

Filtering for Risk Assessment of Interbank Network

Majeed Simaan ¹ Aparna Gupta ¹ Koushik Kar ²

¹Lally School of Management at RPI

²Department of ECSE at RPI

Sep 13, 2016

The 2016 Financial Risk & Network Theory Conference

Background: Overnight Market

- By regulations, banks in the United States are required to maintain reserves either as cash or as fed funds.
- The day-to-day banking activities are unlikely to leave banks with the desired level of reserve.
- To meet shortfalls, regulated banks can trade fed funds in the interbank market.
- Other sources of overnight liquidity include Repos and discount window.

Background: Overnight Market

- By regulations, banks in the United States are required to maintain reserves either as cash or as fed funds.
- The day-to-day banking activities are unlikely to leave banks with the desired level of reserve.
- To meet shortfalls, regulated banks can trade fed funds in the interbank market.
- Other sources of overnight liquidity include Repos and discount window.

Overall, the overnight market serves as:

- ① the most immediate source of liquidity
- ② an important indicator of system functionality
- ③ a crucial role for implementation of monetary policy

Motivation: Interbank Functionality

- Does the interbank market mitigate or amplify shocks to individual banks or the sector as a whole?
 - e.g. Afonso et al (2011)

Motivation: Interbank Functionality

- Does the interbank market mitigate or amplify shocks to individual banks or the sector as a whole?
 - e.g. Afonso et al (2011)
- Theory proposes two possible channels that lead to disruptions:

Motivation: Interbank Functionality

- Does the interbank market mitigate or amplify shocks to individual banks or the sector as a whole?
 - e.g. Afonso et al (2011)
- Theory proposes two possible channels that lead to disruptions:

① Liquidity Hoarding

- Each bank's uncertainty about its own funding needs skyrocketed, Brunnermeier (2009)

② Counterparty Risk

- Asymmetric information during crisis, Heider et al (2015)

Motivation: Interconnectedness

- Different line of research looks at the interconnectedness of financial institutions and its impact on systemic risk.
- Acharya's (2009) Theory of Systemic Risk.
- Adrian and Brunnermeier (2011): policies that focus on bank's individual-level fail to respond to systemic risk
- Uncertainty about network structure and fire sales, Caballero and Simsek (2013)

Motivation: Network Architecture

- There is mixed evidence about the interconnectedness and network resilience
- Allen and Gale (2000) interconnectedness is beneficial from risk-diversification
- However, there are limits for diversification benefits,
 - Allen et al (2012), Battiston et al (2012)

Research Question

- Can we reverse engineer signals from the interbank market and identify its network structure?
- If yes, how can we assess its resilience to mitigate liquidity shocks?
- Moreover, what role does the network structure (especially interconnectedness) play in the interbank market functionality?

Research Question

- Can we reverse engineer signals from the interbank market and identify its network structure?
- If yes, how can we assess its resilience to mitigate liquidity shocks?
- Moreover, what role does the network structure (especially interconnectedness) play in the interbank market functionality?
- The interbank market allows to answer the above mainly due to
 - ① the overnight transactions
 - ② the pairwise lender-to-borrower relationship

Contribution

- We propose a framework that
 - ① Deduces and evaluates information from the interbank market
 - ② Identifies the interbank network structure along with its interconnectedness
 - ③ Serves as early warning system to detect distress

Contribution

- We propose a framework that
 - ① Deduces and evaluates information from the interbank market
 - ② Identifies the interbank network structure along with its interconnectedness
 - ③ Serves as early warning system to detect distress
- Using simulation studies, we find that interconnectedness is risk mitigating to some degree, beyond which systemic risk increases exponentially.
 - Contribute to the debate e.g. Stiglitz (2010)

Model: Assumptions

- There are N banks interacting during T periods via overnight borrowing and lending.
- Interest rate is zero and banks hold zero cash reserve.
- Net cash flows, $x_{i,t} = x_{i,t}^A - x_{i,t}^D$, is the only source of stochasticity, $\forall i = 1, \dots, N$ and $t = 0, 1, \dots, T$.

Model: Assumptions

- There are N banks interacting during T periods via overnight borrowing and lending.
- Interest rate is zero and banks hold zero cash reserve.
- Net cash flows, $x_{i,t} = x_{i,t}^A - x_{i,t}^D$, is the only source of stochasticity, $\forall i = 1, \dots, N$ and $t = 0, 1, \dots, T$.
- Banks with positive net cash flows always lend, if there is demand.
- If no lending takes place, positive net cash flows are invested in assets.
 - This, hence, induces non-stationarity in net cash flows over time.

Model: Assumptions II

- For all $i = 1, \dots, N$

$$x_{i,t} \sim N(\mu_{i,t}, \sigma_{i,t}), \quad (1)$$

- For all i, j and t

$$\rho_{ij,t} = \rho_{ij} \quad (2)$$

Model: Assumptions II

- For all $i = 1, \dots, N$

$$x_{i,t} \sim N(\mu_{i,t}, \sigma_{i,t}), \quad (1)$$

- For all i, j and t

$$\rho_{ij,t} = \rho_{ij} \quad (2)$$

- There are two states: $\mu_{i,t} \in \{\mu_i^{(1)}, \mu_i^{(2)}\}$ and $\sigma_{i,t} \in \{\sigma_i^{(1)}, \sigma_i^{(2)}\}$, such that

$$\frac{\mu_i^{(1)}}{\sigma_i^{(1)}} > \frac{\mu_i^{(2)}}{\sigma_i^{(2)}} \quad (3)$$

Model: Assumptions II

- For all $i = 1, \dots, N$

$$x_{i,t} \sim N(\mu_{i,t}, \sigma_{i,t}), \quad (1)$$

- For all i, j and t

$$\rho_{ij,t} = \rho_{ij} \quad (2)$$

- There are two states: $\mu_{i,t} \in \{\mu_i^{(1)}, \mu_i^{(2)}\}$ and $\sigma_{i,t} \in \{\sigma_i^{(1)}, \sigma_i^{(2)}\}$, such that

$$\frac{\mu_i^{(1)}}{\sigma_i^{(1)}} > \frac{\mu_i^{(2)}}{\sigma_i^{(2)}} \quad (3)$$

- The transition between the two states follows a Markov chain process of order 1,

$t \setminus t+1$	1	2
1	p_i	$1 - p_i$
2	$1 - q_i$	q_i

Model: Dynamics

- At $t = 0$, if $x_{i,0} < 0$, bank i borrows $y_{i,0} = -x_{i,0}$ in the interbank market.
- At $t = 1$, bank i repays $y_{i,0}$, such that its net cash flows become $x_{i,1} - y_{i,0}$.
- If $x_{i,1} - y_{i,0} < 0$, then i borrows again at $t = 1$:

$$y_{i,1} = -(x_{i,1} - y_{i,0}) \quad (4)$$

- Otherwise, $y_{i,1} = 0$

Model: Dynamics

- At $t = 0$, if $x_{i,0} < 0$, bank i borrows $y_{i,0} = -x_{i,0}$ in the interbank market.
- At $t = 1$, bank i repays $y_{i,0}$, such that its net cash flows become $x_{i,1} - y_{i,0}$.
- If $x_{i,1} - y_{i,0} < 0$, then i borrows again at $t = 1$:

$$y_{i,1} = -(x_{i,1} - y_{i,0}) \quad (4)$$

- Otherwise, $y_{i,1} = 0$
- To generalize, we have

$$y_{i,t} = \begin{cases} -[x_{i,t} - (y_{i,t-1} - y_{i,t-1})] & B_{i,t} = 1 \\ 0 & B_{i,t} = 0 \end{cases}, \quad (5)$$

where $B_{i,t}$ returns 1 if bank i borrows at time t and 0 otherwise.

Filtering System: Estimation I

- There are two main challenges: truncation and non-stationarity
- We deal with the former by using properties of truncated distributions
- While in the latter, we use Hamilton (1989) filter

Filtering System: Estimation I

- There are two main challenges: truncation and non-stationarity
- We deal with the former by using properties of truncated distributions
- While in the latter, we use Hamilton (1989) filter
- For a given state s , the conditional likelihood for bank i at time t is

$$\ell_{i,t}^{(s)} = \begin{cases} \phi \left(\left[y_{i,t} - (c_{i,t-1} - \mu_i^{(s)}) \right] / \sigma_i^{(s)} \right) (1/\sigma_i^{(s)}) & B_{i,t} = 1 \\ 1 - \Phi \left([c_{i,t-1} - \mu_i^{(s)}] / \sigma_i^{(s)} \right) & B_{i,t} = 0 \end{cases} \quad (6)$$

where $c_{i,t-1} = y_{i,t-1} - y_{i..,t-1}$.

Filtering System: Estimation II

- Given two states, i.e. $s \in \{1, 2\}$, the conditional likelihood at time t for bank i is

$$\begin{aligned}\ell_{i,t} &= \\ &= \xi_{i,t-1}^{(1)} \left[p_i \cdot \ell_{i,t}^{(1)} + (1 - p_i) \cdot \ell_{i,t}^{(2)} \right] \\ &\quad + \xi_{i,t-1}^{(2)} \left[(1 - q_i) \cdot \ell_{i,t}^{(1)} + q_i \cdot \ell_{i,t}^{(2)} \right]\end{aligned}\tag{7}$$

Filtering System: Estimation II

- Given two states, i.e. $s \in \{1, 2\}$, the conditional likelihood at time t for bank i is

$$\begin{aligned}\ell_{i,t} &= \\ &= \xi_{i,t-1}^{(1)} \left[p_i \cdot \ell_{i,t}^{(1)} + (1 - p_i) \cdot \ell_{i,t}^{(2)} \right] \\ &\quad + \xi_{i,t-1}^{(2)} \left[(1 - q_i) \cdot \ell_{i,t}^{(1)} + q_i \cdot \ell_{i,t}^{(2)} \right]\end{aligned}\tag{7}$$

- Given information up till time t , the probability of i being in either state is

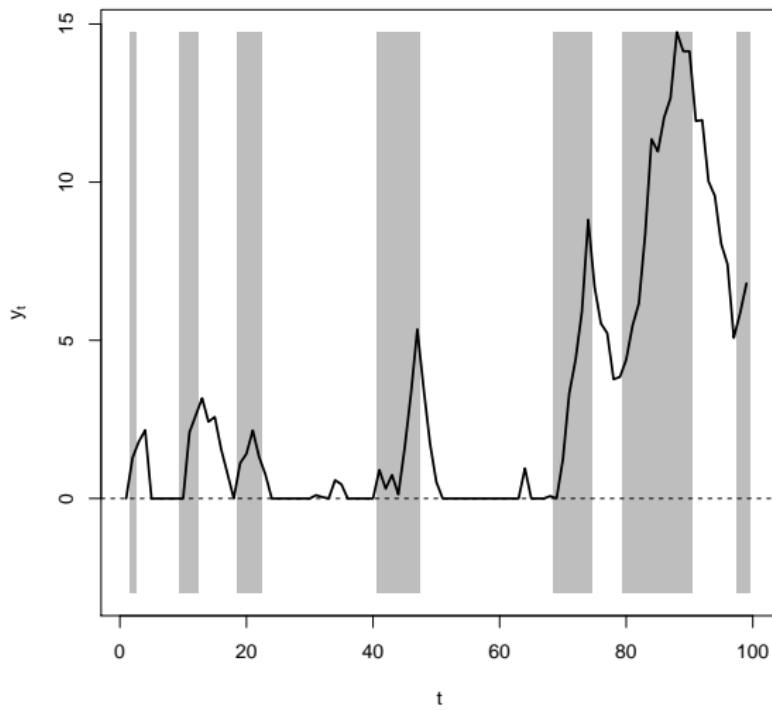
$$\xi_{i,t}^{(1)} = \frac{\left[p_i \cdot \xi_{i,t-1}^{(1)} + (1 - q_i) \cdot \xi_{i,t-1}^{(2)} \right] \ell_{i,t}^{(1)}}{\ell_{i,t}},\tag{8}$$

and

$$\xi_{i,t}^{(2)} = 1 - \xi_{i,t}^{(1)}.\tag{9}$$

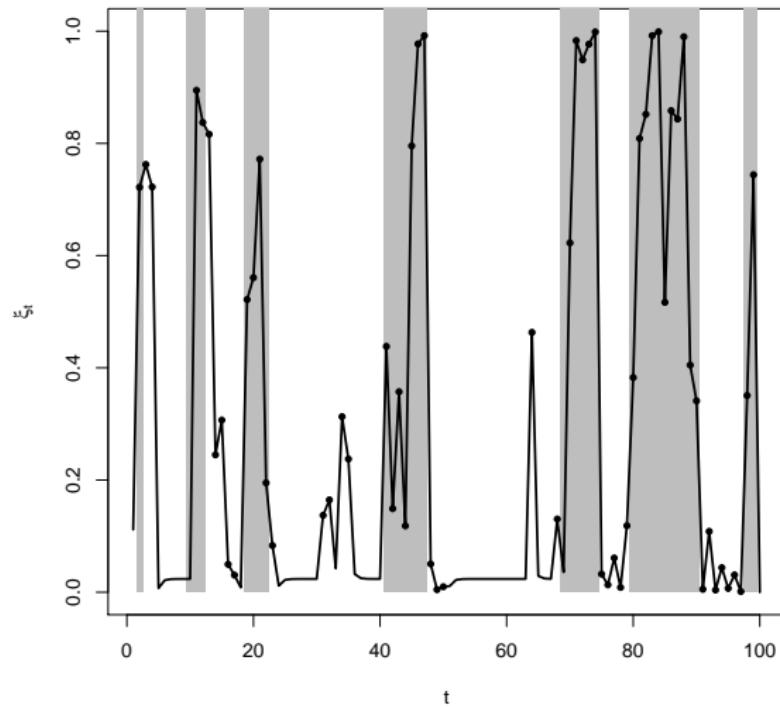
Filtering System: Illustration I

Figure: Total Borrowings by Bank i over Time



Filtering System: Illustration II

Figure: State 2 Filter for Bank i over Time



Filtering System: Interconnectedness I

- We proxy interconnectedness between two banks by the correlation coefficient between their net cash flows, i.e. ρ_{ij} .
- To do so, we derive the conditional joint likelihood between banks i and j , which is given by:

$$\ell_{ij,t} = \left[P_i \otimes P_j \vec{\ell}_{ij,t} \right]^T \vec{\xi}_{ij,t-1}, \quad (10)$$

Filtering System: Interconnectedness I

- We proxy interconnectedness between two banks by the correlation coefficient between their net cash flows, i.e. ρ_{ij} .
- To do so, we derive the conditional joint likelihood between banks i and j , which is given by:

$$\ell_{ij,t} = \left[P_i \otimes P_j \vec{\ell}_{ij,t} \right]^T \vec{\xi}_{ij,t-1}, \quad (10)$$

- where

$$\vec{\ell}_{ij,t} = \left[\ell_{ij,t}^{(11)} \quad \ell_{ij,t}^{(12)} \quad \ell_{ij,t}^{(21)} \quad \ell_{ij,t}^{(22)} \right]^T \quad (11)$$

and

$$\ell_{ij,t}^{(s_1 s_2)} = \begin{cases} f(y_{i,t}, y_{j,t} \mid \Omega_{t-1}) & B_{i,t} = 1, B_{j,t} = 1 \\ f(y_{i,t}, y_{j,t} = 0 \mid \Omega_{t-1}) & B_{i,t} = 1, B_{j,t} = 0 \\ f(y_{i,t} = 0, y_{j,t} \mid \Omega_{t-1}) & B_{i,t} = 0, B_{j,t} = 1 \\ f(y_{i,t} = 0, y_{j,t} = 0 \mid \Omega_{t-1}) & B_{i,t} = 0, B_{j,t} = 0 \end{cases} \quad (12)$$

Filtering System: Interconnectedness II

- Let Θ_i denote bank's i specific parameters.
- What determines the interbank market interconnectedness is the correlation matrix among all agents' net cash flows.
- Specifically, let \mathbf{R} denote the correlation matrix of the network.
- The i th row and j th column element of \mathbf{R} denotes the correlation in net cash flows between bank i and j , ρ_{ij} for all $i \neq j$.

Filtering System: Interconnectedness II

- Let Θ_i denote bank's i specific parameters.
- What determines the interbank market interconnectedness is the correlation matrix among all agents' net cash flows.
- Specifically, let \mathbf{R} denote the correlation matrix of the network.
- The i th row and j th column element of \mathbf{R} denotes the correlation in net cash flows between bank i and j , ρ_{ij} for all $i \neq j$.
- Hence, given real transaction, the proposed filtering system identifies the interbank network by estimating \mathbf{R} and $\Theta_i, \forall i = 1, \dots, N$.

Simulation Study: Structure

- We look at $N = 20$ banks that interact over $T = 30$ periods.
- For each bank i we identify Θ_i .
- We impose that banks fall into two clusters:

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_1 & \mathbf{R}_{12} \\ \mathbf{R}'_{12} & \mathbf{R}_2 \end{bmatrix}, \quad (13)$$

- The **within** correlation in R_1 and R_2 is uniform and equals to ρ_1 and ρ_2 , respectively.
- The **between** correlation in R_{12} is uniform and equals to ρ_{12}

Simulation Study: Structure

- We look at $N = 20$ banks that interact over $T = 30$ periods.
- For each bank i we identify Θ_i .
- We impose that banks fall into two clusters:

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_1 & \mathbf{R}_{12} \\ \mathbf{R}'_{12} & \mathbf{R}_2 \end{bmatrix}, \quad (13)$$

- The **within** correlation in R_1 and R_2 is uniform and equals to ρ_1 and ρ_2 , respectively.
- The **between** correlation in R_{12} is uniform and equals to ρ_{12}

Special Cases

- ① **Quasi-Autarky:** $\rho_1 = \rho_2 = 0.5$ while $\rho_{12} = 0$
- ② **Full Integration:** $\rho_1 = \rho_2 = \rho_{12} = 0.25$.

Simulation Study: Risk Assessment I

- Let \mathcal{S} denote the network's structure.
- For each structure \mathcal{S} , we simulate the network $\mathcal{R} = 1000$ times.
- We assess systemic risk using the following two metrics:

$$\bar{F}_{\mathcal{S}} = \frac{\sum_{r=1}^{\mathcal{R}} F_{\mathcal{S}}^r}{\mathcal{R}} \quad (14)$$

and

$$Q_{\mathcal{S}, 0.99} = \inf \left\{ Q \mid \frac{1}{\mathcal{R}} \sum_{r=1}^{\mathcal{R}} I\{F_{\mathcal{S}}^r \leq Q\} = 99\% \right\}, \quad (15)$$

Where $F_{\mathcal{S}}^r$ is the number of failed banks in the network in run r and network structure \mathcal{S} .

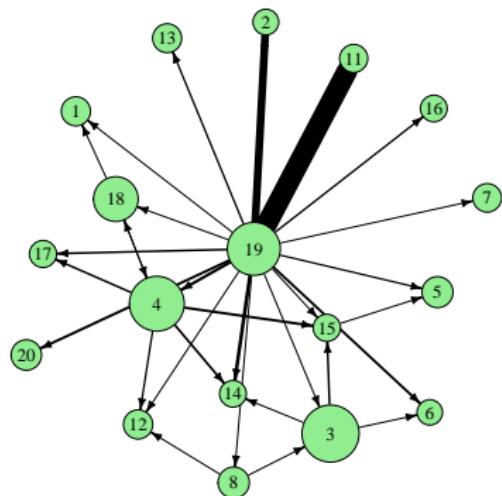
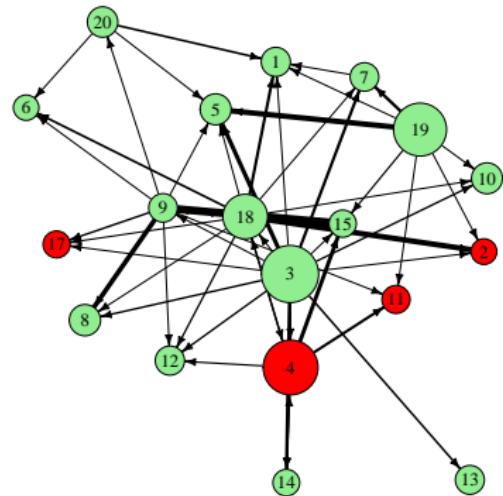
Simulation Study: Risk Assessment II

- We define a shock of magnitude $k > 1$ on bank i at time t in the following manner:

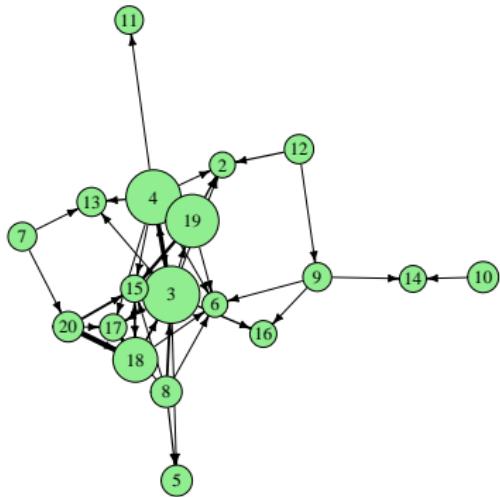
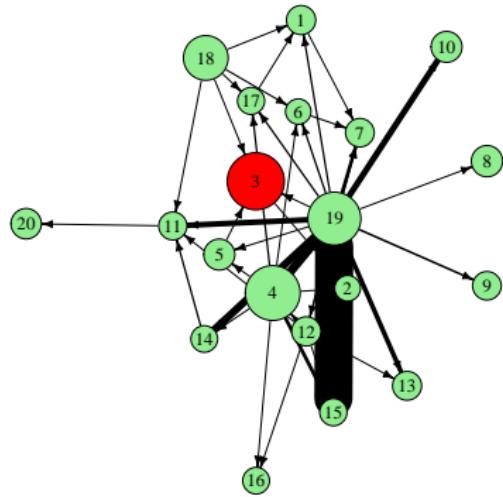
$$x_{i,t} \rightarrow x_{i,t} - k \cdot |x_{i,t}|. \quad (16)$$

- Specifically, we set $k = 10$ and $t = 10$, while looking at the largest four banks in the network.

Simulation Study: Quasi-Autarky



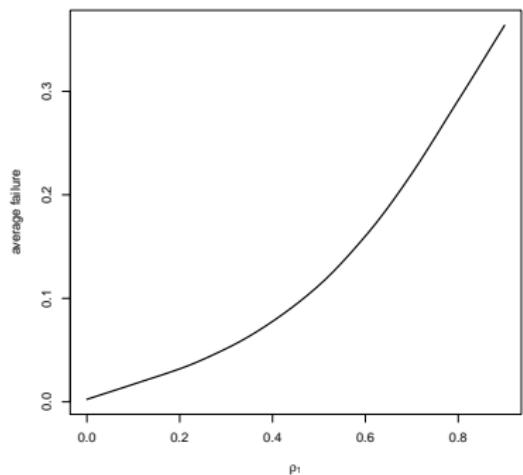
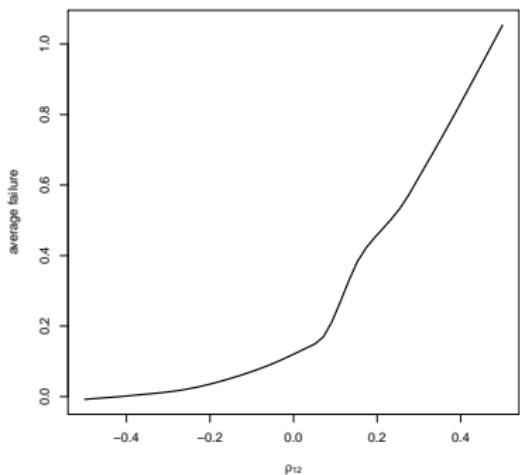
Simulation Study: Full Integration



Simulation Study: Quasi-Autarky versus Full Integration

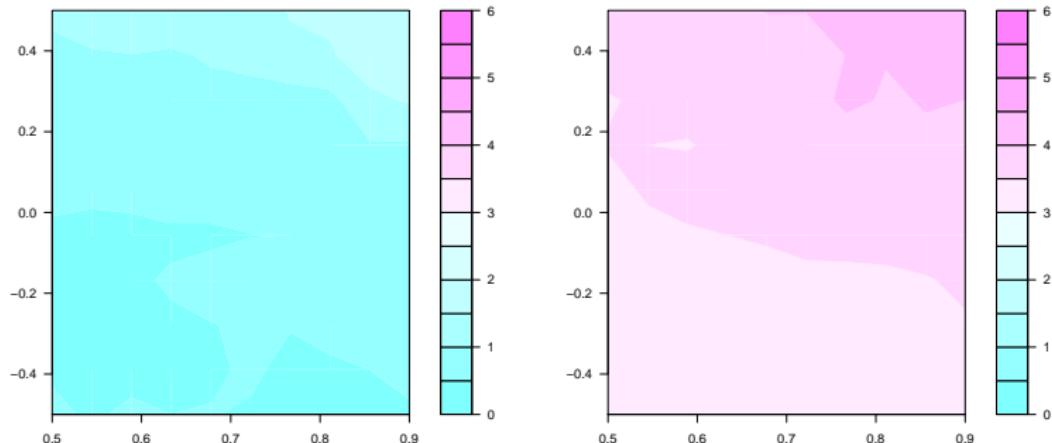
	$k = 0$	1 bank when $k = 10$	2 banks when $k = 10$	4 banks when $k = 10$
\bar{F}_S	Panel (a)		Quasi Autarky	
	0.18	0.64	1.47	3.47
$Q_{S,0.99}$	5.00		5.00	7.00
	Panel (b)		Full Integration	
\bar{F}_S	0.13		0.56	1.53
	4.00		4.00	8.00

Simulation Study: Sensitivity to Correlation I



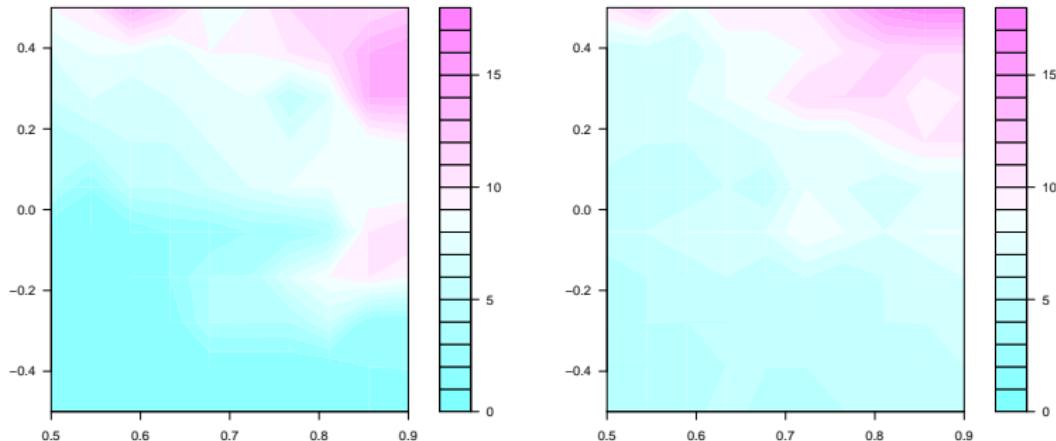
Simulation Study: Sensitivity to Correlation II

Figure: Average Failure



Simulation Study: Sensitivity to Correlation III

Figure: 99th Percentile Failure



Simulation Study: Regression I

Dependent variable: average failure								
	no shock		1 bank with $k = 10$		2 banks with $k = 10$		4 banks with $k = 10$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\rho_1 \cdot \rho_{12}$	0.876*** (0.064)	0.876*** (0.045)	1.293*** (0.091)	1.293*** (0.067)	1.154*** (0.069)	1.154*** (0.059)	1.126*** (0.061)	1.126*** (0.053)
$(\rho_1 \cdot \rho_{12})^2$		2.001*** (0.198)		2.698*** (0.293)		1.629*** (0.260)		1.345*** (0.233)
Constant	0.204*** (0.015)	0.101*** (0.014)	0.773*** (0.021)	0.634*** (0.021)	1.611*** (0.016)	1.527*** (0.019)	3.574*** (0.014)	3.505*** (0.017)
Observations	100	100	100	100	100	100	100	100
Adjusted R ²	0.652	0.829	0.672	0.823	0.735	0.810	0.775	0.775

Note:

* $p < 0.1$; ** $p < 0.05$; *** $p < 0.01$

Simulation Study: Regression II

Dependent variable: 99 th percentile								
	no shock		1 bank with $k = 10$		2 banks with $k = 10$		4 banks with $k = 10$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\rho_1 \cdot \rho_{12}$	9.997*** (0.725)	9.997*** (0.666)	14.047*** (1.045)	14.047*** (1.028)	7.735*** (0.667)	7.735*** (0.670)	9.350*** (0.754)	9.350*** (0.607)
$(\rho_1 \cdot \rho_{12})^2$		12.888*** (2.935)		9.355** (4.528)		1.620 (2.951)		19.714*** (2.673)
Constant	3.132*** (0.165)	2.468*** (0.214)	5.498*** (0.237)	5.015*** (0.330)	5.226*** (0.152)	5.142*** (0.215)	7.108*** (0.171)	6.091*** (0.195)
Observations	100	100	100	100	100	100	100	100
Adjusted R ²	0.656	0.710	0.645	0.656	0.574	0.571	0.607	0.745

Note:

* p<0.1; ** p<0.05; *** p<0.01

Summary

- We identify the interbank network using a statistical learning procedure that reverse engineers transactions in the overnight interbank market.
- Given the structure of the network, we conduct a series of simulation studies for risk assessment.
- Integration appears to be optimal when systemic risk is absent.
- However, this evidence is undermined when systemically important institutions suffer liquidity shocks.

Thanks!

simaam@rpi.edu
[SSRN Page](#)