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Goal

Goal: to find casual influence structure
o Graph:
* nodes: random processes

* directed edges: direction of causal
influence

Observations: all (or a subset) of time series of the
realizations of processes

Causal not necessary a case-effect relationship, rather
a directional influence




Network inference via timing

Passive learning: Observation only
Intervention is not possible
Requires a natural notion of time axis
Advantages:
» (Going beyond correlation-only relations: causal inference

» Existence of neighborhood and local operation concept: savings in complexity



Passive learning: Observation only

» Intimately related to time series analysis

» FEconometrics and computational finance

* Financial networks:
 risk of banking and insurance systems to determine of sovereign risk
 influence structure of stock markets: inter or intra market

1 S&P 500 I Dow I Nasdaq
1,870.52 +24.79 (1.34%) 16,362.84 +194.81 (1.20%) 4,350.90 +73.60 (1.72%)

SF 3 Y 1 a2

o Granger causality (by Nobel Laureate)
* Limited in scope:
e pairwise analysis
* linear models



Passive learning: Observation only

* Interlinkages between financial institutions:

|. Construct a mathematical model using a combination of information
extracted from financial statements like the market value of liabilities of
counterparties.

2. Statistical analysis of financial series like Granger-causality network.

* Most of the existing approaches:
* Pairwise comparison.
* Assuming linear relationship between the time series.

* In this work, we develop a method that allows for nonlinearity of the data and
does not depend on pairwise relationships among time series.



Granger causality

Clive Granger (1969):
“We say that X is causing Y if we are better able to predict [the future of ] Y using

all available information than if the information apart from [the past of] X had been
used.”

Granger‘s Formulation: AR Model

Y, = Z a; Y-+ bTXt—T +crZyr + By
7>0

Y = Z arYi—r +Cr i + E~t
7>0

Past of X does not help prediction, if:

var(Fy) = var(Ey), X 4 Y

var(F)
var(FE)

Gx_y = log



Revisiting Granger's viewpoint:

X causes Y if the future of Y given the past of both Y and X better predicts the
future of Y given its past alone.

» Consider sequential predictors:  b; = g; (1

« Outcome vy is revealed, loss incurred: [(y,0)

* Reduction in loss (regret): Zl Yi, b (s, bi)

* Non-negative; zero iff future on is iIndependent of past and present X given past of Y
« Applicable to any modality, e.g. point process

Case:
Logarithmic loss: Iy, b) = —log b(y)

Predictor: beliefs, then optimal predictors: conditional densities

1
Expected regret is directed information: —I(X™ — Y™)
n

Appears in information theory & control theory in context of communication with feedback



Revisiting Granger's viewpoint:

X causes Y if the future of Y given the past of both Y and X better predicts the
future of Y given its past alone.

Directed Information:
Logarithmic loss and optimal belief predictors: conditional densities: [(y,b) = — log b(y)

1
Expected regret is directed information:  —I(X"™ — Y™)
n

Zlog ’Xz Yz 1)

“E 1(Y;, B;) — (Y3, By)
Z( ) Y;|Yi-1)




Directed information graph

* Pairwise measure can not distinguish cascading/proxy effects

I(A— B) >0

» Causally condition on all other signals:  I(A — B||C) > 0

* There is an arrow from x1 to x5 If

‘)
I(X1 — Xo||X_f1.21) > 0. ‘\@

Resulting graph is a directed information graph



Generative Models and Causality

e Dynamical system (Deterministic):

w:fl(w,a:,y,z) y:f3<xayaz)
T = fg(’w,l') Z = f4(w7y7 Z)

e Dynamical system (Stochastic):

Py x,y,2 = H Pou(t),(t),y(t),2(8)|wi=1 ot =1 i1, z0-1
t=1

= Pw|x,y,2 x| wLy| %,z 2| |w,y

x||w HPx(t Yxt—1 wt—1




Generative Model

* Causal Markov blanket:
« For each process X, find parent set A:

PA (§> — H sz‘HEA(i) <XZ| ‘KA(i))’ O ?
1=1 -
D(Px||Pa) = 0. O

Resulting graph is a generative model graphs (factorization of joint).
In a minimal generative for each process i, A(i) is of minimal cardinality.

»  Unlike Bayesian networks, generative mode graph is unique as long as:

Assumption |: The joint distributions satisfies spatial conditional independence:

PX (X) - H H PXi,j |§(1:j—1) (Xi’j

j=1i=1

X(l:j—l))

and nontrivial conditional distributions are non-degenerate.

Quinn, Kiyavash, and Coleman “Directed information graphs,” IEEE Trans. on Information Theory, 2015.



Generative Model vs Directed Information Graphs

* GMGs: Identify causal Markov blanket:
« For each process X, find parent set A: A

; @,
Pa(x) = H P l1xp ) (Xil XA (i) O 5
D(Px||Pa) = 0. O O

* Directed Information (DI) graph definition
* Draw an edge from X to Y if

O

]()(‘7 — XlHX—{Xi,Xj}) > 0,

Coo
o_gfo

®

Theorem: Two above graphs are equivalent.

Quinn, Kiyavash, and Coleman “Directed information graphs,” IEEE Trans. on Information Theory, 2015.



Linear Models vs DIGs

DIGs:

» Based on statistical dependencies (as opposed to functional dependencies)
*  Works for General models (say not confined to linear models)
* Learning algorithm for general graphs (no assumptions on the topology)

e High complexity

» Side information about the model class can help reduce the complexity.

Etesami, Kiyavash, “Directed Information Graphs: a Generalization of Linear Dynamical Graphs,” ACC 2014.



DIG of Linear Models

« Consider the following Autoregressive (AR) model

p
Ry =) ApRij+6,
k=1

where R; = (Ryy, ..., Rms)T, the exogenous noises are independent, then,

> 0

I(Rz — RJHE—{z,j}) > 0, 0 ZZ:]_ |(1Al€)]7z

* To learn the DIG, instead of estimating the Dls, can check whether the

corresponding coefficients are zero or not.

* Wiener filtering is one approach to estimate the coefficients

T D
~ ~ . 1 — — 2
{Aq,.., A} :argBlr’n”llepE Tt_gl ||Rt_k§_1Bth—k|| :

Etesami, Kiyavash, “Directed Information Graphs: a Generalization of Linear Dynamical Graphs,” ACC 2014.



DIG of Moving Average (MA) Models

e Consider a MA model:
(0. @]
Ry =Y Wi,
k=0
* This can be written as an AR model

— - . — > - . k 1 =
Ry=&+I-Wi R+ ) (-1 (Wi'P(L))" Wi 'Ry
k=1

where P(L):=Y17_, WL 1.

* Corresponding DIG can be inferred the same way as the AR model.



DIG of Moving Average (MA) Models

o Example: MA(I)

03 0 05
Wo=I1, W;=101 02 05
0 04 0.1

* The corresponding AR model of this example is
Ry = & + 202, (1) WHR, .

Because W? has no non-zero entries, the DIG of this system is a complete graph.

0.09 02 0.2
W2 =10.05 024 0.2
0.04 0.12 0.21



Generalized Variance Decomposition for MA Models

o0
* Recall R; = E W€,
k=0

* In GVD the weight of Rj's influence on Rj is proportional to:
p

dij =) (WiX);,
k=0

where E[gél] = 2.
* Computing the GVD method to the Example, we obtain

e R) does not influence R| and R| does not influence R3.

* This result is not consistent with the causal network (DIG) of this example,
which is a complete graph, i.e., every node has influence on any other node.

* Thus, GVD analysis seems to suffer from the pairwise analysis deficit
commonly used in traditional application of the Granger-causality.



DIG of GARCH Models

« Consider the following model
Rif| F*=h ~ N iy 07y),

zt—QO‘i‘ZO‘k it— k:_/vbzt _l_ZﬁlO-zt [

where F'~1 denotes the sigma algebra generated by R'™!:= {Ri"!, ..., R.;1}

* Only term that contains the effect of the other returns on the i-th return:  fi,¢-

* Hence, Rjdoes not influence R; iff

Ft 1

I(Rj = Ril|R () =0 <= E[R;|F"'| = E[R, “o

where ]—'t__{;} is sigma algebra generated by all processes except j-th return.



Multivariate DIG of GARCH Models

« Consider the following model

ﬁt|]:t_1 ~ N (fi, Hy),

q p
vech[Hy| = Qo + Z kaech[ég_ke_%ﬁ_k] -+ Z [ywech[H; ),
k=1 =1

where € =Ry — [i

* |n this case: R; does not influence R; iff

E[(Rix — i) 2IF ) = El(Rig — i) 1FL .

I(Rj = Ril|R_y; 4) =0 B
’ : E[Ri | F"") = E[R; | F"

o

* Pairwise Granger-causality calculation will fail to capture the true causal
structure in this case.



Multivariate GARCH models vs DIGs

 Example:

Rl,t _ 0.2 0.3 Rl,t—l i 61’t

R27t) \ 0 0.2 R2,t—1 62,t ’

/ait\ [0 02 0 0.3 €241 03 05 0 o2, 4
pe | =103+ 0 02 07| |e 12,0 ]+]01 02 0 pi—1 |
\J%jt) \0.1 01 04 0 €2, 1 0 0 04) \o3,

where pr = Ele rea].

* The corresponding DIG of this model is Ry <+ Rs .
« This is because R) influences R| through the mean and variance and R| influences

R2 only through the variance.



Non-linear models vs DIGs

* DIG does not require any linearity assumptions on the model.

P(Rj4|F*~!
( 7t t—l) > 0,
P(Rj,t|"r_{i})

T
1
I(Ri = Rj||B—i 5y) = Y E|lo

t=1

g

* Side information about the model class can simplify the calculation.

» Markov switching model:

exp(@LUs)
1+ exp(atUs)’

P(Rjt|Riy 1, Rig 1) i=
where UL = (1, Ry, 4-1) ® (1, Riy4—1) ® -+~ ® (1, Ri,4—1), ® denotes the Kronecker product.

* Rj does not influence Rj if and only if all the terms of UR depending on Rj are
equal to zero.



Experimental Result

* We identified and monitored the evolution of connectedness among major
financial institutions during 2006-201 6.

Banks Insurances Brokers

1 | FNMA US | 16| BNS US 1 | MET US 16| PFG US 1| MS US 16/ WDR US
2 | AXP US 17| STI US 2 | ANTM US 17| LNC US 2| GS US 17| EV US

3 | FMCC US | 18| C US 3 | AET US 18| AON US 3 | BEN US 18| ITG UN
4 | BAC US 19| MS US 4 | CNA US 19| HUM US 4 | MORN US | 19| JNS US
5 | WFC UN 20| SLM US 5 | XL US 20| MMC US 5 | LAZ US 20| SCHW US
6 | JPM US 21| BBT US 6 | SLF US 21| HIG US 6 | ICE US 21| ETFC US
7 | DB US 22| USB US 7 | MFC US 22| CI US 7 | AINV US | 22| AMTD US
8 | NTRS US | 23| TD US 8 | GNW US 23| ALL US 8 | SEIC US

9 | RY US 24| HSBC US 9 | PRU US 24| BRK/B US 9 | FII US

10| PNC US 25| BCS US 10| AIG US 25| CPYYY US 10| RDN US

11| STT US 26| GS US 11| PGR US 26| AHL US 11| TROW US

12| COF US 27| MS US 12| CB US 12| AMP US

13| BMO US 28| CS US 13| BRK/A US 13| GHL US

14| CM US 14| UNH US 14| AMG US

15| RF UN 15| AFL US 15| RJF US




Test of Non-linearrty

* Applied a non-linearity test based on nonlinear component analysis
* The test divides the operating region into several disjunct regions

* Computes the accuracy bounds of the principle components in each
region.

* Calculates the residual variance of the remaining regions.

* The data is said to be linear if the residual variances are within the accuracy
bounds for all regions.

Uwe Kruger, Junping Zhang, and Lei Xie."Developments and applications of nonlinear principal component analysis-a
review.” In Principal manifolds for data visualization and dimension reduction, pages |-43. Springer; 2008.



Test of Non-linearity

* We divided into 3 regions.

Region | Region 2

P
J

¥5
@ i #» Confirms the data

violates the linearity.

Accuracy bounds

1 Region 3




Resulting DIGs

* We obtained the daily returns for individual banks, broker/dealers, and
insurers.

* Estimated the Dls for each pair of companies using
I(X; = Xill Xpe) = 3 H(X:(O)IX] ™, Xi) = H(Xi(0)| X, X, Xie).
t>1

where H( ) denotes the entropy.

* To reduce the complexity, instead of conditioning on all, we chose the ten
most correlated ones.

* To decide whether the estimated DI was zero or positive, we set the
threshold to be |.16



Resulting DIGs
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2006-2008 Green for brokers, red for insurers, and blue for banks



Resulting DIGs
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Resulting DIGs

Broker
79 67
Broker [543 53 42

# total connections: 60/

201 1-2013 Green for brokers, red for insurers, and blue for banks



Resulting DIGs
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Conclusion

* Went beyond linear pairwise estimation

» Developed a data-driven econometric framework to understand the
relationship between financial institutions using non-linearly modified Granger-
causality test

* applied the model to the monthly returns of U.S. financial Institutions including
banks, broker; and insurance companies to see if crisis is detectable from
network topology



Thank You...



