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Introduction

Systemic Risk (SR):

Property of systems of interconnected components:

Failure of a single entity (or small set of entities) can result in
a cascade of failures jeopardizing the whole system.

This happens in financial (i.e. interbank) systems:
⇒ Failure to manage systemic risk (SR) can be extremely
costly for society (e.g. financial crisis of 2007-2008)

Regulations proposed fail to address the fact that SR is a
network property (BASEL III. e.g. Tobin taxes, capital
requirements)



Introduction

Systemic Risk (SR):

Property of systems of interconnected components:

Failure of a single entity (or small set of entities) can result in
a cascade of failures jeopardizing the whole system.

This happens in financial (i.e. interbank) systems:
⇒ Failure to manage systemic risk (SR) can be extremely
costly for society (e.g. financial crisis of 2007-2008)

Regulations proposed fail to address the fact that SR is a
network property (BASEL III. e.g. Tobin taxes, capital
requirements)



Introduction

Systemic Risk (SR):

Property of systems of interconnected components:

Failure of a single entity (or small set of entities) can result in
a cascade of failures jeopardizing the whole system.

This happens in financial (i.e. interbank) systems:
⇒ Failure to manage systemic risk (SR) can be extremely
costly for society (e.g. financial crisis of 2007-2008)

Regulations proposed fail to address the fact that SR is a
network property (BASEL III. e.g. Tobin taxes, capital
requirements)



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank i to bank j.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank i to bank j.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank j to bank i.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank j to bank i.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank j to bank i.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank j to bank i.



Insolvency Cascades in Networks

A financial network is really a network of exposures.

where Aij is the net exposure of bank j to bank i.



Quantifying Systemic Risk

A financial network at time t is a pair (Āt, ~Et)
Āt: adjacency matrix of a weighted, directed network
~Et: vector of equities of institutions in the network

The systemic impact of bank i at time t:

SIi(Āt, ~Et) =
∑
j 6=i

1{j fails | i fails}E
j
t .

→ Total value of financial system lost as a result of
bankruptcy of bank i

An algorithm can compute 1{j fails | i fails}

→ à la DebtRank (Battiston et al. (2012), Thurner and
Poledna (2013))
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Quantifying Systemic Risk

Expected Systemic Loss:

ESL(Āt, ~Et) =

n∑
j=1

P{j defaults} · SIj(Āt, ~Et)

Different topologies have different effects on size of insolvency
cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010),
Amini et al. (2013), Poledna et al. (2015))

Some work focuses on minimizing ESL(Āt, ~Et), given a
certain topology (e.g. by injecting capital in a certain set of
banks)

Less work focuses on controlling the network topology (e.g.
Poledna & Thurner (2016))



Quantifying Systemic Risk

Expected Systemic Loss:
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Matching Markets

Matching markets: Designed to resolve a range of complex
economic problems

Example 1: Students to Schools (Roth, 1984, 1999)

Example 2: Kidney donors to receivers (Roth et al., 2003)

Example 3: Online matching platforms (e.g. Airbnb, Uber)

→ We need an equilibrium concept based on stable matchings
(Gale & Shapley (1962))



Simple model of a credit system

At each discrete time t ∈ {0, 1, 2, ...bT c}, each bank i ∈ N
receives a liquidity shock εit

εit =


+1 with prob. y/2 (bank i in supply of liquidity)

−1 with prob. y/2 (bank i in demand of liquidity)

0 with prob. 1− y

where y ∈ [0, 1].

Induces a set of lenders and a set of borrowers:
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Bilateral Contracts and Preference Lists

Simple bilateral contracts

Each borrower j has an exogenous failure probability ρj and a
reservation rate r̄j .

Each lenders has an exogenous baseline lending rate ri and
adds a (fair) risk premium hi(ρj):

rij = ri + hi(ρj)

Any borrower j prefers borrowing from lenders with lower
rates (up to a maximal rate)
If r1j < r2j < r3j < r̄j < r4j

→ Preference list P jβ = 1, 2, 3.

Risk premium makes lenders indifferent as to who they lend to
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β , ...} be the set of all preference lists

We call the triplet (Lt,Bt,P) a market for liquidity at time t.

Outcome at each t, is a matching µt:

µt(1) = 7, µt(2) = 8, etc...



Equilibrium Concept: Stable Matching

Definition (Stable Matching)

A matching µ∗t is stable if :

(I) No set of borrowers ~b ∈ Bt could agree to swap their
counter-parties.

(II) The lending rates are below the borrowers’ reservation
rates (i.e. rij ≤ r̄j)

→ In words: No bank could benefit from behaving differently



Systemic Risk Created by a Stable Matching

Lemma (Equilibrium Multiplicity under Bilateral Contracting)

Any matching µt such that the lending rates are below the
borrowers’ reservation rates (i.e. rij < r̄j) is stable.

Many networks can emerge in equilibrium !
→ Results from borrowers having homogenous preferences

(the all prefer the lender i with lowest baseline rate ri)

How to compare the different equilibrium matchings?
→ Need a notion of efficiency.



Systemic Risk-Efficient Equilibrium

Definition (Systemic Risk-Efficient Equilibrium)

An equilibrium matching µ∗,efft is systemic risk-efficient if it
minimizes systemic risk given a certain transaction volume v:

µ∗,efft ∈ argmin
µ∗t :V ol(µ

∗
t )=ν

ESL(Ā∗t , ~Et).



Revisiting the toy example
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Transaction-Specific Tax

Question: Can we select a systemic risk-efficient matching that is
sustained as a unique equilibrium ?
Answer: Yes, by creating heterogeneous preferences by means of a
transaction-specific tax.

T = {τij}: a matrix of transaction-specific taxes, i ∈ Lt and
j ∈ Bt
τij ≥ 0 is a mark-up applied to the interest rate paid by bank
j when it borrows from bank i:

rTij = ri + hi(ρj) + τij

→ Idea introduced in Poledna & Thurner (2016)

Each borrower can now prefer a different lender
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Systemic Risk under SRT

T re-orders the preferences of each borrower over the set of
lenders

→ allows a regulator to create heterogeneous preferences, i.e.
each borrower j can now have a different preference list P jβ
with optimal match on top.

Proposition (Systemic Risk under Systemic Risk Tax)

For some desired volume ν, there exists T such that µ∗t is unique
and systemic risk efficient. We call this T a Systemic Risk Tax
(SRT).



SRT versus Tobin-like tax

A Tobin-like tax is a particular case of the SRT T

Borrowing rate under SRT T :

rTij = ri + hi(ρj) + τij

where τij = 0 for desired matches and τij > 0 for undesired
ones

Borrowing rate under Tobin-like tax:

rκij = ri + hi(ρj) + κ

where κ > 0 for all matches.

→ Makes all transactions more costly, without re-ordering the
borrowers’ preference lists.
→ Cannot select a particular systemic risk efficient equilibrium.
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SRT versus Tobin-like Tax

Proposition (Tobin-like tax versus Systemic Risk Tax)

There always exists T such that ESL(Ā∗,Tt , ~Et) ≤ ESL(Ā∗,κt , ~Et)

and V ol(µ∗,Tt ) ≥ V ol(µ∗,κt )

In words: SRT can achieve higher trading volume and lower
systemic risk



Regulator’s Optimization Problem

Solve this problem on a dynamically evolving complex network:

Banks receive liquidity shocks and trade that liquidity in the
form of interbank loans

At each t, regulator solve following one-period-ahead
optimization problem

T̂ ∈ argmin
T :V ol(µ∗,Tt )=ν

ESL(Ā∗,Tt , ~Et)

→ Optimize matching of lenders and borrowers, given a
certain transaction volume



Regulator’s Optimization Problem
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