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The Context

• In certain practical applications we must assess the impact of a change of high level 
variables on a more granular structure of variables e.g.

> Calculating the effect of a shock to an index on a more granular portfolio

> Calculating the effect of a change of a macroeconomic variable on a network of 
companies

• We are facing the task of modelling both the exogenous shock effect on the network and 
the network endogenous effects
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1,000 US Equities𝑅𝑆&𝑃500
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Joint Distribution

• In several practical problems we have to deal with more than one variable

• We model the variables and their relationships through a joint distribution

𝑝( 𝑋1,… . , 𝑋𝑛 ) =
1

(2𝜋)
𝑛
2|∑|
1
2

exp(−
1

2
𝑋 − 𝜇 𝑇∑−1 𝑋 − 𝜇 )

• Can we use a convenient visualisation to represent some of the properties of the joint 
distribution?
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Example: Bivariate Gaussian Distribution
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The precision matrix – what it is

• Theorem  – Consider a Gaussian distribution 𝑃 𝑋1, … . , 𝑋𝑛 = 𝑁(𝜇, Σ), and let 𝑄 = Σ−1 be the 

precision matrix. Then 𝑄𝑖,𝑗 = 0 if and only if 𝑃 ⊩ (𝑋𝑖 ⊥ 𝑋𝑗|𝑋𝑉 − 𝑋𝑖 , 𝑋𝑗 ) where 𝑋𝑉 is the set of 

all the variables in the graph

• Covariance matrix

• Precision matrix

∑𝑖,𝑗 = 0 𝑋𝑖 ⊥ 𝑋𝑗 𝑜𝑟 𝑝(𝑋𝑖 , 𝑋𝑗) = 𝑝 𝑋𝑖 𝑝 𝑋𝑗

𝑄𝑖𝑗 = 0 𝑋𝑖 ⊥ 𝑋𝑗|𝑋−𝑖𝑗 𝑜𝑟 𝑝 𝑋𝑖 , 𝑋𝑗 𝑋−𝑖𝑗 = 𝑝 𝑋𝑖 𝑋−𝑖𝑗 𝑝(𝑋𝑗|𝑋−𝑖𝑗)
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The precision matrix - example
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∑−1 =

1 6 0
6 2 7
0 7 3

0 0
0 0
8 0

0 0 8
0 0 0

4 9
9 5

∑ =

0.10 0.15 −0.13
0.15 −0.03 0.02
−0.13 0.02 0.10

−0.08 0.15
0.01 −0.03
0.07 −0.12

−0.08 0.01 0.07
0.15 −0.03 −0.12

−0.04 0.07
0.07 0.08

∑15
−1 = 0 ↔ 𝑋1 ⊥ 𝑋5|𝑋2, 𝑋3, 𝑋4

𝑋1 ⊥ 𝑋5 ↔ ∑15=0
↛
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Gaussian Markov Networks

• If we start from a multivariate Gaussian we can cast in the form:

And associate a graphical model in which two nodes (variables) are not connected if the 
corresponding precision matrix element is 0

6

𝑃 𝑿 ∝  

𝑖≠𝑗

exp(−
1

2
𝑋𝑖Σ
−1
𝑖𝑗𝑋𝑗) 

𝑘

exp(−
1

2
Σ−1𝑘𝑘𝑋𝑘

2 + ℎ𝑘𝑋𝑘)

1 2 3 4 5∑−1 =

1 6 0
6 2 7
0 7 3

0 0
0 0
8 0

0 0 8
0 0 0

4 9
9 5



© 2016 IHS Markit. All Rights Reserved.

Gaussian Markov Networks - Example
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∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ 0
∗ ∗ 0
0 0 0

∗ ∗ 0
∗ ∗ 0
0 0 0

∗ 0 0
0 ∗ 0
0 0 ∗

𝑋1
𝑋2

𝑋4
𝑋3

𝑋5

𝑋6
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Estimation

• Estimation methods

> Covariance selection – ill-posed when the covariance matrix is singular i.e. when the 
number of variables is larger than the number of samples 𝑝 ≫ 𝑛 i.e. Big Data.

Ledoit (2004) and Ledoit (2012) propose ‘shrinkage’ methods for both the covariance 
and the precision matrices

> 𝑳𝟏 Regularization methods – LASSO (Tibshirani (1996)), GLASSO (Banerjee (2007) ) 
– applicable for 𝑝 ≫ 𝑛 by inducing sparsity

8
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GLASSO - Introduction

• Idea: Consider a set of data with multivariate normality. We want to estimate a Sparse 
Precision Matrix Q that provides a Maximum Likelihood Estimate for 

|𝑄|1/2

(2𝜋)𝑛/2
exp −

1

2
𝑥 − 𝜇 𝑇𝑄 𝑥 − 𝜇 − λQ

• The parameter λ is a constraining parameter that forces some coefficients to be zero thus 
enforcing sparsity. 

• Friedman (2007) finds that it is computationally more efficient to estimate a Sparse 
Covariance matrix W using a three step iterative algorithm and then inverting it. 

• Convergence is guaranteed based on the Coordinate Descent Methods of Tseng (2001). 
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Network Effects – What are they?

• The presence of network links between variables may be due to:

> Omitted observable macro factors

> Omitted non-observable factors

> Idiosyncratic relationships

10
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Chain Graphs

• Let G =(V,E) be a mixed graph with finite vertex set V and an edge set E that may contain 
two types of edges, namely directed (u→v) and undirected (u-v) edges

• The graph G is called a chain graph if it does not contain any semi-directed cycles, that is, 
it contains no path from v to v with at least one directed edge such that all directed edges 
have the same orientation
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Chain Graphs

• A Chain Graph represents a Multivariate Gaussian which can be decomposed in recursive 
form. 

• For example, for the chain graph of the previous slide
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𝑅𝑆&𝑃500 = 𝐸 𝑅𝑆&𝑃500 + 𝜀𝑆&𝑃500

𝑅𝐸𝑞𝑢𝑖𝑡𝑦1 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦1𝑅𝑆&𝑃500 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦1

𝑅𝐸𝑞𝑢𝑖𝑡𝑦2 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦2𝑅𝑆&𝑃500 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦2

𝑅𝐸𝑞𝑢𝑖𝑡𝑦3 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦3𝑅𝑆&𝑃500 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦3

𝑐𝑜𝑣(𝜀𝐸𝑞𝑢𝑖𝑡𝑦𝑖, 𝜀𝐸𝑞𝑢𝑖𝑡𝑦𝑗) ≠ 0

Network effects
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Network Effects – What are they?

• Inserting an extra factor can explain some of the links away
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Network Effects – What are they?

• An unobserved factor can also remove links
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Chain Graphs - Estimation

• We decompose the estimation of the Chain Graph in two steps

1. Estimation of the loadings on the macro factor(s)

2. Estimation of the network

• Two steps estimation procedure (Drton (2006), McCarter (2014))

15
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The task

• Task: estimate the impact of a change of a variable on a balance sheet e.g. 𝑅𝑆&𝑃500 =
− 10% over the next quarter

1,000 US Equities

𝜴 𝜴𝒈

𝑃(Ω𝑔|Ω)In the end we want to obtain a distribution  

𝑅𝑆&𝑃500
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Perturbations and their effect

• Perturbing a factor that feeds in the network and reading the results
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𝑅𝑆&𝑃500 = 𝑥

𝑅𝐸𝑞𝑢𝑖𝑡𝑦1 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦1𝑥 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦1

𝑅𝐸𝑞𝑢𝑖𝑡𝑦2 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦2𝑥 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦2

𝑅𝐸𝑞𝑢𝑖𝑡𝑦3 = 𝛽𝐸𝑞𝑢𝑖𝑡𝑦3𝑥 + 𝜀𝐸𝑞𝑢𝑖𝑡𝑦3

𝑐𝑜𝑣(𝜀𝐸𝑞𝑢𝑖𝑡𝑦𝑖, 𝜀𝐸𝑞𝑢𝑖𝑡𝑦𝑗) ≠ 0

We fix this
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Under-determination of the task

• The distribution 𝑃(Ω𝑔|Ω) will depend on the choices the modeller is faced with when 

structuring the task with regards to:

• The variables to use 

• The structure of the relationships between the variables

• The parameters behind the structure

• In the end different ways to structure the task will lead to a different distribution 
𝑃′(Ω𝑔|Ω), 𝑃′′(Ω𝑔|Ω)….
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Under-determination of the task

• First approach: expand the shock directly to the stocks
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Under-determination of the task

• Second possible approach: expand the shock directly to the stocks by introducing 
network effects
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Under-determination of the task

• Third possible approach: expand the shock by passing through 1 intermediate layer 
of industry indices
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Under-determination of the task

• Forth possible approach: expand the shock by passing through 1 intermediate layer 
of industry indices and by adding network effects in the last layer
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Automatic selection

There are roughly speaking three approaches to automatic learning: 

1. Constrained based – it views a structure as a set of independence relationships. 
The search algorithm tests for conditional dependencies and independencies in the data and 
hence learns the structure that best explains it.

2. Score based – a hypothesis space is defined, that is a set of candidate 
structures, and a scoring function that measures how well the models fit the data. The 
learning is addressed as a model selection problem. The computational task is to find the 
highest-scoring structure.

3. Bayesian model averaging – it does not try to learn a single structure but an 
ensemble of them and averages their predictions i.e.

23

𝑃 Ω𝑔 Ω𝑇 ∝ 

𝑖

 𝑃 Ω𝑔 Ω𝑇 , 𝐺𝑖 , Θ𝑖 𝑃 Θ𝑖 𝐺𝑖 , Ω𝑇 𝑐
|𝐺𝑖| 𝑑Θ𝑖

with 0 < 𝑐 < 1 and |𝐺𝑖| the number of edges in the i-th graph 𝐺𝑖
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Results
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Results
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Results
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