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Disclaimer

Views and opinions expressed are those of the speaker(s) and 
do not necessarily represent official OFR positions or policy.
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Market Complexity and Systemic Risk

Why worry about market complexity?

“I believe the threats to the financial system stem largely from two 
increasingly dominant market characteristics. The first is the complexity 
of the markets. The second is the tendency for the markets to move 
rapidly into a crisis mode with little time or opportunity to intervene.  
... 
The challenges in supervising the financial system, and particularly in 
safeguarding against market crises and systemic risk, are centered in 
dealing with these two characteristics..”

-- Rick Bookstaber
Testimony before the House Financial Services Committee
October 2, 2007
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What is Complexity?

There are (too) many options
• Defining “complexity” as an emergent phenomenon – Mitchell (2009)

– Size
– Entropy
– Algorithmic information content
– Logical depth
– Thermodynamic depth
– Statistical complexity
– Fractal dimension
– Degree of hierarchy

• Catalogs of measures
– Lloyd (2001): 42 approaches to complexity measurement
– Bonchev and Buck (2005): 54+ specific formulas

Image source: NASA
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Complexity in Context

Complexity of financial markets
• Again, many conceptual possibilities

– Arinaminpathy, Kapadia, and May (2012)
– Caballero and Simsek (2009, 2013)
– Markose, Giansante, and Shaghaghi (2012)
– Delpini, Battiston, Riccaboni, et al. (2013)
– Gai, Haldane, and Kapadia (2011)
– Bookstaber (2007)
– Haldane and May (2011)
– Marsili and Anand (2013)
– Schwarcz (2009)
– Sheng (2010)

Dealer myopia in a “circle” network 
Caballero and Simsek (2009, 2013)

Phase transitions in systemic risk, 
a function of bank capitalization 
and network exposure
Haldane and May (2011)

Image sources: Caballero and Simsek (2009), Haldane and May (2011)
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Getting Empirical

Requirements for complexity measurement
• Focus on financial markets

– Transactions
– Contractual exposures
– Trading relationships

• Statistics at the network-level
– Comparison across markets
– Cardinal (numeric) metrics

• Financially meaningful
– Sensitive to local interactions
– Intuitive interpretation re: market institutions/practices
– Capture multifaceted complexity

Image source: OFR analysis
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Mathematical abstraction

Preparing for 
topological 

analysis

Counterparty graph model
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Counterparty network data
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We will work with the 
undirected, unweighted, 
market graph, Δ

Image sources: Library of Congress, OFR analysis
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Some Homology

Homology 
• Study of cycles

• Cycles can represent “holes”
• Cycles can be boundaries

• Examples from simplicial homology
• Points = vertices = 0-cells
• Line segments = edges = 1-cells
• Polygons = 2-cells, 
• etc…

• Boundaries
• Vertices (0-cells) have no boundary
• Edges, non-closed paths (1-cells) have endpoints
• Polygons (other 2-cells) have perimeters
• etc… Image source: Kabaria and Lew (2016), OFR analysis
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Some More Homology

Extension to more general graphs 

• About paths, cycles, and their boundaries
• Edge-path as a set (unordered) of “connected” edges

• 〈ABC〉
• Edge-cycle “ends” where it “starts” (boundary = 0)

• 〈ABCHG〉
• Edge boundary is difference between end points

• Visual depiction can be misleading

Image source: OFR analysis
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More Homology

Homology 
• Graph as a collection of vector spaces

• Linear combinations over 2 = {0,1}
• The spaces have vector bases of vertices, edges, etc.

• Example of 2 arithmetic:
〈ABCHG〉 + 〈DEFGH〉 =
1〈ABC〉 + 1〈H〉 + 1〈G〉 + 1〈DEF〉 + 1〈G〉 + 1〈H〉 =
1〈ABC〉 + 1〈DEF〉 + 1〈H〉 + 1〈H〉 + 1〈G〉 + 1〈G〉 =
1〈ABC〉 + 1〈DEF〉 + 0〈H〉 + 0〈G〉 =
1〈ABC〉 + 1〈DEF〉 =
〈ABCDEF〉

Image source: OFR analysis
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Still More Homology

Homology 

• Betti numbers count 
independent cycles

• Each vector space:
• Has a dimension, which

is its Betti number, bk(Δ)
• bk(Δ) = rank Hk(Δ) = 

rank kth homology group
• bk(Δ) is the number of essential

cycles (“holes”) that must be 
filled to eliminate kth homology 

Image source: OFR analysis
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Key Theoretical Result

Euler-Poincaré formula
• A new edge must connect two components, or create a cycle

• v(Δ) – e(Δ) = rank H0(Δ) – rank H1(Δ) = b0(Δ) – b1(Δ) 
• b0(Δ) is the number of connected components
• b1(Δ) is the number of non-redundant cycles

Image source: OFR analysis
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Complexity Metrics I

Aggregate size metrics
• Kv ≡ v(Δ) = number of vertices in the market graph, Δ
• Ke ≡ e(Δ) = number of edges, or “deals”
• Ke/v ≡ e(Δ) / v(Δ) = average degree

Insensitive to network structure:

Kv = 6
Ke = 5
Ke/v = 0.8333

Image source: OFR analysis
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Complexity Metrics II

Counting simple cycles – closed-form calculations
• KC3 ≡ number of triangular cycles in the market graph, Δ
• KC4 ≡ number of quadrilateral cycles
• KC5 ≡ number of pentagonal cycles
• KCnet ≡ “total” number of nettable cycles = KC3 + KC4 + KC5

Zeroth and first homology on the market graph
• Kb1Δ ≡ rank H1(Δ) = b1(Δ) = cycle rank of vector space H1(Δ)
• Kb0Δ ≡ rank H0(Δ) = b0(Δ) = number connected components in Δ
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Netting

Netting operates on the directed network of obligations, ∆

• Oriented cycles in the digraph, ∆, are potentially “nettable”
• Each oriented (“nettable”) cycle in ∆ has a “shadow” in ∆
• Netting “kills” a cycle in ∆ by reducing edge weights so one is zero

• Bookkeeping convention:  replace orientations in ∆ by signs on weights
• Cycles in ∆ are an upper bound for cycles in ∆
• Rank b1(∆) is lower bound on cycle elimination needed for acyclic graph
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Image source: OFR analysis
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Complexity Metrics III

Adding 2-dimensional cells
• Simple cycles (no edge repeats) as netting opportunities
• Topologically “kills” the cycle by filling its hole
• Do this for all simple cycles
• Extends Δ to a 2-dimensional cell complex
• Call the resulting structure: Δ2

net

Netting measures on Δ2
net

• Kb1Δ2 ≡ b1(Δ2
net) = rank of vector space H1(Δ2

net)
• Kb2Δ2 ≡ b2(Δ2

net) = netting redundancy =
multiple cycles involving the same deals

2-cell 
filling 
a hole

Image source: OFR analysis
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Netting Example

Order of netting matters 
• All nodes start with capital of $50
• Red node ultimately defaults
• Pink nodes are affected through spillovers

Image source: OFR analysis
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The Line Graph

Every undirected graph, Δ, has a matching line graph, ΛΔ
• Each edge in Δ corresponds to a vertex in the line graph, ΛΔ

• Thus, e(Δ) = v(ΛΔ)

• Connect nodes in ΛΔ if the corresponding edges in Δ share a node
• Thus, a highly central node in Δ implies a busy line graph, ΛΔ

Image source: OFR analysis

Original graph, Δ Line graph, ΛΔ
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Complexity Metrics IV

Simple cycles in the line graph, ΛΔ
• KC3Λ ≡ number of triangular cycles in ΛΔ

• KC4Λ ≡ number of quadrilateral cycles
• KC5Λ ≡ number of pentagonal cycles

Exploiting the line graph, ΛΔ
• KeΛ ≡ e(ΛΔ) = edge count in ΛΔ = deal interactions
• Kb1Λ ≡ b1(ΛΔ) = rank H1(ΛΔ) = cycle rank of ΛΔ
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Line Graphs in Practice

Example:  Central Counterparties (CCPs)
• ΛΔ contains no new information …
• … but nonetheless reveals facts not obvious in Δ
• Sensitive to the presence of highly central nodes
• CCPs as single point of failure:

CCP

A

F

B

C

D

E

CCP market graph CCP line graph

cB

cF

cE

cD

cA cC

Image source: OFR analysis
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Evaluating the Metrics 

Does cycle rank detect chains?
• 100K random graphs, except some seeded w/chains
• Each graph has v(Δ)=12 vertices and e(Δ)=15
• Cycle counts/ranks respond to the chains 

Cycle counts, Cn(Δ), and cycle ranks, b1(Δ), on unseeded and seeded graphs

Image source: OFR analysis
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Evaluating the Metrics

Weighted graph stratification and persistent homology
• Exposure concentration – random (blue) vs concentration bias (red)
• Distribution of edge weights – 3 beta distributions 

• Unimodal (α=2.0, β=2.0)
• Skewed (α=2.0, β=5.0)
• Bimodal (α=0.5, β=0.5)

Persistent homology of triangle 
counts in the line graph, ΛΔ,    

for random graphs with 
3 different beta distributions of 

edge weights

Symmetric unimodal Skewed right Symmetric bimodal

Results
• Weight stratification exhibits 

noticeable distinctions
• Cycle counts strongly detect 

edge distribution differences
Image source: OFR analysis
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Evaluating the Metrics 

Cycles need not depend on size 
• Random regular graphs
• Kv = 20 = number of nodes
• Ke/v = 10 = average degree
• Kb0Δ is constant 
• Kb1Δ is constant 
• KeΛ is constant 
 Conditionally independent variation

Image source: OFR analysis

Distribution of KC3
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Evaluating the Metrics 

Correlations between edges and triangles, G(n,p) graphs

Image source: OFR analysis

G(20,p) graphs
Correlation for 1000 graphs

Expected value (from formula)
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Core-Periphery Theorem

“Simple” core-periphery graph , Δ*
cp

• Core has k dealer nodes, completely connected
• Periphery has (n – k) client nodes, each with one dealer

Interior optimum core size

Image source: OFR analysis
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Marginal Complexity

Systemic importance designation 
depends on “interconnectedness”
• Does/should it depend on 

characteristics of the network?
Counterfactual thought experiment
• What is the network without v?
Depends on:
• Which nodes would rebalance?
• How they would rebalance?
• Which complexity measure to use?

Image source: OFR analysis

Network complexity attributable to node v

Effect of isolating node #1

Kb1Λ(Δ) Kb1Λ(Δ´)

Kmarg(node 1, Kb1Λ) = Kb1Λ(Δ) – Kb1Λ(Δ´)
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Litigation Complex Theorem

Litigation complex, Λv
• A “local” line graph to 

capture the complexity of 
node removal

• Delete node v
• Completely connect its former 

neighbors

Image source: OFR analysis

Effect of removing node #1
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Practical Example – London Whale

DTCC data on credit default swaps (CDSs)
• Transaction-level data since 2003 on U.S. trades
• Weekly position data since 2010

London Whale:  JPMC 2012
• U.S. Senate report, 2013
• JPMorgan Chief Investment Office (CIO) takes a large speculative bet

• Net notional of $157 billion
• Jamie Dimon indicates, the strategy was (FT, 2012):

"flawed, complex, poorly reviewed, poorly executed, and poorly monitored"
• Total loss of $6.2 billion
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Core-periphery topology

Markit CDS indexes:  London Whale core trades
• CDX.NA.IG = North American, Investment Grade
• CDX.NA.IG.9 made the headlines, but over 100 other CDS types involved

Image source: DTCC data, OFR analysis

CDX.NA.IG.[8-15]
All positions, one week in 2011
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Practical Example – London Whale

Cycle rank complexity, Kb1Δ(G) 
CDX.NA.IG.[8-23], 2010-2014

Image source: DTCC data, OFR analysis
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Summary Statistics – London Whale

All index contracts:  Markit CDX.NA.IG.[8-23]
• Jan 2010 – Dec 2014
• Correlations across complexity measures are very high

K_v K_e K_b1D K_c3 K_Lb1D
Mean 332.8 2567.5 2235.7 304236.9 430500.9

Std Dev 31.3 236.1 215.0 80217.1 80006.5
K_v 1 0.712 0.637 0.714 0.831
K_e 0.712 1 0.995 0.957 0.950

K_b1D 0.637 0.995 1 0.947 0.923
K_c3 0.714 0.957 0.947 1 0.977

K_Lb1D 0.831 0.950 0.923 0.977 1

Image source: DTCC data, OFR analysis



Views expressed in this presentation are those of the speaker(s) and not necessarily of the Office of Financial Research.33

Linear dependence in complexity measures

Core-periphery graphs are special 
• Core approaches complete graph 
• Core dominates the complexity measures
• New edges in the core tend strongly to create cycles
• New edges in the periphery almost never create cycles

Example comparison 
• Two graphs of identical size, large complexity difference

• Kv(G) = 90 and Ke(G) = 180
• Core-periphery graph, GCP:  15 core nodes, each with 5 clients

• Triangle count, KC3(GCP) = 455
• Random graph, GR:  edges distributed arbitrarily

• Triangle count, KC3(GR) ≈ 10
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Next Steps

Directions for future research
• Correlations 

• Market stress events
• Systemic risk measures
• Market liquidity measures

• Modeling extensions 
• Directed graphs
• Weighted graphs
• Stratification by collateral type
• Persistent homology

• Market extensions
• Transaction networks 
• Other markets

1000

2000 2000

Image sources: Library of Congress, OFR analysis
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Gratitude

Thanks!
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