

Helios Solar Storm Scenario 3 November 2016

The Helios Scenario &

Critical National Infrastructure and Macroeconomic Impacts

Centre for Risk Studies

Dr Edward Oughton and Jennifer Copic Research Associate and Assistant *Cambridge Centre for Risk Studies*

Phase 1 – Heightened Sunspot Activity

- Large group of sunspots show heightened activity
- **STEREO A detects and monitors**
 - NOAA/Met scientists take a special interest
- Relatively moderate CME and solar flare emitted
 - CME speed = \sim 450 km/s ± 500 km/s
 - Flare size (M5) = $< 5 \times 10^{-5} \text{ W/m}^2$
 - NOAA estimates a R2 Radio Blackout and a G2 category geomagnetic storm in four days' time

X1: 29 Mar 2001 and X28+ 29 Aug 1859 (Source: NASA)

Risk Studies

Judge Business School

Kp Scale	NOAA G-Scale	National Grid Scale			
		Category 5			
Кр 9		Category 4			
	G5	Category 3			
		Category 2			
Kp 8 to 9-	G4				
Кр 7	G3	Category 1			
Кр 6	G2				
Кр 5	G1				
Kp < 5					

CME = coronal mass ejection

Scal Source: Richards, Andrew. "Impacts of Extreme Space Weather on GB Electricity Network." 18 September 2015.

Phase 1 - Activity at the Sun

- Sunspot group continues to be highly active
- Three days later, a large build up of energy due to an efficient magnetic reconnection process, leads to a giant high-mass CME being discharged towards Earth
 - CME speed = ~2,000km/s ± 500km/s
 - Flare size (X20) = 2x10⁻³ W/m²
 - Solar radiation storm = 10⁴ MeV
- The interaction effect between the moderately-sized CME a number of days earlier, preconditions the interplanetary space
 - This lowers the ambient solar wind density, producing very little deceleration

CAMBRIDGE

Centre for Risk Studies

Phase 2 – CME Arrives at Earth

- Satellite systems provide 30-60 minutes warning of incoming CME
 - The CME bombards Earth's magnetosphere, forcing a reconfiguration between the southward-directed interplanetary magnetic field and Earth's geomagnetic field
- The second CME reaches Earth in only 20 hours
 - Consequently billions of tonnes of gas containing charged particles intensify the shock compression
 - Particles are accelerated along the magnetotail, back towards Earth being deposited in the auroral ionosphere and magnetosphere on the night side of the Earth, directly above North America
 - Dst measurements = ~ -1000nT
 - dB/dt measurements = ~ 5,000nT/m at 50° magnetic latitude

Centre for Risk Studies

Notes: The contour lines on this map were generated using the World Magnetic Model (WMM) 2015 shape file from NOAA (Chulliat, 2014).

Phase 2 – Geomagnetic Storm on Earth

- Auroral oval forced equatorward by 15° magnetic latitude
- Numerous substorms take place every few hours on the dawn-to-dusk side of the Earth due to the highly dynamic nature of the auroral electrojet roughly 100km above ground
- Geomagentic effects

Centre for Risk Studies

Judge Business School

- Rapid change in the magnetic field rate-of-change down to 50° magnetic latitude
- Ring current intensifications take place down to 20° magnetic latitude

(Source: Svein-Magne Tunli, https://commons.Wikimedia.org)

(Source: Space Weather Prediction Centre, National Oceanic and Atmospheric Administration, <u>www.swpc.noaa.gov/</u>)

Phase 3 – EHV Transformers Damaged

- Due to intense electrojet and ring current activity key electricity network assets are placed under significant strain
- Extra High Voltage (EHV) transformers are at risk
- Due to lack of adequate warning utility operators do not have time to fully implement emergency procedures
 - Some EHV transformers automatically trip off and others have to be manually shut off
 - Grid instability ensues causing a complete voltage collapse
 - In some cases, degradation to windings and insulation cause failure within 48 hours
 - Total US EHV transformers damage distribution

EHV Transformer

	DO	D1	D2	D3	D4
S1	Not	Tripped	Minor	Major	Destroyed
	affected	off	damage	damage	
No. of transformers with spare	159	53	6	0	0
No. of transformers without spare	1,432	559	115	11	0
Total no. of transformers damaged	1,595	612	121	11	0
S2 and X1	D0	D1	D2	D3	D4
No. of transformers with spare	118	67	22	3	0
No. of transformers without spare	1,006	703	313	74	5
Total no. of transformers damaged	1,152	770	335	77	5

Image Source:

Centre for

DOE. Large Power Transformers and the US Electric Grid. April 2014 Update. Page 5.

Geomagnetic Latitude Threat Map

Centre for Risk Studies

Notes: The contour lines on this map were generated using the World Magnetic Model (WMM) 2015 shape file from NOAA (Chulliat, 2014).

Ground Conductivity by State

Ground Conductivity by State

State Level Risk Matrix

Geomagnetic Latitude of Population Centroid

40

45

50

55

Combined Normalised Risk Factor

Weighted Average			
Conductivity (Ohm-m)	1000	2000	3000

(Degrees)

EHV Transformers by State

CAMBRIDGE

Centre for Risk Studies

Transformer Damage Distribution

	D0	D1	D2	D3	D4
S1	Not	Tripped	Minor	Major	Destroyed
	affected	off	damage	damage	
No. of transformers with spare	159	53	6	0	0
No. of transformers without spare	1,432	559	115	11	0
Total no. of transformers damaged	1,595	612	121	11	0
S2 and X1	D0	D1	D2	D3	D4
No. of transformers with spare	118	67	22	3	0
No. of transformers without spare	1,006	703	313	74	5
Total no. of transformers damaged	1,152	770	335	77	5

Phase 3 – Extended Power Restoration

- Tripped off transformers can be brought back on-line quickly
- Minor and major damaged transformers are transported to a workshop for repair
- If a spare is available it can be brought in from a storage facility within 14 days
- Manufacturing Concerns
 - Custom built and designed

Centre for Risk Studies

Judge Business School

- Average lead time is 5 to 21 months
- Transportation Concerns
 - Rail transport requires special Schnabel railcars due to weight
 - Road transport requires Goldhofer vehicle and road permits/plans
- Restoration Times (days) for damaged EHV transformers

	D0	D1	D2	D3	D4
S1 and S2	Not	Tripped	Minor	Major	Destroyed
	affected	off	damage	damage	
Outage for transformers with spare (days)	0	3	14	14	14
Outage for transformers without spare (days)	0	3	91	182	243
X1	D0	D1	D2	D3	D4
Outage for transformers with spare (days)	0	10	30	30	30
Outage for transformers without spare (days)	0	10	152	304	365

(Source: T&D World Magazine, tdworld.com)

51

Transformer Manufacturing Supply Chain

(DOE, 2014)

Centre for

Damaged Transformers by State

Customer Disruptions

S1 - Day 1 Total Customer Disruptions

S2/X1 - Day 1 Total Customer Disruptions

Transformer Restoration Time

	D0	D1	D2	D3	D4
S1 and S2	Not	Tripped	Minor	Major	Destroyed
	affected	off	damage	damage	
Outage for transformers with spare (days)	0	3	14	14	14
Outage for transformers without spare (days)	0	3	91	182	243
X1	D0	D1	D2	D3	D4
Outage for transformers with spare (days)	0	10	30	30	30
Outage for transformers without spare (days)	0	10	152	304	365

US Power Restoration Curves

Centre for

Risk Studies

Phase 4 - Aftermath

- Electromagnetic bursts from the solar flare (NOAA R5 radio blackout) and severe (S4) radiation storm cause
 - Disturbances in the ionosphere disrupt GPS/GNSS

UNIVERSITY OF CAMBRIDGE Centre for Judge Basiness School

Frequency and Severity

- Estimates developed are not robust because of the short time-series (Hapgood, 2011)
- Riley (2012) assumes that the Carrington event has a 12% probability of occurring every 79 years
- Love et al. (2015) estimates that a storm larger than Carrington (-Dst = ≥ 850 nT) occurs about 1.13 times per century
 - Moreover, a 100-year geomagnetic storm is identified as having a size greater than Carrington (-Dst = ≥ 880 nT)
- RAE report states that solar storms are a random process and the potential does not increase as time passes
- We proposed a Carrington sized event that hits Earth with a CME similar to the 2012 near miss

Methodology

Centre for Risk Studies

The Challenge: The Economics of Solar Storms

Increasing uncertainty along this chain

What is Input-Output Modelling?

1973 Nobel Prize in Economics

Wassily Leontief (1906-1999)

(Source: Keystone/Hulton Archive, www.gettyimages.co.uk/)

Important Assumption 1

All economic activity is dependent on electricity

Centre for Risk Studies

Important Assumption 2

The number of customer disruptions by state is comparable to lost economic output

Direct and Indirect Economic Impacts

Direct and Indirect Economic Impacts

Direct and Indirect Economic Impacts

Direct Economic Impacts by Industrial Sector (S1)

Centre for Risk Studies

Direct Economic Impacts by Industrial Sector (S1)

Risk Studies

US Sectoral Supply Chain Impacts

Centre for Risk Studies

US Sectoral Supply Chain Impacts

What causes some sectors to be more affected?

- Industrial clustering
- Overall economic output (GVA/GDP)
- Interdependence on other economic sectors
- Length of supply chains

International Supply Chain Impacts

Centre for Risk Studies

Scenario Results

Total Supply Chain Impacts by Scenario

Centre for

Risk Studies

- Geomagnetic latitude
- Ground conductivity

- Geomagnetic latitude
- Ground conductivity
- New York State and Illinois are most affected
- Regionally, the Midwestern states see considerable disruption

- Geomagnetic latitude
- Ground conductivity
- New York State and Illinois are most affected
- Regionally, the Midwestern states see considerable disruption
- Sectors most affected:
 - Manufacturing
 - Finance

- Geomagnetic latitude
- Ground conductivity
- New York State and Illinois are most affected
- Regionally, the Midwestern states see considerable disruption
- Sectors most affected:
 - Manufacturing
 - Finance
- Direct impact: \$0.2-1.2 trillion
- Indirect US supply chain impacts: \$0.2-1.1 trillion
- Indirect global supply chain impacts: \$0.1-0.3 trillion

