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Financial Networks

Definition
Financial network
G = {V ,E}, with V set of players
(e.g. banks or financial institutions)
and E Y = {(i , j)Y | i , j ∈ V } a set of
contracts of type Y between players
i , j .
Exposure matrix, weighted
adjacency matrix AY

ij ∈ R+

Leverage matrix1: exposure of i to
j relative to i’s regulatory capital
(ability to absorb losses from j

ΛY
ij =

AY
ij

Ei
∈ R+
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1Battiston S., Caldarelli, G., DâĂŹerrico, M., Gurciullo, S. (2016). Leveraging the network...,
Statistics and Risk Modeling
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General model set-up

Credit Contracts & 
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Time 0: banks allocate assets/liabilities (with any rule). Time 1:
known shock.
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Time 2: unknown shocks hit banks’ external assets, some banks
may default.
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General model set-up
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Time T > 2: debt contracts mature. Defaulted banks’s assets are
liquidated, creditors get recovery rate R (endogenous or
exogenous).

S. Battiston Dept. Banking and Finance, Univ. of Zurich The Price of Complexity in Financial Networks



General model set-up
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Time t ≤ 2 ≤ T : players want to value counterparties’s debt, based
on default probability computation.
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General model set-up

Derivative Contracts 
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Time 1: banks allocate assets and liabilities, including derivative
contracts (dependent on other bank’s default)
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General model set-up
External assets (investments outside the financial network)

aE
i (2) = aE

i (1)(1 + µ + σ ui ), with ui a r.v. with mean 0 and
variance 1, µi expected return and σi > 0 scaling factor. Shock
joint probability distribution: p(u1, ..., un): correlation is
accounted.

Liabilities (obligation of players to internal/external creditors)
`j constant for bank j . Unitary value of j’s obligation for j’s
counterparties: xB

j (2) = 1 OR xB
j (2) = R (if default) with R

recovery rate (endogenous or exogenous)
Interbank assets (investments in the debt of other players in the
financial network)

Bij : fraction of i ’s interbank assets invested at time 1 in the
liability of j . xB

j : unitary value of j ’s interbank liability,
xB

j (1) = 1 ∀j .
Interbank assets of bank i , aB

i (2) = aB
i (1)

∑
j BijxB

j (2).

Battiston, Caldarelli, Roukny, May, Stiglitz, 2016 PNAS
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Default condition
Special case: R exogenous

Default condition: iff negative equity at time 2

ei (2) =aE
i (2) + aB

i (2)− `i =

aE
i (1)(1 + µ+ σ ui ) + aB

i (1)
∑

j
BijxB

j (2)− `i < 0

ei (2) < 0 iff ei (2)
ei (1) < 0, thus we can rewrite

εi (1 + µ+ σ ui ) + βi
∑

j BijxB
j (2)− λi < 0, where εi leverage over

external assets, βi leverage over interbank assets, λi = εi + βi − 1
debt leverage.
Default indicator: χi = 1 (i’s default) and χi = 0 otherwise.
ui stochastic: default condition, with θi default threshold:
ui < θi ≡ 1

εiσ
(−εi µ+ βi (1−

∑
j BijxB

j (χj )− 1),
1 no bank defaults θi = θ−i = − 1

εiσ
(εi µ+ 1)

2 All banks default θi = θ+
i = 1

εiσ
(−εi µ+ βi (1− R)− 1)
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Default condition
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Remarks on Recovery Rate Mechanisms

Endogenous recovery rate from recursion: (e.g. Eisenberg-Noe
2001; Elsinger ea. 2006; Rogers and Veraart 2013, NEVA
Barucca ea. 2016)

p∗i = min
{
β

n∑
j=1

ΠT
ij p∗j + αAe

i , p̄i

}
(1)

Exogenous recovery rate (Furfine 2003; SYMBOL (EC-JRC
Ispra); DebtRank (Battiston ea. 2012); “Leverage Networks”(
Battiston ea. 2016); Price of complexity PNAS (Battiston ea.
2016); Uncertainy (Roukny ea. 2016).

NOTE: to capture situations of systemic risk and great
uncertainty on the value of external assets, exogenous R may
be more appropriate. Legal procedure for liquidation may take
months or years (see e.g. Lehman case)

General results holding for both cases: NEVA (Network Asset
Valuation Model, Barucca ea. 2016)
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Default probability (with R exogenous)

For any state of the default indicator vector χ = [χ1, χn] of all
banks, determine the set of threshold values θi (χ).
Default probability of bank i , Pi and the systemic default
probability Psys is unique (for any given χ0):

∀i Pi =
∫
χi (u, χ0) p(u) du, (2)

Psys =
∫
χsys(u) p(u, χ0) du, (3)

with p(u) joint density function of shocks
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Analytical Example

Three basic architectures1 with three nodes: a star, a chain and a ring,
uniform i.i.d. shocks in [−1, 1]; θ+

i (θ−i ) threshold with all (none) i’s
counterparties defaulting.

Systemic default probability (area of shocks where all banks default):
Psys

star = (1/23)(1 + θ+
1 )(1 + θ−2 )(1 + θ−3 );

Psys
chain = (1/23)(1 + θ+

1 )(1 + θ+
2 )(1 + θ−3 );

Psys
ring = (1/23)(1 + θ+

1 )(1 + θ+
2 )(1 + θ+

3 ).

Note: 1 + θ+ = (εσ − εµ− 1− β(1− R))/(εσ) = (constant + β(1− R))/(εσ).
Instead, θ− = (−εµ− 1)/(εσ).

Case of homogenous banks:
Psys

star = (1/23) (1 + θ−1 )2 (1 + θ+
1 ) = (1/23) (1 + θ−1 )2 (constant + β(1− R))/(εσ));

Psys
chain = (1/23) (1 + θ−1 ) (1 + θ+

1 )2 = (1/23) (1 + θ−1 ) (constant + β(1− R))/(εσ))2;
Psys

ring = (1/23)(1 + θ+
1 )3 = (1/23) (constant + β(1− R))/(εσ))3

1Battiston, Caldarelli, Roukny, May, Stiglitz, 2016, The Price of Complexity in Financial
Networks, PNAS
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Analytical Example

Network architectures and systemic risk
Systemic default probability in the three architecture increases from star
to chain to ring:

Psys,ring ≥ Psys,chain ≥ Psys,star

as long as β(1− R))/(εσ) > 1 (empirically relevant)

Network architectures and errors on systemic risk
Sensitivity of the default probability on the recovery rate R increases from
star to chain to ring:
∂Psys,ring/∂R ∝ (β/(ε σ))3;
∂Psys,chain/∂R ∝ (β/(ε σ))2;
∂Psys,star/∂R ∝ β/(ε σ).
as long as β/(ε σ) > 1 (empirically relevant).
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Numerical Results
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Small errors on contracts characteristics lead to large errors on
systemic risk
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Numerical Results
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Errors on network structure lead to large errors on systemic risk
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Policy Implications

Findings: complexity and errors on systemic risk
Misestimations of systemic risk (by market players with imperfect
information) leads to social costs (inadequate buffers, moral hazard,
regulatory capture).
Amplification is intrinsic: small errors on 1) contracts characteristics
or 2) network structure can lead to large errors on probability of
systemic default.
Mechanism: errors e.g. on recovery rate R on individual contracts
get compounded multiplicatively along chains of connected banks.
Network complexity may increase not only systemic risk but also
inaccuracy on the estimation of systemic risk. a

More research needed to tame complexity in financial ecosystems b.
aBattiston, Caldarelli, Roukny, May, Stiglitz, 2016, The Price of Complexity in Financial Networks, PNAS
bBattiston, S., Farmer, J. D., Flache, A., Garlaschelli, D., Haldane, A. G., Heesterbeek, H., âĂę Scheffer, M.

(2016). Complexity theory and financial regulation. Science, 351(6275), 818âĂŞ819. Battiston, S., Caldarelli, G.,
Georg, C.-P., May, R., & Stiglitz, J. (2013). Complex derivatives. Nature Physics, 9(3), 123âĂŞ125.
doi:10.1038/nphys2575
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Asymmetric Information, Externalities and Networks

Legacy of economics of information:
1 recognition that information is typically costly, imperfect, and

asymmetric
2 this “deeply affects fundamental understanding of economics

such as welfare theorem and characterization of a market
economy, and provides explanations of economic and social
phenomena that otherwise would be hard to understand.” 2

With perfect information: externalities akin coordination problem.
In contrast, with imperfect and asymmetric information:
qualitatively different challenges, e.g. agents with different
information sets on origin/magnitude of externalities can play
strategically.
Asymmetric information associated with important externalities
affecting specific actors at specific times and along specific
pathways (e.g. chains of actors and contracts) in a network

2adapted from [Stiglitz, 2000]
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Network Economics and Information Economics

Relations btw Information Economics and Network Economics:
Many (if not most) relevant externalities are associated with imperfect,
asymmetric information.
The impact of actors onto and from the system depends on their
positions in a network of relations.
While standard approaches are inadequate to capture these dependences,
the network approach allows to characterize the microeconomic mechanics
of how externalities emerge and how they lead to systemic effects.
As a result, network economics succeeds in delivering a number of policy
insights in various areas that could not be obtained otherwise.
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Network Economics and Information Economics
Two specific areas in which financial networks matter.

1 Financial stability. Linkages can have ambiguous effects: reduce
individual risk but propagate financial distress (assets or/and
liability side). Issues remain open but much work done3

2 Macroprudential policy.
Incentives to get too-connected-to-fail and
too-correlated-to-fail4.
Empirically: tightly-knit structures5 and gain exposures to
similar risks6.
Structure alters incentives inducing collective moral hazard7

whereby groups of institutions are altogether to-big-to-fail.
This gives institutions greater market power and increases the
risk of regulatory capture.

3[Allen and Gale, 2001, Allen et al., 2012, Battiston et al., 2012a, Battiston et al., 2012b,
Tasca and Battiston, 2013, Brock et al., 2009, Beale et al., 2011, Gai et al., 2011, Stiglitz and Greenwald, 2003,
Acemoglu et al., 2015]

4[Acharya, 2009]
5[Boss et al., 2004, Craig and Von Peter, 2010, De Masi et al., 2009, de Masi et al., 2006, Iori et al., 2008,

Soramäki et al., 2007, Upper and Worms, 2004, Vitali et al., 2011, Vitali and Battiston, 2014,
Fricke and Lux, 2012]

6[Gai et al., 2011, Battiston et al., 2016c]
7[Farhi and Tirole, 2012]
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Financial network literature at a glance

Non-exhaustive list of streams and works:
Models of default contagion, pioneering work 8, boosted by 2008
aftermath 9

Models of distress contagion: propagation even if not default 10,
DebtRank applications11.
Models of contagion on liability side: liquidity hoarding 12.
Models of common asset exposures: common asset exposures
trigger price-leverage spirals 13.

8[Allen and Gale, 2001, Eisenberg and Noe, 2001]
9[Elsinger et al., 2006, Gai and Kapadia, 2010, Gai et al., 2011, Beale et al., 2011,

May and Arinaminpathy, 2010, Anand et al., 2012, Acemoglu et al., 2015, Elliott et al., 2014,
Battiston et al., 2012b, Roukny et al., 2016, Glasserman and Young, 2015, Upper, 2011]

10[Battiston et al., 2012a, Tasca and Battiston, 2016]
11[Battiston et al., 2012c, Battiston et al., 2016a, Di Iasio et al., 2013, Tabak et al., 2013,

Poledna and Thurner, 2014, Thurner and Poledna, 2013, Poledna et al., 2015, Fink et al., 2016,
Puliga et al., 2014, Bardoscia et al., 2015a, Bardoscia et al., 2016, Bardoscia et al., 2015b, Battiston et al., 2016b,
Barucca et al., 2016]

12[Gai et al., 2011, Fourel et al., 2013, Acharya and Merrouche, 2010, Galbiati et al., 2013,
Galbiati and Soramaki, 2010, Mart\’\inez and León, 2015]

13[Kiyotaki and Moore, 2002, Caballero and Simsek, 2013, Diamond and Rajan, 2011, Adrian and Shin, 2008,
Caccioli et al., 2014, Georg, 2013, Tasca and Battiston, 2016, Battiston et al., 2016a]
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Financial network literature at a glance

Non-exhaustive list of streams and works:
Empirical analysis of financial networks, e.g. equity holdings 14

and claims on debt obligations, 15.
Network reconstruction: estimation from partial information on
the contracts and robustness of the estimations of systemic risk 16.
Correlation measures in market data linkages estimated from
time series 17, Note: different networks may not be compared 18.

14[Garlaschelli et al., 2005, Glattfelder and Battiston, 2009, Vitali et al., 2011, Vitali and Battiston, 2011,
Vitali and Battiston, 2014]

15[Boss et al., 2004, Iori et al., 2008, de Masi et al., 2006, Elsinger et al., 2006, Cajueiro and Tabak, 2008,
Soramäki et al., 2007, Craig and Von Peter, 2010, Upper and Worms, 2004, Mart\’\inez and León, 2015,
Solorzano-Margain et al., 2013, Martinez Jaramillo et al., 2012, Bargigli et al., 2014, Mart\’\inez and León, 2015,
Roukny et al., 2014, Silva et al., 2016, Tabak et al., 2013]

16[Upper and Worms, 2004, Mistrulli, 2011, Musmeci et al., 2013, Anand et al., 2015, Cimini et al., 2014b,
Cimini et al., 2014a, Cimini et al., 2014c, Squartini et al., 2013]

17[Bonanno et al., 2003, Onnela et al., 2004, Billio et al., 2011, ?, Kaushik and Battiston, 2012]
18[Puliga et al., 2014]
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Uncertainty vs interdependence

Two fundamental features of financial systems

Uncertainty: traditional focus,
valuation of corporate
obligations building on Merton
1974: ex-ante valuation. Mostly
disregards interdependence
between claims’ values.

Interdependence: more recent
(Eisenberg-Noe 2001, Allen-Gale
2001, Elliott et al., 2014;
Acemoglu 2015, Glasserman
2015).

Mostly disregards
ex-ante uncertainty

When uncertainty and interdependence are both accounted, the valuation
today of claims with maturity in the future is non-trivial 19

19as acknowledged also in original Eisenberg-Noe 2001
S. Battiston Dept. Banking and Finance, Univ. of Zurich The Price of Complexity in Financial Networks



Uncertainty vs interdependence

Two fundamental features of financial systems

Uncertainty: traditional focus,
valuation of corporate
obligations building on Merton
1974: ex-ante valuation. Mostly
disregards interdependence
between claims’ values.

Interdependence: more recent
(Eisenberg-Noe 2001, Allen-Gale
2001, Elliott et al., 2014;
Acemoglu 2015, Glasserman
2015). Mostly disregards
ex-ante uncertainty

When uncertainty and interdependence are both accounted, the valuation
today of claims with maturity in the future is non-trivial 19

19as acknowledged also in original Eisenberg-Noe 2001
S. Battiston Dept. Banking and Finance, Univ. of Zurich The Price of Complexity in Financial Networks



Models Lanscape
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DebtRank: Leveraging the Network

DebtRank: Systemic Impact vs Vulnerability
DebtRank computes, conditional to initial shock (on one or more banks) and
taking into account the obligation network.

1 systemic vulnerability hi of bank i (i.e. relative equity loss), as well as
global vulnerability H

2 systemic impact DRi of each bank ( i.e. weighted sum of equity loss
induced on others)

DebtRank (Battiston ea. SciRep 2012); Leverage Networks (Battiston ea. SRM 2016; JAI 2016)

Vulnerability depends on Leverage Network

hi (t + 1) = min
{

1, hi (t) +
∑

j∈A(t) Λb
ijhj (t)

}
with Λb

ij = Ab
ij/Ei (0) interbank

leverage of i towards j; R exogenous recovery rate. [Battiston ea. 2016 JAI; Battiston
ea. 2016 Leveraging, SRM]

Network effects as large as direct effects
hi ≈

∑
k εik sk +

∑
j,k βij εjksk ≈ ε s + β εs, with sk relative shock on asset k.

[Battiston ea. 2016 JAI; Battiston ea. 2016 Leveraging, SRM]
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Rethinking Financial Contagion

Conservation of losses in Eisenberg-Noe based models
In EN-based stress-tests: network is irrelevant: aggregate losses across banks
and creditors equal initial losses to shocked bank. Overestimation of soundness
of financial systems, no matter what size and complexity.

Systematic comparison across contagion models
Leverage framework allows to compare losses

across models: EN ≤ RV ≤ cDR
asset types
shock scenarios
recovery rate

[Visentin ea. 2016 Rethinking]
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NEVA - Network Valuation of Financial Assets

Existence and convergence to a consistent valuation
If each bank computes the expected value of its claims on other
banks’s obligations at time t as a function of other banks’ equity
and its own external assets, based on local information,
then market players can agree on consistent value for all obligations,
taking into account both the uncertainty on external shocks and
interdependence via the network.
Various types of contracts are covered: loans, bonds, equity
holdings. However, e.g. no naked-CDS.
All previous contagion models are a special case

Note on Imperfect Information
Information can be imperfect and asymmetric (e.g. players could
believe in different shock distributions on different portions of
securities). For any given j , no need that mathcalVij = mathcalVkj
for all i , k.
More research needed to understand how to possibly incorporate
players’s reactions.
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NEVA encompasses all previous models, including
DebtRank

NEVA includes previous models
By assigning the valuation functions appropriately the Φ(E ) maps is
equivalent to the map in the following models: Eisenberg-Noe 2001,
Furfine 2003, Rogers-Veraart 2013, DebtRank 2012

The analytical meaning of DebtRank
DebtRank is the consistent network valuation of interbank securities in
the case of ex-ante uncertainty with a given uniform distribution of shocks
on external assets at time T and external assets recovery rate α = 0.

New: Endogenous DebtRank with generic shock distribution
DebtRank distress propagation can be combined with EN idea of
endogenous recovery. By assigning the valuation functions appropriately
the Φ(E ) map is equivalent to a map of EN in the limit of t → T and for
t < T provides consistent valuation with endogenous recovery and
ex-ante uncertainty with generic underlying shock distribution.
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Valuation across models
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Ae = {10, 8, 6} = le and Le = {9, 7, 5}.
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