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e Systemic Risk (SR):

o Property of systems of interconnected components:

Failure of a single entity (or small set of entities) can result in
a cascade of failures jeopardizing the whole system.

e This happens in financial (i.e. interbank) systems:
= Failure to manage systemic risk (SR) can be extremely
costly for society (e.g. financial crisis of 2007-2008)

@ Regulations proposed fail to address the fact that SR is a
network property (BASEL Ill. e.g. Tobin taxes, capital
requirements)
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Quantifying Systemic Risk

e A financial network at time ¢ is a pair (A;, Ey)
Ay: adjacency matrix of a weighted, directed network
E: vector of equities of institutions in the network

@ The systemic impact of bank ¢ at time ¢:
SIAy, Ey) = 14 faits | i faitsy B
J#

— Total value of financial system lost as a result of
bankruptcy of bank i

@ An algorithm can compute 1¢; rais | i fails)

— a la DebtRank (Battiston et al. (2012), Thurner and
Poledna (2013))
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Quantifying Systemic Risk

@ Expected Systemic Loss:

ESL(Ay, Ey) = > P{j defaults} - SI(Ay, Ey)
j=1

e Different topologies have different effects on size of insolvency
cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010),
Amini et al. (2013), Poledna et al. (2015))

@ Some work focuses on minimizing ESL(At,Et), given a
certain topology (e.g. by injecting capital in a certain set of
banks)

@ Less work focuses on controlling the network topology (e.g.
Poledna & Thurner (2016))
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Controlling Formation of a Financial Network

@ Different transactions have different impacts on systemic risk
(Poledna & Thurner 2016)
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Controlling Formation of a Financial Network

@ Different transactions have different impacts on systemic risk
(Poledna & Thurner 2016)
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Controlling Formation of a Financial Network

@ Different transactions have different impacts on systemic risk
(Poledna & Thurner 2016)

Low ‘systemic risk’ loan
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Matching Markets

Matching markets: Designed to resolve a range of complex
economic problems

e Example 1: Students to Schools (Roth, 1984, 1999)
e Example 2: Kidney donors to receivers (Roth et al., 2003)
e Example 3: Online matching platforms (e.g. Airbnb, Uber)

— We need an equilibrium concept based on stable matchings
(Gale & Shapley (1962))
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At each discrete time t € {0,1,2,...|T|}, each bank i € N
receives a liquidity shock e

+1 with prob. y/2  (bank i in supply of liquidity)
eh=1¢-1 with prob. y/2  (bank i in demand of liquidity)
0 with prob. 1 —y

where y € [0, 1].

Induces a set of lenders and a set of borrowers:
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Bilateral Contracts and Preference Lists

Simple bilateral contracts
@ Each borrower j has an exogenous failure probability p; and a
reservation rate 7;.

@ Each lenders has an exogenous baseline lending rate r; and
adds a (fair) risk premium h;(p;):

rij = i+ hi(pj)

@ Any borrower j prefers borrowing from lenders with lower
rates (up to a maximal rate)
If ryy < rgy <13 < T < Ty
— Preference list Pg =1,2,3.

@ Risk premium makes lenders indifferent as to who they lend to



Two-sided matching

Let P = {Pg, Pg, Pg, ...} be the set of all preference lists

We call the triplet (L, B, P) a market for liquidity at time ¢.
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Two-sided matching

Let P = {Pg, Pg, Pg, ...} be the set of all preference lists
We call the triplet (L, B, P) a market for liquidity at time ¢.

Outcome at each ¢, is a matching p;:
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Equilibrium Concept: Stable Matching

Definition (Stable Matching)
A matching p} is stable if :
o (1) No set of borrowers b € B; could agree to swap their
counter-parties.

@ (I1) The lending rates are below the borrowers' reservation
rates (i.e. ry; < 7j)

— In words: No bank could benefit from behaving differently



Systemic Risk Created by a Stable Matching

Lemma (Equilibrium Multiplicity under Bilateral Contracting)

Any matching p; such that the lending rates are below the
borrowers’ reservation rates (i.e. r;; < ;) is stable.

@ Many networks can emerge in equilibrium !
— Results from borrowers having homogenous preferences
(the all prefer the lender i with lowest baseline rate r;)

@ How to compare the different equilibrium matchings?
— Need a notion of efficiency.



Systemic Risk-Efficient Equilibrium

Definition (Systemic Risk-Efficient Equilibrium)

An equilibrium matching ,u:’eff is systemic risk-efficient if it

minimizes systemic risk given a certain transaction volume v:

u:’effe argmin  ESL(A}, Ey).
wi:Vol(pf)=v




Revisiting the toy example

Systemic Risk Efficient Equilibrium

Low ‘systemic risk’ loan
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Revisiting the toy example

Systemic Risk Inefficient Equilibrium

High ‘systemic risk’ loan
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Transaction-Specific Tax

Question: Can we select a systemic risk-efficient matching that is
sustained as a unique equilibrium ?

Answer: Yes, by creating heterogeneous preferences by means of a
transaction-specific tax.

e 7 = {7;;}: a matrix of transaction-specific taxes, i € £; and
J € B

@ 7;; > 0 is a mark-up applied to the interest rate paid by bank
j when it borrows from bank i:

rl =i+ hi(pj) + 7ij

— ldea introduced in Poledna & Thurner (2016)

@ Each borrower can now prefer a different lender



Equilibrium Selection and Uniqueness

Idea: leave desired matches untaxed and tax the undesired
matches
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Equilibrium Selection and Uniqueness

Idea: leave desired matches untaxed and tax the undesired
matches
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Systemic Risk under SRT

@ 7 re-orders the preferences of each borrower over the set of
lenders

— allows a regulator to create heterogeneous preferences, i.e.
each borrower j can now have a different preference list Pg
with optimal match on top.

Proposition (Systemic Risk under Systemic Risk Tax)

For some desired volume v, there exists T such that u; is unique
and systemic risk efficient. We call this T a Systemic Risk Tax
(SRT).
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SRT versus Tobin-like tax

A Tobin-like tax is a particular case of the SRT T

e Borrowing rate under SRT 7
rl=ri+ hi(p;) + 7ij

where 7;; = 0 for desired matches and 7;; > 0 for undesired
ones

@ Borrowing rate under Tobin-like tax:
ri =ri+ hi(pj) + K
where k£ > 0 for all matches.
— Makes all transactions more costly, without re-ordering the

borrowers’ preference lists.
— Cannot select a particular systemic risk efficient equilibrium.



SRT versus Tobin-like Tax

Proposition (Tobin-like tax versus Systemic Risk Tax)

There always exists T such that ESL(AI’T, Ey) < ESL(AM", Ey)
and Vol(uT) > Vol (1)

In words: SRT can achieve higher trading volume and lower
systemic risk



Regulator’'s Optimization Problem

Solve this problem on a dynamically evolving complex network:

@ Banks receive liquidity shocks and trade that liquidity in the
form of interbank loans

@ At each t, regulator solve following one-period-ahead
optimization problem

T e argmin ESLAT E)
T:Vol(uZ‘T):y

— Optimize matching of lenders and borrowers, given a
certain transaction volume



Regulator’'s Optimization Problem
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@ Incentivizing Resilience in Financial Networks. Leduc, M.V.
and S. Thurner. (2016)

Companion papers:
e Elimination of systemic risk in financial networks by means of

a systemic risk transaction tax. Poledna, S. and Thurner, S.
(2016). Quantitative Finance,

e Systemic risk management in financial networks with credit
default swaps. Leduc, M. V., Poledna, S., and Thurner, S.
(2016).
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