

Helios Solar Storm Scenario 3 November 2016

Introduction to Space Weather & The Ground Effects of Extreme Events

Centre for Risk Studies

Dr Mark A Clilverd Senior Scientist British Antarctic Survey

What is Space Weather?

"Space Weather" is a generic term for how the changing space environment impacts our technological systems, and most commonly how processes which start on the Sun drive activity in and around the Earth which can pose a hazard to such systems.

There are multiple ways that different systems can be affected, through a variety of physical processes.

> We will mainly focus on this issue today

(Source: Professor Craig Rodger, University of Otago, New Zealand)

UNIVERSITY OF CAMBRIDGE Centre for Risk Studies

⁽Source: NASA Earth Observatory, earthobservatory.nasa.gov/)

We normally view the Sun as being unchanging with a constant output. And as far as Sun light, warming the surface of the Earth, this is very close to being accurate.

CAMBRIDGE

(Source: NASA Solar and Heliospheric Observatory, <u>https://sohowww.nas</u> <u>com.nasa.gov/</u>)

However, viewed at different wavelengths the Sun is shown to be dynamic and complex.

Solar Storms arise from eruptions occurring in the outer layers of the Sun.

There are 3 main types:

- Solar flares which involve the rapid release of electromagnetic energy, radio to x-ray wavelengths.
- Coronal Mass Ejections (CME) which involve billions of tonnes of charged particles being ejected into space
- Solar Proton Events

 (SPE) which involve the release of very energetic particles

A close up of a sunspot region, with the Earth for scale.

(Source: NASA Transition Region and Coronal Explorer)

UNIVERSITY OF CAMBRIDGE Centre for Risk Studies

CMEs erupt from the Sun and sometimes hit the Earth, which is partially protected by its Magnetic field

(Source: NASA Solar Terrestrial Relations Observatory, <u>https://stereo.gsfc.nasa.gov</u>)

View of the stream of solar wind coming from the Sun. This movie is from 23 July 2012, and shows a Coronal Mass Ejection associated with an active region (AR 1520).

CAMBRIDGE

Impact of a CME on the Earth's magnetic field

A large CME can: have great mass (10¹² kg), and travel at >500 km/s.

The blasts typically arrive at the Earth within a few days, and cause large deformations of our protective magnetic field.

MHD simulation of Carrington-Class CME

(Source: NASA)

So what do we know about CME?

- Large eruptive events on the Sun
- Associated with complex magnetic field configurations on the Sun – sunspots
- Associated with the quasi-11 year solar cycle of sunspots
- Their sources rotate with the period of the Sun -25-30 days
- Sometimes they hit, but often they miss the Earth

We can measure the magnetic field variations on the

- Magnetometer networks have been operated since ~1850. They measure the deflection of the Earth's magnetic field in nT (nano Tesla).
- A very large CME in 1859 (the Carrington Event) produced huge changes in magnetic field intensity (1000's nT).
- Rapid changes were recorded at the onset of the event, i.e., 1000's nT/min

(Source: D. Boteler, 2006, British Geological Survey, Natural Environment Research Council)

Ground effects of Extreme Space Weather

Famous physicist Michael Faraday demonstrated the law of induction, where a **changing magnetic field induces a current** in a conductor (like a wire, or the ground).

Why Does Space Weather Cause Grid Problems?

- Geomagnetically induced currents (GIC) cause
 - Half-cycle saturation of transformers, voltage harmonics, overheating, increased reactive power demand, and/or drop in system voltage.
 - Leading to transformer burn-out (in rare big storms) or shortened transformer lifetimes (due to many smaller storms).

CAMBRIDGE

The pathway to damage

NIVERSITY OF

Judge Business School

Centre for

Risk Studies

Figure 6: Pathway to damage (adapted from Boteler, 2015 and Samuelsson, 2013)

Effects of GIC on power systems - local scale

These can be local to a specific transformer in a given substation, potentially destroying a transformer.

(Source: Metatech Corporation)

Examples of transformer burn-out New Jersey, March 1989.

British Antarctic Survey TURAL ENVIRONMENT RESEARCH COUNCIL

Judge Business School

Where do the largest currents occur?

Currents flowing in the upper atmosphere (~120 km altitude) are driven by large-scale magnetic field-aligned currents generated throughout the Earth's magnetosphere.

They are associated with the **aurora**, and therefore occur predominately at high latitude, apart from during **big storms** when the region **expands equatorwards.**

Centre for

Risk Studies

VERSITY OF

Judge Business School

 \bigcirc

British Antarctic Survey Natural Environment research council

Where do the largest threats occur?

Figure 5: Geomagnetic latitude threat map following a shift in the auroral oval

The threat zones expand equatorwards with increasing severity of the solar storm. The contours follow magnetic field latitudes, not geographic.

Historical extreme space weather events

1847,1859, 1882, 1903, 1909, 1921 All these events caused 'anomalous' currents on telegraph systems.

1859 – the Carrington Event, identified as the largest solar storm on record.

1938, 1940, 1958, 1989, 2003 All these events caused telephone, radio, transatlantic and GPS disruptions.

1989 – 90 seconds after the onset of the storm at Earth, the entire Quebec power grid collapsed. The power outage lasted 9 hours.

(Source: https://pixabay.com)

Finally, the one that got away...

- On 23 July 2012, a CME occurred that was well measured by spacecraft, but missed the Earth.
- Observations of the properties of the CME indicate that it was larger than the most extreme event witnessed in the modern era.
- The effect on the Earth's magnetic field would have been larger than the 1859 Carrington event, and significantly larger than the 1989 'Quebec' storm.
- Propagation speeds were ~2500 km/s, and the CME would have taken 19 hours to arrive in the vicinity of the Earth.

