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Goal

• Goal:  to find casual influence structure
• Graph: 

• nodes: random processes
• directed edges: direction of causal 

influence
• Observations:  all (or a subset) of time series of the 

realizations of processes

• Causal not necessary a case-effect relationship,  rather  
a directional influence



• Passive learning: Observation only
• Intervention is not possible
• Requires a natural notion of time axis 
• Advantages: 

• Going beyond correlation-only relations: causal inference
• Existence of neighborhood and local operation concept: savings in complexity

Network inference via timing
 



• Intimately related to time series analysis
• Econometrics and computational finance
• Financial networks: 

• risk of banking and insurance systems to determine of sovereign risk
• influence structure of stock markets: inter or intra market

Passive learning: Observation only

• Granger causality (by Nobel Laureate)
• Limited in scope:

• pairwise analysis
• linear models



Passive learning: Observation only

• Interlinkages between financial institutions: 

1. Construct a mathematical model using a combination of information 
extracted from financial statements like the market value of liabilities of 
counterparties.

2. Statistical analysis of financial series like Granger-causality network.

• Most of the existing approaches:
•  Pairwise comparison.
•  Assuming linear relationship between the time series. 

• In this work, we develop a method that allows for nonlinearity of the data and 
does not depend on pairwise relationships among time series. 



Granger causality

Clive Granger (1969):  
“We say that X is causing Y if we are better able to predict [the future of ]  Y using 
all available information than if the information apart from [the past of] X had been 
used.”

Past of X does not help prediction, if:

Granger‘s Formulation:  AR Model



• Non-negative; zero iff future of Y is independent of past and present X given past of Y
• Applicable to any modality, e.g. point process

Revisiting Granger’s viewpoint:

Appears in information theory & control theory in context of communication with feedback

X causes Y if the future of  Y given the past of both Y and X  better predicts the 
future of Y given its past alone. 

Case: 
Logarithmic loss:

Predictor : beliefs, then optimal predictors:  conditional densities         
 
Expected regret is directed information:

• Consider sequential predictors:

• Outcome y is revealed,  loss incurred:

• Reduction in loss (regret):



Revisiting Granger’s viewpoint:

X causes Y if the future of  Y given the past of both Y and X  better predicts the 
future of Y given its past alone. 

Directed Information:   
Logarithmic loss and optimal belief predictors:  conditional densities:         
 
Expected regret is directed information:



Resulting graph is a directed information graph

Directed information graph

• Pairwise measure can not distinguish cascading/proxy effects

?

• Causally condition on all other signals:

• There is an arrow from      to      if



Generative Models and Causality

• Dynamical system (Deterministic): 
 
 
 
 
 

• Dynamical system (Stochastic): 
w

x y

z



• Causal Markov blanket:  

• For each process Xi , find parent set A: A

?
Xi

• Resulting graph is a generative model graphs (factorization of joint).
• In a minimal generative for each process i , A(i) is of minimal cardinality. 

Generative Model

Assumption 1:  The joint distributions satisfies spatial conditional independence:

 

and nontrivial conditional distributions are non-degenerate. 

• Unlike Bayesian networks, generative mode graph is unique as long as:

Quinn, Kiyavash, and Coleman “Directed information graphs,” IEEE Trans. on Information Theory, 2015.



• Directed Information (DI)  graph definition 
• Draw an edge from X to Y if

Theorem:  Two above graphs are equivalent.

Quinn, Kiyavash, and Coleman “Directed information graphs,” IEEE Trans. on Information Theory, 2015.

Generative Model vs Directed Information Graphs

• GMGs: Identify causal Markov blanket:  
• For each process Xi , find parent set A: A

?
Xi

?
XiXj



DIGs: 

• Based on statistical dependencies (as opposed to functional dependencies)
• Works for General models (say not confined to linear models)
• Learning algorithm for general graphs (no assumptions on the topology)

• High complexity
• Side information about the model class can help reduce the complexity.

Etesami, Kiyavash, “Directed Information Graphs: a Generalization of Linear Dynamical Graphs,” ACC 2014.

Linear Models vs DIGs



• Consider the following Autoregressive (AR) model

relationships between X and Y , we obtain

I(X ! Y ) =
1

T

TX

t=1

E

log

P (Y
t

|Y t�1, Xt�1)

P (Y
t

|Y t�1)

�
> 0.

Hence, looking into pairwise causal relationships, we obtain an arrow from X ! Y which must not

be true.

A causal model allows a factorization of the joint distribution in some specific ways. It was shown

in [22] that under a mild assumption, the joint distribution of a causal discrete-time dynamical

system with m time series can be factorized as follows,

P
R

=
mY

i=1

P
Ri||XBi

, (3)

where B(i) ✓ �{i} := {1, ...,m} \ {i} is the minimal2 set of processes that causes process R
i

, i.e.,

parent set of node i in the corresponding DIG. Such factorization of the joint distribution is called

minimal generative model. In Equation (3), P (·||·) is called causal conditioning and defined as

follows

P
Ri||RBi

:=
TY

t=1

P
Ri,t|Ft�1

Bi[{i}
,

and F t�1
Bi[{i} = �{Rt�1

Bi[{i}}.
It is important to emphasize that learning the causal network using DI does not require any

specific model for the system. There are di↵erent methods that can estimate (1) given i.i.d. samples

of the time series such as plug-in empirical estimator, k-nearest neighbor estimator, etc [12, 8, 15].

In general, estimating DI in (1) is a complicated task and has high sample complexity. However,

knowing some side information about the system can simplify the learning task. In the following

section, we describe learning the causal network of linear systems. Later in Section IV, we discuss

generalization to non-linear models.

III. DIG of Linear Models

Herein, we study the causal network of linear systems. Consider a set of m stationary time

series, and for simplicity assume they have zero mean, such that their relationships are captured

by the following model:

~R
t

=
pX

k=1

A
k

~R
t�k

+ ~✏
t

, (4)

where ~R
t

= (R1,t, ..., Rm,t

)T , and A
k

s are m⇥m matrices. Moreover, we assume that the exogenous

noises, i.e., ✏
i,t

s are independent and also independent from {R
j,t

}. For simplicity, we assume that

5

DIG of Linear Models 

where                                the exogenous noises are independent, then,

relationships between X and Y , we obtain

I(X ! Y ) =
1

T

TX

t=1

E

log

P (Y
t

|Y t�1, Xt�1)

P (Y
t

|Y t�1)

�
> 0.

Hence, looking into pairwise causal relationships, we obtain an arrow from X ! Y which must not

be true.

A causal model allows a factorization of the joint distribution in some specific ways. It was shown

in [22] that under a mild assumption, the joint distribution of a causal discrete-time dynamical

system with m time series can be factorized as follows,

P
R

=
mY

i=1

P
Ri||XBi

, (3)

where B(i) ✓ �{i} := {1, ...,m} \ {i} is the minimal2 set of processes that causes process R
i

, i.e.,

parent set of node i in the corresponding DIG. Such factorization of the joint distribution is called

minimal generative model. In Equation (3), P (·||·) is called causal conditioning and defined as

follows

P
Ri||RBi

:=
TY

t=1

P
Ri,t|Ft�1

Bi[{i}
,

and F t�1
Bi[{i} = �{Rt�1

Bi[{i}}.
It is important to emphasize that learning the causal network using DI does not require any

specific model for the system. There are di↵erent methods that can estimate (1) given i.i.d. samples

of the time series such as plug-in empirical estimator, k-nearest neighbor estimator, etc [12, 8, 15].

In general, estimating DI in (1) is a complicated task and has high sample complexity. However,

knowing some side information about the system can simplify the learning task. In the following

section, we describe learning the causal network of linear systems. Later in Section IV, we discuss

generalization to non-linear models.

III. DIG of Linear Models

Herein, we study the causal network of linear systems. Consider a set of m stationary time

series, and for simplicity assume they have zero mean, such that their relationships are captured

by the following model:

~R
t

=
pX

k=1

A
k

~R
t�k

+ ~✏
t

, (4)

where ~R
t

= (R1,t, ..., Rm,t

)T , and A
k

s are m⇥m matrices. Moreover, we assume that the exogenous

noises, i.e., ✏
i,t

s are independent and also independent from {R
j,t

}. For simplicity, we assume that

5

the {✏
i,t

} have mean zero. For the model in (4), it was shown in [7] that

I(R
i

! R
j

||R�{i,j}) > 0,

if and only if
P

p

k=1 |(Ak

)
j,i

| > 0, where (A
k

)
j,i

is the (j, i)th entry of matrix A
k

. Thus, to learn

the corresponding causal network (DIG) of this model, instead of estimating the DIs in (1), we

can check whether the corresponding coe�cients are zero or not. To do so, we use the Bayesian

information criterion (BIC) as the model-selection criterion to learn the parameter p [25], and use

F-tests to check the null hypotheses that the coe�cients are zero [16].

Wiener filtering is another alternative approach that can estimate the coe�cients and conse-

quently learn the DIG [18]. The idea of this approach is to find the coe�cients by solving the

following optimization problem,

{Â1, ..., Âp

} = arg min
B1,...,Bp

E
"
1

T

TX

t=1

||~R
t

�
pX

k=1

B
k

~R
t�k

||2
#
.

This leads to a set of Yule-Walker equations that can be solved e�ciently by Levinson-Durbin

algorithm [20].

The relationship between the coe�cients of the linear model and the corresponding DIG can

easily be extended to the financial data in which the variance of {✏
i,t

}T
t=1 are no longer independent

of {R
i,t

} but due to the heteroskedasticity, they are F t�1
i

-measurable. More precisely, in financial

data, the returns are modeled by GARCH that is given by

R
i,t

|F t�1 ⇠ N (µ
i,t

,�2
i,t

),

�2
i,t

= ↵0 +
qX

k=1

↵
k

(R
i,t�k

� µ
i,t

)2 +
sX

l=1

�
l

�2
i,t�l

,
(5)

where ↵
k

s and �
l

s are nonnegative constants. Note that in this model, since the variance of each e
i,t

is F t�1
i

-measurable, the only term that contains the e↵ect of the other returns on the i-th return

is µ
i,t

. Hence, when µ
i,t

=
P

p

k=1

P
m

l=1 a
(k)
i,l

R
l,t�k

, using the result in [7], we declare R
j

a↵ects R
i

if and only if
P

p

k=1

P
m

l=1 |a
(k)
i,l

| > 0, where a(k)
i,l

denotes the (j, l)-th entry of matrix A
k

in (4).

Equivalently, R
j

does not influence R
i

if and only if

E[R
i,t

|F t�1] = E[R
i,t

|F t�1
�{j}]. (6)

In multivariate GARCH models, the variance of e
i,t

is F t�1-measurable. In this case, not only

µ
i,t

but also �2
i,t

capture the interactions between the returns. More precisely, in multivariate
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• To learn the DIG, instead of estimating the DIs, can check whether the 
corresponding coefficients are zero or not. 

• Wiener filtering is one approach to estimate the coefficients 

Etesami, Kiyavash, “Directed Information Graphs: a Generalization of Linear Dynamical Graphs,” ACC 2014.
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• Consider a MA model: 

DIG of Moving Average (MA) Models 

• This can be written as an AR model  

GARCH, we have

~R
t

|F t�1 ⇠ N (~µ
t

,H
t

),

vech[H
t

] = ⌦0 +
qX

k=1

⌦
k

vech[~✏
t�k

~✏T
t�k

] +
pX

l=1

�
l

vech[H
t�l

],

where ~µ
t

is an m ⇥ 1 array, H
t

is an m ⇥ m symmetric positive definite and F t�1-measurable

matrix, and ~✏
t

= ~R
t

� ~µ
t

. Note that vech denotes the vector-half operator, which stacks the lower

triangular elements of an m⇥m matrix as an (m(m+ 1)/2)⇥ 1 array.

We declare R
j

does not influence R
i

if and only if both (6) and the following equation hold

E[(R
i,t

� µ
i,t

)2|F t�1] = E[(R
i,t

� µ
i,t

)2|F t�1
�{j}]. (7)

Next example demonstrates the connection between the DIG of a multivariate GARCH and its

corresponding parameters.

Example 2: Consider the following multivariate GARCH(1,1) model

 
R1,t

R2,t

!
=

 
0.2 0.3

0 0.2

! 
R1,t�1

R2,t�1

!
+

 
✏1,t
✏2,t

!
,

0

B@
�2
1,t

⇢t
�2
2,t

1

CA =

0

B@
0

0.3

0.1

1

CA+

0

B@
0.2 0 0.3

0 0.2 0.7

0.1 0.4 0

1

CA

0

B@
✏21,t�1

✏1,t�1✏2,t�1

✏22,t�1

1

CA+

0

B@
0.3 0.5 0

0.1 0.2 0

0 0 0.4

1

CA

0

B@
�2
1,t�1

⇢t�1

�2
2,t�1

1

CA , (8)

where ⇢
t

= E[✏1,t✏2,t]. The corresponding DIG of this model is R1 $ R2. This is because R2

influences R1 through the mean and variance and R1 influences R2 only through the variance.

Remark 2: Recall that as we mentioned in Remark 1 and Example 1, the pairwise Granger-causality

calculation, in general, fails to identify the true causal network. It was proposed in [3] that the

returns of the ith institution linearly depend on the past returns of the jth institution, when

E[Ri,t|F t�1] = E
⇥
Ri,t|Rj,t�1, Ri,t�1, {Rj,⌧ � µj,⌧}t�2

⌧=�1, {Ri,⌧ � µi,⌧}t�2
⌧=�1

⇤
.

This result is obtained based on pairwise Granger-causality calculation and does not consider non-

linear causation through the variance of {✏
i

}.

A. DIG of Moving-Average (MA) Models

The model in (4) may be represented as an infinite moving average (MV) or data-generating

process (GDP), as long as ~R(t) is covariance-stationary, i.e., all the roots of |I �
P

p

k=1Ak

zk| fall
outside the unit circle [21]:

~R
t

=
1X

k=0

W
k

~✏
t�k

, (9)
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where W
k

= 0 for k < 0, W0 = I, and W
k

=
P

p

l=1Wk�l

A
l

. In this representation, {✏
i

}s are

shocks and they are called orthogonal if they are independent [5]. In this section, we study the

DIG of a MV model. Consider a moving average model with orthogonal shocks given by

~R
t

=
pX

k=0

W
k

~✏
t�k

, (10)

where W
i

s are m⇥m matrices such that W0 is non-singular with nonzero diagonals and without

loss of generality, we can assume that diag(W0) is the identity matrix. Equation (10) can be

written as ~R
t

= W0~✏t + P(L)~✏
t�1, where P(L) :=

P
p

k=1Wk

Lk�1. Subsequently, we have

~Rt = ~✏t + (I�W�1
0 )~Rt +

1X

k=1

(�1)k�1
�
W�1

0 P(L)
�k

W�1
0

~Rt�k. (11)

This representation is equivalent to an infinite AR model. This AR representation suggests that

there are no instantaneous influences among the returns, if the second term in (11) is zero, i.e.,

W0 = I. In this case, the results in [7] implies that R
j

does not influence R
i

if and only if the

corresponding coe�cients of Rt�1
j

in R
i

’s equation are zero. In the interest of simplicity and space,

we do not present the explicit form of these coe�cients, but we show the importance of this result

using a simple example.

Example 3: Consider a MV(1) with dimension three such that W0 = I, and

W1 =

0

B@
0.3 0 0.5

0.1 0.2 0.5

0 0.4 0.1

1

CA .

Using the expression in (11), we have ~R
t

= ~✏
t

+
P1

k=1(�1)k�1
W

k

1
~R
t�k

. Because, W

2
1 has no

nonzero entry, the causal network (DIG) of this model is a complete graph.

We studied the DIG of a MV model with orthogonal shocks. However, the shocks are rarely

orthogonal in practice. To identify the causal structure of such systems, we can apply the whitening

transformation to transform the shocks into a set of uncorrelated variables. More precisely, suppose

E[~✏
t

~✏T
t

] = ⌃, where the Cholesky decomposition of ⌃ is VVT [11]. Hence, V�1~✏
t

is a vector of

uncorrelated shocks. Using this fact, we can transform (10) with correlated shocks into

~R
t

=
pX

k=0

W̃
k

~̃✏
t�k

, (12)

with uncorrelated shocks, where ~̃✏
t

:= V�1~✏
t

and W̃
k

:= W
k

V.

Remark 3: The authors in [5] applied the generalized variance decomposition (GVD) method to

identify the population connectedness of a DGP model with correlated shocks. Using this method,

they monitor and characterize the network of major U.S. financial institutions during 2007-2008

financial crisis. In this method, the weight of R
j

’s influence on R
i

in (10) was defined to be
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(b) January 2013 to June 2016

Figure 3. Recovered DIG of the daily returns of the financial companies in Table I. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and
blue for banks.

VI. Conclusion

In this work, we developed a data-driven econometric framework to understand the relationship

between financial institutions using a non-linearly modified Granger-causality. Unlike existing

literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not su↵er from pairwise comparison to identify the causal relationships

between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the

model to the monthly returns of U.S. financial Institutions including banks, broker, hedge funds, and

insurance companies to identify the level of systemic risk in the financial sector and the contribution

of each financial institution.
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Generalized Variance Decomposition for MA Models

• Recall 

• In GVD the weight of Rj’s influence on Ri is proportional to:

• Computing the GVD method to the Example, we obtain
• R2 does not influence R1 and R1 does not influence R3. 
• This result is not consistent with the causal network (DIG) of this example, 

which is a complete graph, i.e., every node has influence on any other node. 
• Thus, GVD analysis  seems to suffer from the pairwise analysis deficit 

commonly used in traditional application of the Granger-causality.
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pX
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(W
k

⌃)2
i,j

, (13)

where (A)
i,j

denotes the (i, j)-th entry of matrix A. Recall that E[~✏
t

~✏T
t

] = ⌃. Applying the GVD

method to Example 3, where ⌃ = I, we obtain that d1,2 = d3,1 = 0. That is R2 does not influence

R1 and R1 does not influence R3. This result is not consistent with the causal network (DIG) of

this example, which is a complete graph, i.e., every node has influence on any other node. Thus,

GVD analysis of [5] is also seems to su↵er from disregarding the entire network akin to pairwise

analysis commonly used in traditional application of the Granger-causality [3, 2].

IV. DIG of Non-linear Models

DIG as defined in Definition 2 does not require any linearity assumptions on the model. But,

similar to [2], side information about the model class can simplify computation of (1). For instance,

let us assume that R is a first-order Markov chain with transition probabilities:

P (R
t

|Rt�1) = P (R
t

|R
t�1).

In this setup, I(R
i

! R
j

||R�{i,j}) = 0 if and only if

P (R
j,t

|R
t�1) = P (R

j,t

|R�{i},t�1), 8t.

Recall that R�{i},t�1 denotes {R1,t�1, ..., Rm,t�1} \ {Ri,t�1}. Furthermore, suppose that the tran-

sition probabilities are represented through a logistic function again as in [2]. More specifically, for

any subset of processes S := {R
i1 , ..., Ris} ✓ R, we have

P (R
j,t

|R
i1,t�1, ..., Ris,t�1) :=

exp(~↵T

SUS)

1 + exp(~↵T

SUS)
,

where UT

S := (1, R
i1,t�1) ⌦ (1, R

i2,t�1) ⌦ · · · ⌦ (1, R
is,t�1), ⌦ denotes the Kronecker product, and

~↵S is a vector of dimension 2s ⇥ 1. Under these assumptions, the causal discovery in the network

reduces to the following statement: R
i

does not influence R
j

if and only if all the terms of U
R

depending on R
i

are equal to zero. More precisely:

U
R

= U
R�{i} ⌦ (1, R

i,t�1) = (U
R�{i} , UR�{i}Ri,t�1).

Let ~↵T

R

= (~↵T

1 , ~↵
T

2 ), where ~↵1 and ~↵2 are the vectors of coe�cients corresponding to U
R�{i} and

U
R�{i}Ri,t�1, respectively. Then R

i

6! R
j

if and only if ~↵2 = 0.
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where 

GARCH, we have

~R
t

|F t�1 ⇠ N (~µ
t

,H
t

),

vech[H
t

] = ⌦0 +
qX

k=1

⌦
k

vech[~✏
t�k

~✏T
t�k

] +
pX

l=1

�
l

vech[H
t�l

],

where ~µ
t

is an m ⇥ 1 array, H
t

is an m ⇥ m symmetric positive definite and F t�1-measurable

matrix, and ~✏
t

= ~R
t

� ~µ
t

. Note that vech denotes the vector-half operator, which stacks the lower

triangular elements of an m⇥m matrix as an (m(m+ 1)/2)⇥ 1 array.

We declare R
j

does not influence R
i

if and only if both (6) and the following equation hold

E[(R
i,t

� µ
i,t

)2|F t�1] = E[(R
i,t

� µ
i,t

)2|F t�1
�{j}]. (7)

Next example demonstrates the connection between the DIG of a multivariate GARCH and its

corresponding parameters.

Example 2: Consider the following multivariate GARCH(1,1) model
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where ⇢
t

= E[✏1,t✏2,t]. The corresponding DIG of this model is R1 $ R2. This is because R2

influences R1 through the mean and variance and R1 influences R2 only through the variance.
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non code length, i.e., the number of bits required to e�ciently represent a symbol y drawn from
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t=1 E[rt], where the expectation is taken over the joint distribution of X, Y , and Z is called

directed information (DI). This will be our measure of causation and its value determines the

strength of influence. If this quantity is close to zero, it indicates that the past values of time series

X contain no significant information that would help in predicting the future of time series Y given

the history of Y and Z. This definition may be generalized to more than 3 processes as follows,
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{Â1, ..., Âp
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} = arg min
B1,...,Bp

E
"
1

T

TX

t=1

||~R
t

�
pX

k=1

B
k

~R
t�k

||2
#
.

This leads to a set of Yule-Walker equations that can be solved e�ciently by Levinson-Durbin

algorithm [20].

The relationship between the coe�cients of the linear model and the corresponding DIG can

easily be extended to the financial data in which the variance of {✏
i,t

}T
t=1 are no longer independent

of {R
i,t

} but due to the heteroskedasticity, they are F t�1
i

-measurable. More precisely, in financial

data, the returns are modeled by GARCH that is given by

R
i,t

|F t�1 ⇠ N (µ
i,t

,�2
i,t

),

�2
i,t

= ↵0 +
qX

k=1

↵
k

(R
i,t�k

� µ
i,t

)2 +
sX

l=1

�
l

�2
i,t�l

,
(5)

where ↵
k

s and �
l

s are nonnegative constants. Note that in this model, since the variance of each e
i,t

is F t�1
i

-measurable, the only term that contains the e↵ect of the other returns on the i-th return

is µ
i,t

. Hence, when µ
i,t

=
P

p

k=1

P
m

l=1 a
(k)
i,l

R
l,t�k

, using the result in [7], we declare R
j

a↵ects R
i

if and only if
P

p

k=1

P
m

l=1 |a
(k)
i,l

| > 0, where a(k)
i,l

denotes the (j, l)-th entry of matrix A
k

in (4).

Equivalently, R
j

does not influence R
i

if and only if

E[R
i,t

|F t�1] = E[R
i,t

|F t�1
�{j}]. (6)

In multivariate GARCH models, the variance of e
i,t

is F t�1-measurable. In this case, not only

µ
i,t

but also �2
i,t

capture the interactions between the returns. More precisely, in multivariate

6

the {✏
i,t

} have mean zero. For the model in (4), it was shown in [7] that

I(R
i

! R
j

||R�{i,j}) > 0,

if and only if
P

p

k=1 |(Ak

)
j,i

| > 0, where (A
k

)
j,i

is the (j, i)th entry of matrix A
k

. Thus, to learn

the corresponding causal network (DIG) of this model, instead of estimating the DIs in (1), we

can check whether the corresponding coe�cients are zero or not. To do so, we use the Bayesian

information criterion (BIC) as the model-selection criterion to learn the parameter p [25], and use

F-tests to check the null hypotheses that the coe�cients are zero [16].

Wiener filtering is another alternative approach that can estimate the coe�cients and conse-

quently learn the DIG [18]. The idea of this approach is to find the coe�cients by solving the

following optimization problem,
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Figure 3. Recovered DIG of the daily returns of the financial companies in Table I. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and
blue for banks.

VI. Conclusion

In this work, we developed a data-driven econometric framework to understand the relationship

between financial institutions using a non-linearly modified Granger-causality. Unlike existing

literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not su↵er from pairwise comparison to identify the causal relationships

between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the

model to the monthly returns of U.S. financial Institutions including banks, broker, hedge funds, and

insurance companies to identify the level of systemic risk in the financial sector and the contribution

of each financial institution.
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{Â1, ..., Âp
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Figure 3. Recovered DIG of the daily returns of the financial companies in Table I. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and
blue for banks.
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literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not su↵er from pairwise comparison to identify the causal relationships

between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the

model to the monthly returns of U.S. financial Institutions including banks, broker, hedge funds, and

insurance companies to identify the level of systemic risk in the financial sector and the contribution

of each financial institution.
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j
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• Example:

Multivariate GARCH models vs DIGs
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corresponding parameters.
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• The corresponding DIG of this model is                  .    
• This is because R2 influences R1 through the mean and variance and R1 influences 

R2 only through the variance. 



Non-linear models vs DIGs

• DIG does not require any linearity assumptions on the model. 

Given a prediction p for an outcome y 2 Y, the log loss is defined as `(p, y) := � log p(y).

This loss function has meaningful information-theoretical interpretations. The log loss is the Shan-

non code length, i.e., the number of bits required to e�ciently represent a symbol y drawn from

distribution p. Thus, it may be thought of the description length of y.

When the outcome y
t

is revealed for Y
t

, the two predictors incur losses `(p
t

, y
t

) and `(q
t

, y
t

),

respectively. The reduction in the loss (description length of y
t

), known as regret is defined as

r
t

:= `(q
t

, y
t

)� `(p
t

, y
t

) = log
p
t

q
t

= log
P (Y

t

= y
t

|F t�1)

P (Y
t

= y
t

|F t�1
�X

)
� 0.

Note that the regrets are non-negative. The average regret over the time horizon [1, T ] given by
1
T

P
T

t=1 E[rt], where the expectation is taken over the joint distribution of X, Y , and Z is called

directed information (DI). This will be our measure of causation and its value determines the

strength of influence. If this quantity is close to zero, it indicates that the past values of time series

X contain no significant information that would help in predicting the future of time series Y given

the history of Y and Z. This definition may be generalized to more than 3 processes as follows,

Definition 1: Consider a network of m time series R := {R1, ..., Rm

}. We declare R
i

influences R
j

over time horizon [1, T ], if and only if

I(R
i

! R
j

||R�{i,j}) :=
1

T

TX

t=1

E
"
log

P (R
j,t

|F t�1)

P (R
j,t

|F t�1
�{i})

#
> 0, (1)

where R�{i,j} := R\{R
i

, R
j

}. F t�1 denotes the sigma algebra generated by Rt�1 := {Rt�1
1 , ..., Rt�1

m

},
and F t�1

�{i} denotes the sigma algebra generated by {Rt�1
1 , ..., Rt�1

m

} \ {Rt�1
i

}.

Definition 2: Directed information graph (DIG) of a set of m processes R = {R1, ..., Rm

} is a

weighted directed graph G = (V,E,W ), where nodes represent processes (V = R) and arrow

(R
i

, R
j

) 2 E denotes that R
i

influences R
j

with weight I(R
i

! R
j

||R�{i,j}). Consequently,

(R
i

, R
j

) /2 E if and only if its corresponding weight is zero.

Remark 1: Pairwise comparison has been applied in the literature to identify the causal structure

of time series [3, 2, 1]. This comparison is not correct in general and fails to capture the true

underlying network. For more details please see [22].

Example 1: As an example, consider a network of three times series {X,Y, Z} with the following

model:
X

t

= a1Xt�1 + a2Zt�1 + ✏
xt ,

Z
t

= a3Zt�1 + ✏
zt ,

Y
t

= a4Yt�1 + a5Zt�1 + ✏
yt ,

(2)

where ✏
x

, ✏
y

, and ✏
z

are three independent white noise processes, and {a1, ..., a5} are coe�cients

of the model. The causal network of this model is X  Z ! Y . Considering the pairwise causal
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• Side information about the model class can simplify the calculation.
• Markov switching model:

proportional to

d
i,j

=
pX

k=0

(W
k

⌃)2
i,j

, (13)

where (A)
i,j

denotes the (i, j)-th entry of matrix A. Recall that E[~✏
t

~✏T
t

] = ⌃. Applying the GVD

method to Example 3, where ⌃ = I, we obtain that d1,2 = d3,1 = 0. That is R2 does not influence

R1 and R1 does not influence R3. This result is not consistent with the causal network (DIG) of

this example, which is a complete graph, i.e., every node has influence on any other node. Thus,

GVD analysis of [5] is also seems to su↵er from disregarding the entire network akin to pairwise

analysis commonly used in traditional application of the Granger-causality [3, 2].

IV. DIG of Non-linear Models

DIG as defined in Definition 2 does not require any linearity assumptions on the model. But,

similar to [2], side information about the model class can simplify computation of (1). For instance,

let us assume that R is a first-order Markov chain with transition probabilities:

P (R
t

|Rt�1) = P (R
t

|R
t�1).

In this setup, I(R
i

! R
j

||R�{i,j}) = 0 if and only if

P (R
j,t

|R
t�1) = P (R

j,t

|R�{i},t�1), 8t.

Recall that R�{i},t�1 denotes {R1,t�1, ..., Rm,t�1} \ {Ri,t�1}. Furthermore, suppose that the tran-

sition probabilities are represented through a logistic function again as in [2]. More specifically, for

any subset of processes S := {R
i1 , ..., Ris} ✓ R, we have

P (R
j,t

|R
i1,t�1, ..., Ris,t�1) :=

exp(~↵T

SUS)

1 + exp(~↵T

SUS)
,

where UT

S := (1, R
i1,t�1) ⌦ (1, R

i2,t�1) ⌦ · · · ⌦ (1, R
is,t�1), ⌦ denotes the Kronecker product, and

~↵S is a vector of dimension 2s ⇥ 1. Under these assumptions, the causal discovery in the network

reduces to the following statement: R
i

does not influence R
j

if and only if all the terms of U
R

depending on R
i

are equal to zero. More precisely:

U
R

= U
R�{i} ⌦ (1, R

i,t�1) = (U
R�{i} , UR�{i}Ri,t�1).

Let ~↵T

R

= (~↵T

1 , ~↵
T

2 ), where ~↵1 and ~↵2 are the vectors of coe�cients corresponding to U
R�{i} and

U
R�{i}Ri,t�1, respectively. Then R

i

6! R
j

if and only if ~↵2 = 0.
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where                                                              denotes the Kronecker product. 

• Ri does not influence Rj if and only if all the terms of UR depending on Ri are 
equal to zero.



Experimental Result

• We identified and monitored the evolution of connectedness among major 
financial institutions during 2006-2016. 

V. Experimental Result

In we have introduced tools for identifying the causal structure in a network of time series. In

this section, we put those tools to work and use them to identify and monitor the evolution of

connectedness among major financial institutions during 2006-2016.

A. Data

We obtained the data for individual banks, broker/dealers, and insurers from ???, from which

we selected the daily returns of all companies listed in Table I.

Banks

1 FNMA US 16 BNS US

2 AXP US 17 STI US

3 FMCC US 18 C US

4 BAC US 19 MS US

5 WFC UN 20 SLM US

6 JPM US 21 BBT US

7 DB US 22 USB US

8 NTRS US 23 TD US

9 RY US 24 HSBC US

10 PNC US 25 BCS US

11 STT US 26 GS US

12 COF US 27 MS US

13 BMO US 28 CS US

14 CM US

15 RF UN

Insurances

1 MET US 16 PFG US

2 ANTM US 17 LNC US

3 AET US 18 AON US

4 CNA US 19 HUM US

5 XL US 20 MMC US

6 SLF US 21 HIG US

7 MFC US 22 CI US

8 GNW US 23 ALL US

9 PRU US 24 BRK/B US

10 AIG US 25 CPYYY US

11 PGR US 26 AHL US

12 CB US

13 BRK/A US

14 UNH US

15 AFL US

Brokers

1 MS US 16 WDR US

2 GS US 17 EV US

3 BEN US 18 ITG UN

4 MORN US 19 JNS US

5 LAZ US 20 SCHW US

6 ICE US 21 ETFC US

7 AINV US 22 AMTD US

8 SEIC US

9 FII US

10 RDN US

11 TROW US

12 AMP US

13 GHL US

14 AMG US

15 RJF US

Table I. List of companies in our experiment.

We calculated the causal network for di↵erent time periods that will be considered in the

empirical analysis: 2006-2008, 2009-2011, 2011-2013, and 2013-2016.

B. Non-linearity Test

C. DIG of the Financial Market

VI. Conclusion

In this work, we developed a data-driven econometric framework to understand the relationship

between financial institutions using a non-linearly modified Granger-causality. Unlike existing

literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not su↵er from pairwise comparison to identify the causal relationships

between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the
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we selected the daily returns of all companies listed in Table I.

Banks

1 FNMA US 16 BNS US

2 AXP US 17 STI US

3 FMCC US 18 C US

4 BAC US 19 MS US

5 WFC UN 20 SLM US

6 JPM US 21 BBT US

7 DB US 22 USB US

8 NTRS US 23 TD US

9 RY US 24 HSBC US

10 PNC US 25 BCS US

11 STT US 26 GS US

12 COF US 27 MS US

13 BMO US 28 CS US

14 CM US

15 RF UN

Insurances

1 MET US 16 PFG US

2 ANTM US 17 LNC US

3 AET US 18 AON US

4 CNA US 19 HUM US

5 XL US 20 MMC US

6 SLF US 21 HIG US

7 MFC US 22 CI US

8 GNW US 23 ALL US

9 PRU US 24 BRK/B US

10 AIG US 25 CPYYY US

11 PGR US 26 AHL US

12 CB US

13 BRK/A US

14 UNH US

15 AFL US

Brokers

1 MS US 16 WDR US

2 GS US 17 EV US

3 BEN US 18 ITG UN

4 MORN US 19 JNS US

5 LAZ US 20 SCHW US

6 ICE US 21 ETFC US

7 AINV US 22 AMTD US

8 SEIC US

9 FII US

10 RDN US

11 TROW US

12 AMP US

13 GHL US

14 AMG US

15 RJF US

Table I. List of companies in our experiment.

We calculated the causal network for di↵erent time periods that will be considered in the

empirical analysis: 2006-2008, 2009-2011, 2011-2013, and 2013-2016.

B. Non-linearity Test

C. DIG of the Financial Market

VI. Conclusion

In this work, we developed a data-driven econometric framework to understand the relationship

between financial institutions using a non-linearly modified Granger-causality. Unlike existing

literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not su↵er from pairwise comparison to identify the causal relationships

between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the
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Test of Non-linearity

• Applied a non-linearity test based on nonlinear component analysis 

• The test divides the operating region into several disjunct regions

• Computes the accuracy bounds of the principle components in each 
region.

• Calculates the residual variance of the remaining regions.

• The data is said to be linear if the residual variances are within the accuracy 
bounds for all regions.

Uwe Kruger, Junping Zhang, and Lei Xie. “Developments and applications of nonlinear principal component analysis-a 
review.” In Principal manifolds for data visualization and dimension reduction, pages 1-43. Springer, 2008.



Test of Non-linearity

• We divided into 3 regions.

0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

20

25

30

35

40

45

50

0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

20

25

30

35

40

45

50

0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

20

25

30

35

Confirms the data 
violates the linearity.

Region 1 Region 2

Region 3

Accuracy bounds



Resulting DIGs

•  We obtained the daily returns for individual banks, broker/dealers, and 
insurers.

• Estimated the DIs for each pair of companies using 

Causal Relationships in Dynamical Systems: Statistical and Functional Dependencies

To clarify the relationship between directed information and transfer entropy, using the
definition of conditional entropy, we rewrite the above quantity as follow:

I(X
j

! X
i

||XK) =
X

t�1

H(X
i

(t)|Xt�1

i

, Xt

K)�H(X
i

(t)|Xt�1

i

, Xt

j

, Xt

K). (6)

As one can see from (6), directed information not only considers the past of processes
but also the simultaneous influences between them i.e., the conditions are up to time t,
however, transfer entropy (3) excludes such influences. Note that in (Quinn et al., 2012),
Quinn et al. introduce a modified version of conditional directed information in which
they exclude simultaneous influences, i.e., for given time t, the conditions are up to time
t � 1. The reason for such exclusion will be more clear in the next section, when we
introduce generative models. Moreover, another di↵erence between transfer entropy and
directed information is that the directed information accumulates the influences over the
time horizon.

Example 1 To clarify the above definition we calculate (5) for the case of three random
processes X = {X

1

, X
2

, X
3

} that are jointly Gaussian, where i = 1, j = 2, K = {3}:
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where |⌃
x

t

1x
t

3
| is the determinant of the covariance matrix of (X

1

(1), ..., X
1

(t), X
3

(1), ..., X
3

(t)).

If dimension of the stochastic processes increases with time, the information theoretic
quantities often diverge linearly as a function of time. Thus, it is more reasonable to define
information rates, as follows:

I1(X
j

! X
i

) := lim
t!�1

1

n� t+ 1
I(Xn

j,t

! Xn

i,t

),

I1(X
j

! X
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||XK) := lim
t!�1

1

n� t+ 1
I(Xn

j,t

! Xn

i,t

||Xn

K,t

),

Definition 1 A directed information graph (DIG) is a directed graph denoted by
�!
G

DI

over
a set of random processes X such that node i represents the random process X

i

and there
is an arrow from j to i for i, j 2 {1, ...,m} if and only if

I(X
j

! X
i

|| X�{i,j}) > 0. (7)

Note that there are di↵erent methods in literature for estimating information-theoretic
measures such entropy and directed information quantities given a set of observations. In
general, these methods can be categorized into two groups: parametric and non-parametric
estimators. (Hlaváčková-Schindler et al., 2007)
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where H( ) denotes the entropy.

• To reduce the complexity, instead of conditioning on all, we chose the ten 
most correlated ones.

• To decide whether the estimated DI was zero or positive, we set the 
threshold to be 1.16



Resulting DIGs

2006-2008
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Resulting DIGs

2009-2011
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Insurance Bank Broker
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Resulting DIGs

2011-2013
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Resulting DIGs

2013-2016
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• Went beyond linear pairwise estimation

• Developed a data-driven econometric framework to understand the 
relationship between financial institutions using non-linearly modified Granger-
causality test 

• applied the model to the monthly returns of U.S. financial Institutions including 
banks, broker, and insurance companies to see if crisis is detectable from 
network topology

Conclusion



Thank You...


