

Rethinking Financial Contagion

Marco D'Errico

University of Zurich marco.derrico@uzh.ch

Joint with G. Visentin and S. Battiston September 13, 2016

Broad agenda: is it possible (and under what conditions) to price systemic risk?

- Broad agenda: is it possible (and under what conditions) to price systemic risk?
- Interconnectedness: relationship between valuation and contagion

- Broad agenda: is it possible (and under what conditions) to price systemic risk?
- Interconnectedness: relationship between valuation and contagion
- To what extent is **direct contagion** relevant?

- Broad agenda: is it possible (and under what conditions) to price systemic risk?
- Interconnectedness: relationship between valuation and contagion
- To what extent is **direct contagion** relevant?
- Endogeneity: does an interconnected financial system redistribute or amplify losses?

- Broad agenda: is it possible (and under what conditions) to price systemic risk?
- Interconnectedness: relationship between valuation and contagion
- To what extent is direct contagion relevant?
- Endogeneity: does an interconnected financial system redistribute or amplify losses?
- Can policymakers/regulators reduce the extent of contagion during a crisis? What tools do they need?

- Broad agenda: is it possible (and under what conditions) to price systemic risk?
- Interconnectedness: relationship between valuation and contagion
- To what extent is direct contagion relevant?
- Endogeneity: does an interconnected financial system redistribute or amplify losses?
- Can policymakers/regulators reduce the extent of contagion during a crisis? What tools do they need?

Some witty quotes

You couldn't tell whether they were bankrupt or not,

because that depended on whether they got paid money that was owed to them by other firms **who might or might not be in default** depending on whether the firms that owed them money went bankrupt. [Joseph Stiglitz]

You couldn't tell whether they were bankrupt or not,

because that depended on whether they got paid money that was owed to them by other firms **who might or might not be in default** depending on whether the firms that owed them money went bankrupt. [Joseph Stiglitz]

The experiment we never ran is, suppose the government stepped aside and let these institutions fail. **How long would it have taken to have unscrambled** everything and figured everything out? My guess is that we are talking **a week or two**. [Eugene Fama]

- i wants to evaluate the claim a_{ij}
- e.g. via standard structural model (Merton, 1974)
- depends on j's probability of default
- which depends on the process of its assets, $A_j(t)$

- Same thing for a_{ik}
- Will depends on j's asset process $A_k(t)$
- *i* tries to model **correlations** between $A_j(t)$ and $A_k(t)$

- Correlation (unknown ex-ante) between j and k increases...
- Does i even know? Can i price correctly?

- Let us reverse a link and create a cycle...
- p(i) depends on p(j) which depends on p(k), which depends on p(i)...

- *i*, *j* and *k* need to evaluate their claims **simultaneously**
- even *clearing* is "non-trivial" (EN, 2001)

How does it look like in reality?

How does it look like in reality?

Interplay between:

Mechanics

- Some financial products: "mainly markets for intermediaries rather than individuals or firm" (Allen and Santomero, 2000)
- large intrafinancial "positions" (the X-trillion OTC market) → what is the economic value/risk?

Interplay between:

Mechanics

- Some financial products: "mainly markets for intermediaries rather than individuals or firm" (Allen and Santomero, 2000)
- large intrafinancial "positions" (the X-trillion OTC market) → what is the economic value/risk?

Models:

- Set of **beliefs** on too big to fail and too interconnected to fail... [no counterfactual evidence]
- F. Black: people use the Black-Scholes-Merton model because they understand the (now unrealistic) assumptions...

Interplay between:

Mechanics

- Some financial products: "mainly markets for intermediaries rather than individuals or firm" (Allen and Santomero, 2000)
- large intrafinancial "positions" (the X-trillion OTC market) → what is the economic value/risk?

Models:

- Set of **beliefs** on too big to fail and too interconnected to fail... [no counterfactual evidence]
- F. Black: people use the Black-Scholes-Merton model because they understand the (now unrealistic) assumptions...
- Robert K. Merton: self-fulfilling prophecies and Thomas "theorem" *If men define situations as real, they are real in their consequences.*

Conservation vs amplication

Conservation vs amplication

▶ an original shock of *X* euros on external assets

Conservation vs amplication

- an original shock of X euros on external assets
- the financial system is leveraged → is the original loss amplified? (intervention from CB, taxpayers)

Most work is based upon the EN framework

- Clearing payments in a network of interconnected firms (Eisenberg and Noe, 2001), several extensions
- Main claim: existence and uniqueness of clearing under very mild assumptions → no uncertainty about the payments due
- How to find the clearing solution? Linear programming or fixed point argument
- A number of "hidden" assumptions...
- Result: contagion does not matter (Elsinger et al., 2006; Glasserman and Young, 2015)

Two rounds of losses:

- Initial loss: shock on external assets (or selection of asset classes),
- Final loss: contagion process on interbank network.

Two rounds of losses:

- Initial loss: shock on external assets (or selection of asset classes),
- Final loss: contagion process on interbank network.
- Individual relative equity loss:

$$h_i(t) = \frac{E_i(0) - E_i(t)}{E_i(0)} = 1 - \frac{E_i(t)}{E_i(0)}$$

Global equity loss:

$$H(t) = \sum_{i=1}^{n} w_i h_i(t)$$

Five different propagation models

Each model must specify:

- mechanics of loss propagation (how is distress propagated?),
- set of active nodes (who can propagate losses and when?).

Model	Mechanics	Active nodes
Einserberg-Noe	Sequential defaults	Defaulted banks
Rogers-Veraart	Sequential defaults with recovery rate	Defaulted banks
Default Cascades	Sequential defaults	First-time defaulted banks
Acyclic DebtRank	MtM (CVA)	First-time distressed banks
Cyclic DebtRank	MtM (CVA)	Distressed banks

Total relative equity loss first+second-round across models, 1% shock on external assets.

Total relative equity loss first+second-round across models, with 40% shock on non-performing loans.Result: in aDR second round ≈ first round; in EN, RV: second round very small

Total relative equity loss first+second-round across models with 7% shock on derivatives. Result: second round in aDR larger than EN, RV except for peak in 2009

Total relative equity loss vs. varying shock size on external asset. First-round (gray); second-round-only across models. Results: second round is non-monotone; models tend to coincide for large shocks.

Total relative equity loss vs. varying shock size on external asset. First-round (gray); second-round-only across models. Results: second round is non-monotone; models tend to coincide for large shocks.

Number of defaults vs. varying shock size on external asset. First-round (gray); second-round-only across models; models tend to coincide for large shocks.

Total relative equity loss first+second-round across models, 1% shock on external assets. Result: in aDR second round ≈ first round; in EN, RV: second round ≈ 0 Important conditions for validity, often overlooked; recent framework (Visentin et al, 2016) clarifies that:

- Default is the only financial event that matters. Depletion of equity does not change value of liability until default (not suitable for mark-to-market).
- Ex-post valuation in both EN, RV; conditional to
 - full knowledge on external assets
 - full knowledge on the network
- At default, all remaining assets are **liquidated immediately** and with certainty: "*the financial system is* **conservative**, *neither creating nor destroying value*" (EN 2001).
- Theorem: only losses in excess of equity are spread to counterparties

1	1
	0.5

1	1
	0.5

1	1
	0.5

1	1
	0.5

1	1
	0.5

1	1
	0.5

If interbank leverage $l_i^b < 1 \quad \forall i \rightarrow \text{no propagation at all.}$

Eisenberg-Noe: mutualization of losses

How are losses mutualized?

Example: Wheel graph on n nodes (left figure, n = 4). One fragile bank in the center is hit by a shock (red bank).

$$H^{EN}(\infty) = \frac{1.075}{2(n-1)+1}$$

Hence, conditional upon the default of one bank,

$$H^{\mathsf{EN}}(\infty) \approx \frac{1}{n-1}$$

As the number of counterparties increases systemic losses are reduced (at the individual level).

 $\implies H^{\text{EN}}(\infty)$ typically low.

Closed-form solutions given s_i , relative equity due to contagion:

$$H^{\text{EN}} = \frac{\sum_{i} s_{i} A_{i}^{e}}{\sum_{j=1}^{n} E_{j}(0)} = s I_{\text{sys}}^{e}$$

- Final losses in equity are uniquely determined as a mutualisation of initial losses in assets
- Therefore, despite formulation as recursive process on networks, in E.N. the banking system acts as a single bank with an aggregate balance sheet and conservation of losses.
- This implies that **network** structure does not matter in aggregate, but it matters individually

When departing from EN's assumptions, **losses can only be amplified** through the network, e.g. when

- Uncertainty about network structure
- Uncertainty about process on assets (including fire sales)
- Uncertainty about enforcement of EN
- Distress starts before default, e.g. in a mark-to-market re-evaluation (CVA and else)

When departing from EN's assumptions, **losses can only be amplified** through the network, e.g. when

- Uncertainty about network structure
- Uncertainty about process on assets (including fire sales)
- Uncertainty about enforcement of EN
- Distress starts before default, e.g. in a mark-to-market re-evaluation (CVA and else)

We prove ordering relationships:

$$H^{\mathsf{EN}}(t) \le H^{\mathsf{DC}}(t) \le H^{\mathsf{RV}}(t) \le H^{\mathsf{aDR}}(t) \le H^{\mathsf{cDR}}(t).$$

When departing from EN's assumptions, **losses can only be amplified** through the network, e.g. when

- Uncertainty about network structure
- Uncertainty about process on assets (including fire sales)
- Uncertainty about enforcement of EN
- Distress starts before default, e.g. in a mark-to-market re-evaluation (CVA and else)

We prove ordering relationships:

$$H^{\mathsf{EN}}(t) \le H^{\mathsf{DC}}(t) \le H^{\mathsf{RV}}(t) \le H^{\mathsf{aDR}}(t) \le H^{\mathsf{cDR}}(t).$$

How do we price/evaluate when these sources of uncertainty are relevant and therefore we have amplification? \blacktriangleright Does interconnectedness matter? \rightarrow No right model of contagion

- \blacktriangleright Does interconnectedness matter? \rightarrow No right model of contagion
- Most depends on information available to counterparties → opacity matters
- Historical analysis of the crisis

Despite the complexity, every cloud has a silver lining...

Despite the complexity, every cloud has a silver lining...

The conservation property allows to:

initial losses =
$$H^{EN} \leq H^{RV} \leq H^{NEVA}$$

- policymaker can move during a crisis towards the left of the inequality only by obtaining network data and balance sheet data
- Very ambitious: with right data, it is possible to run a real-time clearing of the financial system that tends to losses minimisation in case of defaults, even in case of uncertainty
- need for enforcement
- countercyclical accounting