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Connections are time varying



Goal

Develop a framework to estimate interconnectedness that can
account for time-varying connections
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m Temporal dependencies: (e.g. Granger causality, vector
autoregressions)
m Barigozzi and Brownlees (2016); Barigozzi and Hallin (2015);
Billio et al. (2012); Diebold and Yilmaz (2009, 2014)

We propose a framework to model both contemporaneous and
temporal dependencies
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connections



Previous Studies

Contribution

We propose a market-based framework for measuring interconnectedness

The framework accounts for the time-varying nature of connections
m Does not rely on rolling windows

The framework models both contemporaneous and temporal
dependencies

Our TVP-VAR model accounts for the properties of asset returns
m heteroskedasticity, fat-tails and skewness of asset returns



Previous Studies

Main findings

m Assess TVP framework in simulation exercises against the classical
approach of Granger causality testing on rolling windows
(GC+RW)

m Our TVP framework performs well vs. GC+RW

m In terms of the precision in estimating connection strength
m In terms of determing the presence/absence of a connection

m Estimate interconnectedness for the US financial system between
1990-2014
m At the aggregate level: between banks, broker-dealers, insurers, real
estate companies
m At the disaggregated level: between 20 systemically important
financial institutions (SIFIs)
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Previous Studies Empirical methodolog

Main findings

Estimate interconnectedness for the US financial system between

1990-2014
Measures of connectivity and centrality computed using the TVP
framework are less volatile than the rolling window approach
m The rolling window approach is more sensitive to extreme
observations
Banks were the largest contributors to financial spillovers
m Whereas real estate companies were the most influenced

The time-varying parameter framework produces stable rankings
m More stable than rankings produced by the rolling window approach
m More stable than rankings produced by other market-based measures
(e.g. Marginal expected shortfall (MES), Beta)
m More reactive than book-value measures (e.g. Leverage)

Key financial institutions were identified
m American International Group, Goldman Sachs, and Merrill Lynch
among largest propagators
m Bear Stearns among the largest receivers
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Empirical methodology

Estimating networks by Classical Granger Causaility

We parallel measures of interconnectedness based on Granger causality
testing (Billio et al., 2012)

Let Ry = [ri,e, ..., rn,¢] be a vector of returns
m Draw a directional edge (i — j) if r; Granger causes r;

Granger causality can be tested by running the VAR

p
Re=c+ Z BsR:—s + u,
s=1

and testing B Ny
HO . b:(l’hl) = bg”) — ... = bg”’) =0.

This is a conditional Granger causality test (Geweke, 1984)
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m The off-diagonal elements of =; capture the time-varying
contemporaneous dependencies

m The elements of By ¢,..., By capture the time-varying temporal
dependencies
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Empirical methodology

We adopt the TVP-VAR framework (Primiceri, 2005)

p
R =c: + Z BstRe—1 + up = X{0p + vy,  up ~ 1,(0,=¢),

s=1

where X{ = InQ[1, Ri_1,..., Ri_4]

Ory1 = 0¢ + Vg1, ve ~ N (0, Q:),

We assume stochastic volatility for the diagonal of =;

m We allow for a leverage effects between shocks to stochastic
volatility and shocks to asset returns u;

m This allows for skewness in the asset returns
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Empirical methodology

Using Bayes factor, we evaluate the time-dependent hypothesis of no
link between j and j at t

Hoe: b9 = b0 .. = i) = 0.

We draw a time-dependent directional edge (i — j) if, given the
posterior distribution of By, there is sufficient evidence against Hp ;



Empirical analysis

Empirical analysis

We collected stock prices at monthly close for 155 financial institutions

m banks, insurers, broker/dealers and real estate companies - SEC
codes 6000 to 6799

m components of the S&P 500 between Jan 1990 and Dec 2014

We define monthly stock returns for firm i at month t as

_ (Pit+dit>
rig=log | —— |,
Pit—1

We estimated the financial network at the aggregate level and at the
disaggregated level

m Aggregate level: four-variable TVP-VAR with sector indices

m Disaggregated level: pairwise bi-variate TVP-VARs between stock
returns of 20 SIFls
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Empirical analysis

Results at the aggregate level: the sectorial network

Network density

Aggregate level: four-variable TVP-VAR(1) with sector indices
m Network density is smoothly varying rather than abruptly changing

N
. 1 . . ji
Density, = mZZ(’ —eg) [ BYD ],
i=1 j#i

with i, j € {Banks, Brokers, Insurers, Real Estate} and i # j, where b!"
is the cross coefficient connecting i to j, in period t, in the TVP-VAR,
and where, in this case, N = 4
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Network density

Sectorial Network Density
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Empirical analysis

Results at the Disaggregated level: the SIFI network

Degree centrality

Disaggregated level: pairwise bi-variate TVP-VARs between 20 SIFls
m SIFls selected from FSB and Diebold and Yilmaz (2014)

m We compute in-degree and out-degree measures

1 . . i
In-Degree; , = m Z(J =) | bg % B
J#i
1 . . j i
Out—Degree,-yt = m Z(l —eJ)- | bgj ) B
J#i

where, in this case, N; < 20
m We identified key players during the crisis

m We studied interconnectedness based rankings
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Empirical analysis

Results at the Disaggregated level: the SIFI network

Ranking stability

We ranked firms according to their interconnectedness
m Z/" is the ranking of institution i at time ¢ in terms of in-degree

m ZP{* is the ranking of institution / at time t in terms of out-degree

The ranking can be used for monitoring and policy action
m e.g. the Financial Stability Board (FSB) and the BCBS ranks
financial institutions according to their systemic importance

m The ranking is used to determine additional loss absorbency
requirements



Empirical analysis

Results at the Disaggregated level: the SIFI network

Ranking stability

Rankings are unhelpful if they are prone to frequent unmotivated changes
m Danielsson et al. (2015) and Dungey et al. (2013)

We computed a measures of ranking stability

) Zm Zm )2 Zm _ |
Jin — it— 1 t 1
Sle Z ’ Z Nt( T — 1) ’



Empirical analysis

Results at the Disaggregated level: the SIFI network

Ranking stability

Stability Indicators

qyadratic z{bsolute
Slg  SIg™  SIy - SIg™
Rolling windows 2.4 2.5 1.6 1.7

Time-varying parameter 1.2 1.2 0.8 0.8

Average stability measures 1994-2014

m Rankings based on rolling windows were more unstable



Empirical analysis

Results at the Disaggregated level: the SIFI network

Ranking stability

Average stability measures across all t

Slg Sla
SRisk 1.3 0.8
Marginal expected shortfall 3.1 23
Leverage 0.8 0.5
Market beta 3.1 2.3
Sy SIg™  SIy SIg*
Rolling windows 2.5 2.7 1.7 1.8
Time-varying parameter 1 11 0.6 0.7

Average stability measures 2000-2014

m Rankings based on TVP were more stable than MES and Beta
(market data)

m Rankings based on TVP were less stable than Lev. (book value data)



Conclusion

Conclusion

Develop a market-based measure of interconnectedness
m Relies on Bayesian estimation of time-varying parameter VARs

m Accounts for time-varying nature of connections

m Models both temporal and contemporaneous dependencies

m Accomodates many of the properties of asset returns
(heteroskedasticity, skewness, heavy tails)

m Compared to classical rolling window approach

m Less susceptible to extreme observations
m Offers greater flexibility
m Performs well in simulations

m Empirical analysis reveals limitations of rolling window approach

m Rolling window connectivity and centrality measures are susceptible
to outliers
m Provide unstable interconnectedness rankings
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m Rolling window connectivity and centrality measures are susceptible
to outliers
m Provide unstable interconnectedness rankings

Thank you
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Appendix: Simulations

The Granger Causal Network (Seth, 2010)
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Appendix: Simulations

X1, =0, + Br1,eX1,e—1 + €1t

Xop = Q2t + Bo1,eX1,t—1 + B22,X0 t—1 + €2t

X3.p = 03¢+ B31,eX1,6—-1 + B33,6X3,6—1 + €3¢

Xa,t = Qqt + 54,1,tX1,t—1 + ﬁ4,4,tX1,t—1 + 34,5,tX5,t—1 + €4t

X5t = Q5+ 5 atXat—1+ 55X -1+ €5.¢

where, [e1¢...€5,:] =€ ~ N(0,R) and R = cls where ¢ was set to 0.01
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Appendix

Appendix: Experiment 1 - constant linkages

For the first experiment, we fix all regression parameters to constants
drawn at the beginning of each simulation.

Qi = a; vVt € [0, T]
Bi,j,t = b,"j Vt € [07 T]

where a; and b; ; are drawn from a 2/(0, 1) at the beginning of each

simulation
v(i,j) € {(2,1),(3,4),(3,5),(4,1),(4,5),(5,9)}u{i=4|i=1,...,5}
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Appendix: Experiment 1 - constant linkages

Pairwise testing

MSE ROC PR Curve
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Bold solid = TVP; light dashed = rolling windows
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Appendix: Experiment 1 - constant linkages

Conditional testing

MSE
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Appendix

Appendix: Experiment 2 - markov switching linkages

For only the cross terms i,j € {(2,1),(3,4),(3,5), (4,1), (4,5), (5,4)}

0 s¥=0
6i,j,t - { f i

YA
b,',_,' ST = 1

Let s{’j follow a first order Markov chain with the follwing transition
matrix:

p_ P(St.d:_o‘ J1=0) P(s! =1]s2,=0)] _ [P0 pro
PP(s ’1—0\5’11:1) ]P’(s”—1|st’11—1) Po1 P11

where we set pgo = 0.95 and p;; = 0.90
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Appendix

Appendix: Experiment 3 - random walk law of motion

Qi1 = Q¢ + Wit Wit ~ N(Oa C2)
Bijirr = Bijer1+Cije  Gije ~ N(0,775)
where,

T..*
VT 2x e ifi=j

) {3><c2 if i
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Appendix: Experiment 3 - random walk law of motion
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Assume the usual lower triangular factorization for the
variance-covariance matrix,

Et - AthA/t

and let,

H, = 0 l’.72,t : A= a2.1,t

0 0 hnt Anit

Qpn—1,t

)
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! !/
Then hy = [h1¢,..., hpe) and ar = [12,¢, ..., Qnp1,t] evolve
according to

In ht = |n ht—]. + Nt

Qar = Q-1+ Tt

m This allows for stochastic volatility and time-varying
contemporaneous dependencies in the shocks to returns
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The error term of the measurement equation is composed of two

components,
us = Zt\/):zt
where
m v/~ X2 and
m z~ N(O, /)
It follows that,
uy ~ t,(0, %),

The errors [et, s, wy, t|” are jointly normal with mean zero and
variance-covariance matrix V
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/I Q 0 0
2 z, 0 0
V= 0 0 2z, O
0O 0 0 S
where,
P101 0 0 g1 0 0
a-| 0 o P L
0 s ’ 0
0 0  pnon 0 0 own
Ow,1 0 0
Zw: 0 Ow,2 0
: . 0
0 - 0 ogun@atn

Q allows &; and 7;, to be contemporaneously correlated row-by-row



	Introduction
	Previous Studies
	Empirical methodology
	Empirical analysis
	Conclusion

