
Filtering for Risk Assessment of Interbank Network

Majeed Simaan 1 Aparna Gupta 1 Koushik Kar 2

1Lally School of Management at RPI

2Department of ECSE at RPI

Sep 13, 2016
The 2016 Financial Risk & Network Theory Conference

Simaan et al 2016 Interbank Network RPI 1 / 29



Background: Overnight Market

By regulations, banks in the United States are required to maintain
reserves either as cash or as fed funds.

The day-to-day banking activities are unlikely to leave banks with the
desired level of reserve.

To meet shortfalls, regulated banks can trade fed funds in the
interbank market.

Other sources of overnight liquidity include Repos and discount
window.

Overall, the overnight market serves as:

1 the most immediate source of liquidity

2 an important indicator of system functionality

3 a crucial role for implementation of monetary policy
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Motivation: Interbank Functionality

Does the interbank market mitigate or amplify shocks to individual
banks or the sector as a whole?

e.g. Afonso et al (2011)

Theory proposes two possible channels that lead to disruptions:

1 Liquidity Hoarding

Each bank’s uncertainty about its own funding needs skyrocketed,
Brunnermeier (2009)

2 Counterparty Risk

Asymmetric information during crisis, Heider et al (2015)
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Motivation: Interconnectedness

Different line of research looks at the interconnectedness of financial
institutions and its impact on systemic risk.

Acharya’s (2009) Theory of Systemic Risk.

Adrian and Brunnermeier (2011): policies that focus on bank’s
individual-level fail to respond to systemic risk

Uncertainty about network structure and fire sales, Caballero and
Simsek (2013)
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Motivation: Network Architecture

There is mixed evidence about the interconnectedness and network
resilience

Allen and Gale (2000) interconnectedness is beneficial from
risk-diversification

However, there are limits for diversification benefits,

Allen et al (2012), Battiston et al (2012)
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Research Question

Can we reverse engineer signals from the interbank market and
identify its network structure?

If yes, how can we assess its resilience to mitigate liquidity shocks?

Moreover, what role does the network structure (especially
interconnectedness) play in the interbank market functionality?

The interbank market allows to answer the above mainly due to
1 the overnight transactions
2 the pairwise lender-to-borrower relationship
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Contribution

We propose a framework that
1 Deduces and evaluates information from the interbank market
2 Identifies the interbank network structure along with its

interconnectedness
3 Serves as early warning system to detect distress

Using simulation studies, we find that interconnectedness is risk
mitigating to some degree, beyond which systemic risk increases
exponentially.

Contribute to the debate e.g. Stiglitz (2010)
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Model: Assumptions

There are N banks interacting during T periods via overnight
borrowing and lending.

Interest rate is zero and banks hold zero cash reserve.

Net cash flows, xi ,t = xAi ,t − xDi ,t , is the only source of stochasticity,
∀i = 1, ..,N and t = 0, 1, ...,T .

Banks with positive net cash flows always lend, if there is demand.

If no lending takes place, positive net cash flows are invested in
assets.

This, hence, induces non-stationarity in net cash flows over time.
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Model: Assumptions II

For all i = 1, ...,N
xi ,t ∼ N (µi ,t , σi ,t) , (1)

For all i , j and t
ρij ,t = ρij (2)

There are two states: µi ,t ∈
{
µ

(1)
i , µ

(2)
i

}
and σi ,t ∈

{
σ

(1)
i , σ

(2)
i

}
,

such that
µ

(1)
i

σ
(1)
i

>
µ

(2)
i

σ
(2)
i

(3)

The transition between the two states follows a Markov chain process
of order 1,

t \ t + 1 1 2

1 pi 1− pi
2 1− qi qi
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Model: Dynamics

At t = 0, if xi ,0 < 0, bank i borrows y.i ,0 = −xi ,0 in the interbank
market.

At t = 1, bank i repays y.i ,0, such that its net cash flows become
xi ,1 − y.i ,0.

If xi ,1 − y.i ,0 < 0, then i borrows again at t = 1:

y.i ,1 = −(xi ,1 − y.i ,0) (4)

Otherwise, y.i ,1 = 0

To generalize, we have

y.i ,t =

{
− [xi ,t − (y.i ,t−1 − yi .,t−1)]

0

Bi ,t = 1

Bi ,t = 0
, (5)

where Bi ,t returns 1 if bank i borrows at time t and 0 otherwise.
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Filtering System: Estimation I

There are two main challenges: truncation and non-stationarity

We deal with the former by using properties of truncated distributions

While in the latter, we use Hamilton (1989) filter

For a given state s, the conditional likelihood for bank i at time t is

`
(s)
i ,t =

 φ
([

y.i ,t − (ci ,t−1 − µ
(s)
i )
]
/σ

(s)
i

)
(1/σ

(s)
i )

1− Φ
(

[ci ,t−1 − µ
(s)
i ]/σ

(s)
i

) Bi ,t = 1

Bi ,t = 0
. (6)

where ci ,t−1 = y.i ,t−1 − yi .,t−1.

Simaan et al 2016 Interbank Network RPI 11 / 29



Filtering System: Estimation I

There are two main challenges: truncation and non-stationarity

We deal with the former by using properties of truncated distributions

While in the latter, we use Hamilton (1989) filter

For a given state s, the conditional likelihood for bank i at time t is

`
(s)
i ,t =

 φ
([

y.i ,t − (ci ,t−1 − µ
(s)
i )
]
/σ

(s)
i

)
(1/σ

(s)
i )

1− Φ
(

[ci ,t−1 − µ
(s)
i ]/σ

(s)
i

) Bi ,t = 1

Bi ,t = 0
. (6)

where ci ,t−1 = y.i ,t−1 − yi .,t−1.

Simaan et al 2016 Interbank Network RPI 11 / 29



Filtering System: Estimation II

Given two states, i.e. s ∈ {1, 2}, the conditional likelihood at time t
for bank i is

`i ,t =

= ξ
(1)
i ,t−1

[
pi · `

(1)
i ,t + (1− pi ) · `

(2)
i ,t

]
+ ξ

(2)
i ,t−1

[
(1− qi ) · `

(1)
i ,t + qi · `

(2)
i ,t

] (7)

Given information up till time t, the probability of i being in either
state is

ξ
(1)
i ,t =

[
pi · ξ

(1)
i ,t−1 + (1− qi ) · ξ

(2)
i ,t−1

]
`

(1)
i ,t

`i ,t
, (8)

and
ξ

(2)
i ,t = 1− ξ(1)

i ,t . (9)
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Filtering System: Illustration I

Figure: Total Borrowings by Bank i over Time
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Filtering System: Illustration II

Figure: State 2 Filter for Bank i over Time

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

ξ t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Simaan et al 2016 Interbank Network RPI 14 / 29



Filtering System: Interconnectedness I

We proxy interconnectedness between two banks by the correlation
coefficient between their net cash flows, i.e. ρij .
To do so, we derive the conditional joint likelihood between banks i
and j , which is given by:

`ij ,t =
[
Pi ⊗ Pj

~̀
ij ,t

]T
~ξij ,t−1, (10)

where
~̀
ij ,t =

[
`

(11)
ij ,t `

(12)
ij ,t `

(21)
ij ,t `

(22)
ij ,t

]T
(11)

and

`
(s1s2)
ij ,t =


f (y.i ,t , y.j ,t | Ωt−1)

f (y.i ,t , y.j ,t = 0 | Ωt−1)

f (y.i ,t = 0, y.j ,t | Ωt−1)

f (y.i ,t = 0, y.j ,t = 0 | Ωt−1)

Bi ,t = 1,Bj ,t = 1

Bi ,t = 1,Bj ,t = 0

Bi ,t = 0,Bj ,t = 1

Bi ,t = 0,Bj ,t = 0

.

(12)
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Filtering System: Interconnectedness II

Let Θi denote bank’s i specific parameters.

What determines the interbank market interconnectedness is the
correlation matrix among all agents’ net cash flows.

Specifically, let R denote the correlation matrix of the network.

The ith row and jth column element of R denotes the correlation in
net cash flows between bank i and j , ρij for all i 6= j .

Hence, given real transaction, the proposed filtering system identifies
the interbank network by estimating R and Θi ,∀i = 1, ...,N.

Simaan et al 2016 Interbank Network RPI 16 / 29



Filtering System: Interconnectedness II

Let Θi denote bank’s i specific parameters.

What determines the interbank market interconnectedness is the
correlation matrix among all agents’ net cash flows.

Specifically, let R denote the correlation matrix of the network.

The ith row and jth column element of R denotes the correlation in
net cash flows between bank i and j , ρij for all i 6= j .

Hence, given real transaction, the proposed filtering system identifies
the interbank network by estimating R and Θi ,∀i = 1, ...,N.

Simaan et al 2016 Interbank Network RPI 16 / 29



Simulation Study: Structure

We look at N = 20 banks that interact over T = 30 periods.

For each bank i we identify Θi .

We impose that banks fall into two clusters:

R =

[
R1 R12

R′12 R2

]
, (13)

The within correlation in R1 and R2 is uniform and equals to ρ1 and
ρ2, respectively.
The between correlation in R12 is uniform and equals to ρ12

Special Cases

1 Quasi-Autarky: ρ1 = ρ2 = 0.5 while ρ12 = 0

2 Full Integration: ρ1 = ρ2 = ρ12 = 0.25.
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Simulation Study: Risk Assessment I

Let S denote the network’s structure.

For each structure S, we simulate the network R = 1000 times.

We assess systemic risk using the following two metrics:

F̄S =

∑R
r=1 F

r
S

R
(14)

and

QS,0.99 = inf

{
Q | 1

R

R∑
r=1

I {F r
S ≤ Q} = 99%

}
, (15)

Where F r
S is the number of failed banks in the network in run r and

network structure S.
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Simulation Study: Risk Assessment II

We define a shock of magnitude k > 1 on bank i at time t in the
following manner:

xi ,t → xi ,t − k · |xi ,t |. (16)

Specifically, we set k = 10 and t = 10, while looking at the largest
four banks in the network.
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Simulation Study: Quasi-Autarky
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Simulation Study: Full Integration
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Simulation Study: Quasi-Autarky versus Full Integration

k = 0 1 bank when k = 10 2 banks when k = 10 4 banks when k = 10

Panel (a) Quasi Autarky
F̄S 0.18 0.64 1.47 3.47

QS,0.99 4.01 5.00 5.00 7.00
Panel (b) Full Integration

F̄S 0.13 0.56 1.53 3.52
QS,0.99 4.00 4.00 8.00 8.00
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Simulation Study: Sensitivity to Correlation I
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Simulation Study: Sensitivity to Correlation II

Figure: Average Failure
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Simulation Study: Sensitivity to Correlation III

Figure: 99th Percentile Failure
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Simulation Study: Regression I

Dependent variable: average failure

no shock 1 bank with k = 10 2 banks with k = 10 4 banks with k = 10

(1) (2) (3) (4) (5) (6) (7) (8)

ρ1 · ρ12 0.876∗∗∗ 0.876∗∗∗ 1.293∗∗∗ 1.293∗∗∗ 1.154∗∗∗ 1.154∗∗∗ 1.126∗∗∗ 1.126∗∗∗

(0.064) (0.045) (0.091) (0.067) (0.069) (0.059) (0.061) (0.053)

(ρ1 · ρ12)2 2.001∗∗∗ 2.698∗∗∗ 1.629∗∗∗ 1.345∗∗∗

(0.198) (0.293) (0.260) (0.233)

Constant 0.204∗∗∗ 0.101∗∗∗ 0.773∗∗∗ 0.634∗∗∗ 1.611∗∗∗ 1.527∗∗∗ 3.574∗∗∗ 3.505∗∗∗

(0.015) (0.014) (0.021) (0.021) (0.016) (0.019) (0.014) (0.017)

Observations 100 100 100 100 100 100 100 100

Adjusted R2 0.652 0.829 0.672 0.823 0.735 0.810 0.775 0.775

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Simulation Study: Regression II

Dependent variable: 99th percentile

no shock 1 bank with k = 10 2 banks with k = 10 4 banks with k = 10

(1) (2) (3) (4) (5) (6) (7) (8)

ρ1 · ρ12 9.997∗∗∗ 9.997∗∗∗ 14.047∗∗∗ 14.047∗∗∗ 7.735∗∗∗ 7.735∗∗∗ 9.350∗∗∗ 9.350∗∗∗

(0.725) (0.666) (1.045) (1.028) (0.667) (0.670) (0.754) (0.607)

(ρ1 · ρ12)2 12.888∗∗∗ 9.355∗∗ 1.620 19.714∗∗∗

(2.935) (4.528) (2.951) (2.673)

Constant 3.132∗∗∗ 2.468∗∗∗ 5.498∗∗∗ 5.015∗∗∗ 5.226∗∗∗ 5.142∗∗∗ 7.108∗∗∗ 6.091∗∗∗

(0.165) (0.214) (0.237) (0.330) (0.152) (0.215) (0.171) (0.195)

Observations 100 100 100 100 100 100 100 100

Adjusted R2 0.656 0.710 0.645 0.656 0.574 0.571 0.607 0.745

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Summary

We identify the interbank network using a statistical learning
procedure that reverse engineers transactions in the overnight
interbank market.

Given the structure of the network, we conduct a series of simulation
studies for risk assessment.

Integration appears to be optimal when systemic risk is absent.

However, this evidence is undermined when systemically important
institutions suffer liquidity shocks.
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