Systemic risk in financial multilayer networks - and how to manage it

Stefan Thurner

www.complex-systems.meduniwien.ac.at www.santafe.edu

cambridge sep 14 2016

with Sebastian Poledna

S. Poledna, S Thurner, J. Farmer, J. Geanakoplos Leverage-induced systemic risk under Basle II and other credit risk policies J of Banking and Finance 42, 199-212, (2014)

S. Thurner and S. Poledna DebtRank-transparency: Controlling systemic risk in financial networks Scientific Reports 3, 1888, (2013)

P. Klimek, S. Poledna, J.D. Farmer, S. Thurner, To bail-out or to bail-in? Answers from an agent-based model J of Economic Dynamics and Control 50, 144-154, (2014)

S. Poledna, J.L. Molina-Borboa, M. v.d. Leij, S. Martinez-Jaramillo, S. Thurner, Multi-layer network nature of systemic risk in financial networks, J Financial Stability 20, 70-81, (2015)

S Poledna, S Thurner, Elimination of systemic risk in financial networks by means of a systemic risk transaction tax, Quantitative Finance (2016)

M.V. Leduc, S. Poledna, S. Thurner Systemic Risk Management in Financial Networks with Credit Default Swaps 2016 (arXiv:1601.02156)

S. Poledna, O. Bochmann, S. Thurner Basel III fails to control systemic risk and can cause pro-cyclical side effects (2015) (arXiv:1602.03505)

M.V. Leduc, S. Thurner, Incentivizing Resilience in Financial Networks (2016) (arXiv:1606.03595)

funded in part by

cambridge sep 14 2016 3

Part I: What is systemic risk?

cambridge sep 14 2016 4

The three types of risk

- economic risk: investment in business idea does not pay off
- credit-default risk: you don't get back what you have lent
- **systemic risk:** system stops functioning due to local defaults and subsequent (global) cascading

Economic risk

risk that business idea does not fly – fails – investments are lost

- who takes this risk? The financial system!
- this is a service of financial system to economy
- \bullet this service should not introduce new risks: as long as it does \rightarrow financial system is ill designed
- management: hard to get rid of this type of risk

Credit-default risk

if I lend something – there is risk that I will not get it back estimate for credit-worthiness: assets–liabilities

management: capital requirements for lending
→ Basle-type regulation

Systemic risk

- risk that significant fraction of financial network defaults
- systemic risk is **not** the same as credit-default risk
- banks care about credit-default risk
- banks have no means to manage systemic risk
- \rightarrow role of regulator: manage systemic risk
- \rightarrow incentivise banks to think of SR

Two origins of systemic risk

• synchronisation of behaviour: fire sales, margin calls, herding including various amplification effects. May involve networks

• **networks of contracts**: this is manageable

How does systemic risk spread?

SR spreads by borrowing from others!

if you borrow **from** systemically risky nodes \rightarrow you increase your systemic risk

note: credit-default risk spreads by lending to

cambridge sep 14 2016 10

Systemic risk is a multiplex network

layer 1: lending-borrowing loans

layer 2: derivatives

layer 3: collateral

layer 4: securities

layer 5: cross-holdings

layer 6: overlapping pfolios

layer 7: liquidity: over-night loans

layer 8: FX transactions

Part II: Quantification of SR

cambridge sep 14 2016 12

Systemic risk – quantification

Wanted: systemic risk-value for every financial institution

Google has similar problem: value for importance of web-pages

- \rightarrow page is important if many important pages point to it
- \rightarrow number for importance \rightarrow <code>PageRank</code>

page is **important** if many **important** pages point to it

source Wikipedia cc-license

institution system. risky if system. risky institutions lend to it

Systemic risk factor – DebtRank R

... is a "different Google" – adapted to context of systemic risk (S. Battiston et al. 2012)

superior to: eigenvector centrality, page-rank, Katz rank ... Why?

 quantifies systemic relevance of node in financial network with economically meaningful number

- economic value in network that is affected by node's default
- takes capitalization/leverage of banks into account
- takes cycles into account: no multiple defaults

DebtRank

- recursive method
- corrects Katz rank for loops in the exposure network

• if i defaults and can not repay loans, j loses L_{ij} . If j has not enough capital to cover that loss $\rightarrow j$ defaults

• impact of bank i on neighbors $I_i = \sum_j W_{ij} v_j$ with $W_{ij} = \min\left[1, \frac{L_{ij}}{C_j}\right]$, ouststanding loans $L_i = \sum_j L_{ji}$, and $v_i = L_i / \sum_j L_j$

ullet impact on nodes at distance two and higher \rightarrow recursive

$$I_i = \sum_j W_{ij} v_j + \beta \sum_j W_{ij} I_j,$$

cambridge sep 14 2016 17

If the network W_{ij} contains cycles the impact can exceed one \rightarrow DebtRank (S. Battiston et al. (2012))

• nodes have two state variables, $h_i(t) \in [0,1]$ and $s_i(t) \in \{Undistress, Distress, Inactive\}$

• Dynamics: $h_i(t) = \min\left[1, h_i(t-1) + \sum_{j|s_j(t-1)=D} W_{ji}h_j(t-1)\right]$

$$s_i(t) = \begin{cases} D & \text{if } h_i(t) > 0; s_i(t-1) \neq I \\ I & \text{if } s_i(t-1) = D \\ s_i(t-1) & \text{otherwise} \end{cases}$$

• DebtRank of set S_f (set of nodes in distress), is

$$R_S = \sum_j h_j(t)v_j - \sum_j h_j(1)v_j$$

Measures distress in the system, excluding initial distress. If S_f is a single node, DebtRank measures its systemic impact on the network.

• DebtRank of S_f containing only the single node i is

$$R_i = \sum_j h_j(t)v_j - h_i(1)v_i$$

Systemic risk spreads by borrowing

Systemic risk spreads by borrowing

DebtRank Austria Sept 2009

note: size is not proportional to systemic risk note: core-periphery structure

Systemic risk profile

Austria

Systemic risk profile

*with Serafin Martinez-Jaramillo and his team at Banco de Mexico, 2014

Daily assessment of systemic risk is possible

Systemic risk \rightarrow expected systemic loss

Expected loss for bank *i* (stress testing)

Expected loss(i)= $\sum_{j} p_{default}(j)$.Loss-given-default(j).Exposure(i,j)

Expected systemic loss = $\sum_{i} p_{default}(i)$. DebtRank(i) units: Euro / Year

$$\begin{aligned} \mathrm{EL}^{\mathrm{syst}} &= V \sum_{S \in \mathcal{P}(B)} \prod_{i \in S} p_i \prod_{j \in B \setminus S} (1 - p_j) \left(R_S \right) \\ &\approx V \sum_{S \in \mathcal{P}(B)} \prod_{i \in S} p_i \prod_{j \in B \setminus S} (1 - p_j) \left(\sum_{i \in S} R_i \right) \\ &= V \sum_{i=1}^b \left(\sum_{J \in \mathcal{P}(B \setminus \{i\})} \prod_{j \in J} p_j \prod_{k \in B \setminus \{J \cup \{i\})} (1 - p_k) \right) p_i R_i \\ &= V \sum_{i=1}^b p_i R_i \end{aligned}$$

Expected systemic loss index for Mexico*

*with Serafin Martinez-Jaramillo and team at Banco de Mexico, 2014

Expected systemic loss index

 expected losses per year within country in case of severe default and NO bailout

 \rightarrow rational decision on bailouts

- allows to compare countries
- allows to compare situation of country over time
- \rightarrow are policy measures taking action in Spain? in Greece?

Expected systemic loss index: error

Observation

Systemic risk of a node changes with every transaction

Austria all interbank loans

Mexican data

 $\Delta EL^{\rm syst} > \Delta EL^{\rm credit} \to$ defaults do not only affect lenders but involves third parties

systemic risk is an externality

cambridge sep 14 2016 34

Management of systemic risk

- Systemic risk is a network property to large extent
- Manage systemic risk: **re-structure financial networks** such that cascading failure becomes unlikely, ideally impossible

systemic risk management = re-structure networks

Systemic risk elimination

- systemic risk spreads by borrowing from risky agents
- \bullet how risky is a transaction? \rightarrow increase of expected syst. loss
- ergo: restrict borrowing from those with high DebtRank
- \rightarrow tax those transactions that increase systemic risk

Systemic risk tax

• tax transactions according to their systemic risk contribution

- \rightarrow agents look for deals with agents with low systemic risk
- \rightarrow liability networks re-arrange \rightarrow eliminate cascading

No one should pay the tax – tax serves as incentive to re-structure networks

- size of tax = expected systemic loss of transaction (government is neutral)
- if system is risk free: no tax
- credit volume should not be affected by tax

Self-stabilisation of systemic risk tax

- those who can not lend become systemically safer
- those who are safe can lend and become unsafer
- $\bullet \rightarrow$ new equilibrium where systemic risk is distributed evenly across the network (cascading minimal)
- \rightarrow self-organized critical

To test efficacy of tax: Crisis Macro-Financial Simulator (schematic)

The agents

- firms: ask bank for loans: random size, maturity au, $r^{\mathrm{f-loan}}$
- \rightarrow firms sell products to households: realise profit/loss
- \rightarrow if surplus \rightarrow deposit it bank accounts, for $r^{\rm f-deposit}$
- \rightarrow firms are bankrupt if insolvent, or capital is below threshold
- \rightarrow if firm is bankrupt, bank writes off outstanding loans
- banks try to provide firm-loans. If they do not have enough
- \rightarrow approach other banks for interbank loan at interest rate $r^{\rm ib}$
- \rightarrow bankrupt if insolvent or equity capital below zero
- \rightarrow bankruptcy may trigger other bank defaults

• households single aggregated agent: receives cash from firms (through firm-loans) and re-distributes it randomly in banks (household deposits, $r^{\rm h}$), and among other firms (consumption)

For comparison: implement Tobin-like tax

- tax all transactions regardless of their risk contribution
- 0.2% of transaction (\sim 5% of interest rate)

Simulations: measure losses, cascades and efficiency

- total losses to banks resulting from a default/cascade
- cascade size: number of defaulting banks in systemic event
- credit volume: total credit volume in interbank market

Comparison of three schemes

- No systemic risk management
- Systemic Risk Tax (SRT)
- Tobin-like tax

Model results: Systemic risk profile

Model results: Systemic risk of individual loans

Model results: Distribution of losses

SRT eliminates systemic risk. How?

Model results: Cascading is suppressed

Model results: Credit volume

Tobin tax reduces risk by reducing credit volume

Implementation in reality

- Bank *i* requests loan of size L_{ij} from bank *j*
- Bank j provides loan for interest $I(L_{ij})$
- Central Bank computes $SRT(L_{ij})$ for transaction
- Cost for loan with bank j: $I(L_{ij}) + SRT(L_{ij})$
- Bank *i* asks other bank *k* for same transaction $L_{ik} = L_{ij}$
- Costs for loan with bank k: $I(L_{ik}) + SRT(L_{ik})$
- Bank i choses transaction partner for which costs are minimal

Challenges – what could be wrong ?

• **SRT is pro-cyclical** – feedback: SRT hits most risky banks hardest. Needed: ramp-up phase. Once system is in low-risk equilibrium, there are practically no pro-cyclical effects

• SRT is useless if not all countries participate – arbitrage possibilities for non-participating countries – same as for any transaction tax

• Basel III takes care of Systemic Risk?

• the interbank network is not the relevant one – role of derivatives, mutual cross-holdings, overlapping pfs, etc. \rightarrow apply SRT to other multiplex layers

Mathematical proof:

SR-free equilibrium under SRT exists

Basel III

cambridge sep 14 2016 53

Basel III

• Indicator approach: five categories (equal weights ω^i): size, interconnectedness, financial institution infrastructure, cross-jurisdictional activity and complexity. Sub-indicators (equal weights)

$$S_j = \sum_{i \in I} \omega^i \frac{D_j^i}{\sum_j^B D_j^i} 10,000$$

Bucket	Score range	Bucket thresholds	Higher loss-absorbency	
			requirement	
5	D-E	530-629	3.50%	
4	C-D	430-529	2.50%	
3	B-C	330-429	2.00%	
2	A-B	230-329	1.50%	
1	Cutoff point-A	130-229	1.00%	

•Cross-jurisdictional activity (20%)	Cross-jurisdictional claims	10%
•Size (20%)	Cross-jurisdictional liabilities Total exposures for use in Basel III leverage ratio	10% 20%
Interconnectedness (20%)	Intra-financial system assets	6.67%
•Substitutability / financial institu- tion infrastructure (20%)	Intra-financial system liabilities Securities outstanding Assets under custody	6.67% 6.67% 6.67%
•Complexity (20%)	Payments activity Underwritten transactions in debt and equity markets (Notional) OTC derivatives	6.67% 6.67% 6.67%
	Level 3 assets Trading and available-for-sale securities	6.67% 6.67%

Basel III

- Size: total exposures of banks
- Interconnectedness: use directed and weighted networks
- Substitutability/ financial institution infrastructure: payment activity of banks. The payment activity is measured by the sum of all outgoing payments of banks.
- **Complexity:** not modelled (weight 0)
- **Cross-jurisdiction activity:** not modelled (weight 0)

Basel III is does not reduce SR !

Basel III works under tremendous costs

Basel III re-distributes systemic risks

Part III: Financial multiplex networks

cambridge sep 14 2016 60

Systemic risk multiplex of Mexico Sep 30 2013

- layer 1: derivatives network
- layer 2: network of cross holdings
- layer 3: foreign exchange exposures
- layer 4: network of deposits and loans
- layer 5: combined exposures

Size of exposures in the various layers

distribution of exposure size (in Mex \$) distribution data aggregated over Jan 2 2007 to May 30 2013

Interactions between layers (markets)

Jaccard coefficient: $J_{\alpha\beta}$ correlations: exposure $\sum_{i} L_{ij}^{\alpha}$, liabilities $\sum_{j} L_{ij}^{\alpha}$, DebtRank R

Risk profile in the various layers

systemic risk profile for different layers DebtRank \hat{R}_i^{α} stacked for banks. Jan 2, 2007 – May 30, 2013

Overlapping portfolios

banks ... blue, assets ... red

cambridge sep 14 2016 65

Overlapping portfolios (preliminary)

Expected systemic losses for every transaction

 $\Delta EL^{\text{syst}} > \Delta EL^{\text{credit}} \rightarrow \text{defaults do not affect lender only}$ but involves third parties (all exposures 2007–2013)

Conclusions

- systemic risk is a network property endogenously created
- can be measured for each institution / transaction: DebtRank
- can be eliminated by SRT; networks don't allow for cascading
- SRT should **not be payed!** evasion re-structures networks
- SRT does not reduce credit volume; re-ordering transactions
- Basel III as planned does not work 3 fold works costly
- SR requires a multiplex network framework
- Expected Systemic Loss Index: compare countries, over time
- SR tax is technically feasible

Mexican data collaborators

Sebastian Poledna Peter Klimek Serafin Martinez-Jamarillo Jose-Luis Molina Balboa Marco van der Leij

Alternatives to systemic risk tax

• Mandatory CDS

 Markose: taxes banks – not transactions – according to eigenvalue centrality

Problem 1 eigenvector is not economically reasonable number

Problem 2 blind to cycles in contract networks

Problem 3 absurd size (up to 30% of capital)

• Tax size: misses small SR institutions, SR improvement at tremendous economic cost

Markose proposal in macro-financial ABM

	No tax	SRT	SST (α=0.1)	SST (α=0.67)
Output	128.458 ± 1.792	128.382 ± 2.038	127.506 ± 3.278	106.877 ± 20.706
Unemployment	0.0017 ± 0.0102	0.0020 ± 0.0121	0.0059 ± 0.0204	0.1520 ± 0.1533
Credits (firms)	128.174 ± 18.990	121.435 ± 17.303	120.193 ± 19.397	87.943 ± 29.958
Interest (firms)	0.0238 ± 0.0015	0.0243 ± 0.0016	0.0241 ± 0.0017	0.0248 ± 0.0023

Statistical measures

- CoVAR: descriptive not predictive!
- SES, SRISK: related to leverage and size
- DIP: market based markets do not see NW-based SR

pro data publicly available, easy to implement

contra 'conditional' hard to define without knowledge of networks, descriptive, non-predictive

