we can predict the future

This is the same as (linear) regression 

and also Granger causality (2x Transfer entropy)

The advantage is that we have a sparse model computed in a 

very efficient way applicable to big-data predictive analytics
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Test: 
Uncertainty spillover across regions in banking system 

2005-2015
115 banks: 

10 in NA , 66 in EU, 39 in AS
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Networks for Prediction
With p(XB|XA

-) we can quantify probability of future events

With p(XB|XA) we can predict impact of unobserved  scenarios 

and test hypothesis

p(XA,XB) can be constructed from local 

probability estimations over an 

information filtering network (low dimension problem)  

Nodes and edges can be added or removed with local moves 

only

Aggregation of risk is straightforward

LoGo works better than state-of-the-art sparse graphical 

models and it is faster



Si l’ordre satisfait la raison, le désordre fait les délices  de l’imagination

Paul Claudel

http://www.cs.ucl.ac.uk/staff/tomaso_aste/

Thank YOU!

http://fincomp.cs.ucl.ac.uk/
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Massara, Guido Previde, Tiziana Di Matteo, and TA. 

"Network Filtering for Big Data: Triangulated Maximally 
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