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The Context

» In certain practical applications we must assess the impact of a change of high level
variables on a more granular structure of variables e.g.

> Calculating the effect of a shock to an index on a more granular portfolio

> Calculating the effect of a change of a macroeconomic variable on a network of
companies

« We are facing the task of modelling both the exogenous shock effect on the network and
the network endogenous effects

Rs&ps00 I 1,000 US Equities
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Joint Distribution

« In several practical problems we have to deal with more than one variable

« We model the variables and their relationships through a joint distribution

Example: Bivariate Gaussian Distribution

1 1

p([Xl, vee s :Xn]) = TBXI)(—E
(2m)z| X2

X-wW'y X —w)

« Can we use a convenient visualisation to represent some of the properties of the joint
distribution?
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The precision matrix — what it is

« Theorem - Consider a Gaussian distribution P(Xy,....,X,) = N(u1,X), and let Q = 27! be the
precision matrix. Then Q;; = 0 if and only if P I+ (X; L X;|Xy — {X;, X;}) where Xy is the set of
all the variables in the graph

 Covariance matrix

Y.i=0 o X;L1XorpX,X)=pX)p(X;)

* Precision matrix

Qi;=0 o X; LX;|X_;; or p(X;, X;|X_i;) = p(X;|X_i))p(X;1X_i))
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The precision matrix - example

0.10 0.15 -0.13 -0.08 0.15
0.15 —-0.03 0.02 0.01 -0.03

ﬁ X =|-013 0.02 0.10 0.07 -—-0.12
—0.08 0.01 0.07 —0.04 0.07

0.15 -0.03 -0.12 0.07 0.08
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Gaussian Markov Networks

- If we start from a multivariate Gaussian we can cast in the form:

1 1
P(X) x HGXP(—EXiZ_linj) l_[exp(_zz_lkkxlg + hy X))
k

i#j

And associate a graphical model in which two nodes (variables) are not connected if the
corresponding precision matrix element is 0
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Gaussian Markov Networks - Example
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Estimation

« Estimation methods

> Covariance selection - ill-posed when the covariance matrix is singular i.e. when the
number of variables is larger than the number of samples p > n i.e. Big Data.

Ledoit (2004) and Ledoit (2012) propose ‘shrinkage’ methods for both the covariance
and the precision matrices

> L; Regularization methods - LASSO (Tibshirani (1996)), GLASSO (Banerjee (2007) )
— applicable for p » n by inducing sparsity
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GLASSO - Introduction

Idea: Consider a set of data with multivariate normality. We want to estimate a Sparse
Precision Matrix Q that provides a Maximum Likelihood Estimate for

1/2 1
(lzgrlwexr) <— LG DM Cay u)) )

The parameter A is a constraining parameter that forces some coefficients to be zero thus
enforcing sparsity.

Friedman (2007) finds that it is computationally more efficient to estimate a Sparse
Covariance matrix W using a three step iterative algorithm and then inverting it.

Convergence is guaranteed based on the Coordinate Descent Methods of Tseng (2001).

lambda = 0.27

Sparsity vs. Regularization lambda = 0.45
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Regularization Parameter
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Network Effects — What are they?

« The presence of network links between variables may be due to:
> Omitted observable macro factors
> Omitted non-observable factors

> Idiosyncratic relationships
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Chain Graphs

+ Let G =(V,E) be a mixed graph with finite vertex set V and an edge set E that may contain
two types of edges, namely directed (u—v) and undirected (u-v) edges

« The graph G is called a chain graph if it does not contain any semi-directed cycles, that is,
it contains no path from v to v with at least one directed edge such that all directed edges
have the same orientation
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Chain Graphs

« A Chain Graph represents a Multivariate Gaussian which can be decomposed in recursive
form.

« For example, for the chain graph of the previous slide

Rsgpsoo = El[Rseps00l + €sapsoo
REquityl = ,BEquitleS&PSOO + EEquity1
) Rgquity2 = Bequity2Rs&psoo + €Equity2

REquityS = ,BEquityBRS&PSOO + €Equitys

Cov(gEquityil EEquityj) 0

_ —

Network effects

© 2016 IHS Markit. All Rights Reserved.



////ﬂ\\:‘“ IHS Markit

Network Effects — What are they?

« Inserting an extra factor can explain some of the links away

Omitted factor

S&P
500

Equity ' Equity I Equity
1 ' 2 I 3
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Network Effects — What are they?

« An unobserved factor can also remove links

Unobserved factor
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Chain Graphs - Estimation

« We decompose the estimation of the Chain Graph in two steps
1. Estimation of the loadings on the macro factor(s)

2. Estimation of the network

« Two steps estimation procedure (Drton (2006), McCarter (2014))
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7

The task

« Task: estimate the impact of a change of a variable on a balance sheet e.g. Rggpsoo =
— 10% over the next quarter

0 -Qg

Rsgps00 > 1,000 US Equities

In the end we want to obtain a distribution P (£4|()
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Perturbations and their effect

« Perturbing a factor that feeds in the network and reading the results

© 2016 IHS Markit. All Rights Reserved.

RS&PSOO =X D JE— We fix this

REquityl = IBEquitylx + Eequityt
REquityZ = .BEquityzx + EEquity?

REquityB - IBEquityBx + €Equity3

Cov(gEquityil gEquityj) #+ 0
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7

Under-determination of the task

- The distribution P(Q,4|Q) will depend on the choices the modeller is faced with when
structuring the task with regards to:

« The variables to use
« The structure of the relationships between the variables
« The parameters behind the structure

« In the end different ways to structure the task will lead to a different distribution
P'(Q419), P"(Q4]9)....
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Under-determination of the task

*  First approach: expand the shock directly to the stocks

S&P500
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Under-determination of the task

« Second possible approach: expand the shock directly to the stocks by introducing
network effects

S&P500
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Under-determination of the task

 Third possible approach: expand the shock by passing through 1 intermediate layer
of industry indices

S&P500

Industry Industry
1 2
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Under-determination of the task

* Forth possible approach: expand the shock by passing through 1 intermediate layer
of industry indices and by adding network effects in the last layer

S&P500

Industry Industry
1 2
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Automatic selection

There are roughly speaking three approaches to automatic learning:

1. Constrained based - it views a structure as a set of independence relationships.
The search algorithm tests for conditional dependencies and independencies in the data and
hence learns the structure that best explains it.

2. Score based - a hypothesis space is defined, that is a set of candidate
structures, and a scoring function that measures how well the models fit the data. The
learning is addressed as a model selection problem. The computational task is to find the
highest-scoring structure.

3. Bayesian model averaging - it does not try to learn a single structure but an
ensemble of them and averages their predictions i.e.

P(Q4|Qr) ochP(ngT, Gi, 0;)P(0;]G;, Qr)clbil de;
[

with 0 < ¢ <1 and |G;| the number of edges in the i-th graph ¢;
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Results
expected returns of portfolio
o over different windows of time
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Results

standard deviation of portfolio
over different windows of time

] — industry std 1 *
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Results

estimated probability density for returns,

— no network ell
— —— network eff

probability density
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