
Separate & Concentrate: Accounting for Patient
Complexity in General Hospitals

Supplementary Material

Ludwig Kuntz
Faculty of Management, Economics and Social Science, University of Cologne, kuntz@wiso.uni-koeln.de

Stefan Scholtes
Judge Business School, University of Cambridge, s.scholtes@jbs.cam.ac.uk

Sandra Sülz
Erasmus School of Health Policy and Management, Erasmus University Rotterdam, sulz@eshpm.eur.nl

This supplementary material accompanies the paper Separate & Concentrate: Accounting for

Patient Complexity in General Hospitals. Its main purpose is to provide additional explanation and

present results of different model specifications, variable definitions and sample exclusion criteria.

This report complements the main paper and should not be read in isolation.

Contents

1 Disease segments 3

2 Model covariates 5

3 Calculation of dichotomous independent variables 8

4 The need to dichotomize 9

5 Calculation of instrumental variables 10

6 Evidence for hospital selection using observed variables 20

7 Routing process 20

7.1 Patient flow through departments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



2 Kuntz, Scholtes, Sülz Separate & Concentrate

7.2 Segment concentration and allocation errors: A mathematical model . . . . . . . . . 23

7.3 Effect of segment concentration on departmental transfers . . . . . . . . . . . . . . . 25

8 Sample selection thresholds and in-hospital observation period 26

8.1 Varying exclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2 Expansion of observation period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Patient complexity 28

9.1 Varying comorbidity thresholds for complex patients . . . . . . . . . . . . . . . . . . 28

9.2 An alternative patient complexity measure . . . . . . . . . . . . . . . . . . . . . . . 32

9.3 Comorbidities and process uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.4 Admission status and process uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 37

9.4.1 Task variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.4.2 Timing of procedures: Date of surgery . . . . . . . . . . . . . . . . . . . . . . 37

10 Heterogeneity in segments: Subsample analyses 39

10.1 Diseases of the circulatory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.2 Six high-risk conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Continuous independent variables 40

12 Alternative model specifications 43

12.1 Standard errors clustered at the hospital level . . . . . . . . . . . . . . . . . . . . . . 43

12.2 Mixed effect probit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12.3 Linear probability models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12.4 Survival models with discharge as a competing risk . . . . . . . . . . . . . . . . . . . 45

12.5 Disentangling emergency and comorbidity effects . . . . . . . . . . . . . . . . . . . . 48



Kuntz, Scholtes, Sülz Separate & Concentrate 3

1. Disease segments

Table 1: 39 disease segments used in the main paper (ICD blocks with mortality ≥ 1%)

% sample # different
Description of ICD Block patients Mortality hospitals

Certain infectious and parasitic diseases
Other bacterial diseases 1.719% 6.408% 60
Protozoal diseases 0.009% 4.348% 7
Other infectious diseases 0.210% 1.434% 46

Neoplasms
Malignant neoplasms of lip, oral cavity and phar-
ynx

1.225% 1.170% 39

Malignant neoplasms of digestive organs 7.813% 2.549% 60
Malignant neoplasms of respiratory and intratho-
racic organs

5.988% 3.445% 60

Malignant neoplasms of bone and articular carti-
lage

0.101% 1.493% 22

Malignant neoplasms of mesothelial and soft tis-
sue

0.500% 1.659% 48

Malignant neoplasm of breast 3.725% 1.023% 59
Malignant neoplasms of male genital organs 2.999% 1.094% 56
Malignant neoplasms of eye, brain and other parts
of central nervous system

0.841% 1.615% 50

Malignant neoplasms of ill-defined, secondary and
unspecified sites

5.001% 2.285% 60

Malignant neoplasms, stated or presumed to be
primary, of lymphoid, hematopoietic and related
tissue

3.859% 1.290% 59

Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism

Aplastic and other anaemias 0.407% 1.298% 59
Coagulation defects, purpura and other hemor-
rhagic conditions

0.396% 1.621% 58

Other diseases of blood and blood-forming organs 0.172% 1.316% 47
Endocrine, nutritional and metabolic diseases

Metabolic disorders 1.177% 3.462% 60
Mental and behavioral disorders

Organic, including symptomatic, mental disor-
ders

0.719% 1.312% 57

Diseases of the nervous system
Systemic atrophies primarily affecting the central
nervous system

0.127% 5.935% 28

Other disorders of the nervous system 0.339% 1.891% 46
Diseases of the circulatory system

Ischemic heart diseases 12.649% 2.174% 60
Pulmonary heart disease and diseases of pul-
monary circulation

0.867% 9.352% 59

Other forms of heart disease 11.994% 3.333% 60
Cerebrovascular diseases 7.291% 4.806% 59
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% sample # different
Description of ICD Block patients Mortality hospitals

Diseases of arteries, arterioles and capillaries 4.228% 1.891% 58
Diseases of the respiratory system

Influenza and pneumonia 3.943% 7.280% 60
Chronic lower respiratory diseases 3.364% 1.985% 60
Lung diseases due to external agents 0.400% 19.906% 59
Other respiratory diseases principally affecting
the interstitium

0.317% 1.070% 44

Suppurative and necrotic conditions of lower res-
piratory tract

0.142% 1.596% 41

Other diseases of pleura 0.556% 1.494% 59
Other diseases of the respiratory system 0.812% 5.481% 56

Diseases of the digestive system
Other diseases of intestines 6.404% 2.150% 60
Diseases of peritoneum 0.527% 2.434% 56
Diseases of liver 1.550% 4.964% 59
Other diseases of the digestive system 1.142% 3.301% 60

Diseases of the genitourinary system
Renal failure 1.330% 4.962% 59

Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified

General symptoms and signs 3.315% 1.900% 60
Injury, poisoning and certain other consequences of external causes

Injuries to the hip and thigh 2.904% 1.727% 57
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2. Model covariates

Table 2: Summary statistics and correlations of covariates

High High High
Variable Mean Death volume focus con.

Independent variables of interest
High volume 0.8604 −0.0516∗
High focus 0.7258 −0.0296∗ 0.2217∗
High concentration 0.3113 0.0287∗ −0.2620∗ 0.0602∗
Routine patient 0.4194 −0.0699∗ 0.0940∗ 0.1583∗ 0.0021
Complex patient 0.1375 0.0594∗ −0.0477∗ −0.1096∗ −0.0162∗
Benchmark patient 0.4431 0.0283∗ −0.0603∗ −0.0813∗ 0.0091∗
Patient health status
Age 66.5206 0.1078∗ −0.1150∗ −0.0589∗ 0.0704∗
Age squared 4641.4770 0.1177∗ −0.1310∗ −0.0759∗ 0.0776∗
Male 0.5396 −0.0184∗ 0.0599∗ 0.0406∗ −0.0485∗
Congestive heart failure 0.1432 0.0520∗ −0.0715∗ −0.0904∗ −0.0072∗
Cardiac arrhythmias 0.1774 0.0366∗ −0.0560∗ −0.0971∗ −0.0002
Valvular disease 0.0701 −0.0147∗ −0.0065∗ −0.0765∗ −0.0422∗
Pulmonary circulation disorders 0.0251 0.0174∗ −0.0157∗ −0.0546∗ −0.0210∗
Peripheral vascular disorders 0.0752 0.0002 0.0352∗ 0.0284∗ −0.0452∗
Hypertension, uncomplicated 0.3870 −0.0511∗ −0.0121∗ −0.0130∗ −0.0255∗
Hypertension, complicated 0.0667 −0.0151∗ 0.0070∗ −0.0314∗ −0.0362∗
Paralysis 0.0556 0.0366∗ −0.0008 −0.0004 −0.0448∗
Other neurological disorders 0.0555 0.0260∗ −0.0286∗ −0.0172∗ −0.0156∗
Chronic pulmonary disease 0.1053 0.0056∗ −0.0054∗ −0.0178∗ −0.0125∗
Diabetes, uncomplicated 0.1284 −0.0010 −0.0199∗ −0.0223∗ −0.0039∗
Diabetes, complicated 0.0678 0.0160∗ −0.0397∗ −0.0152∗ 0.0186∗
Hypothyroidism 0.0321 −0.0171∗ 0.0054∗ −0.0200∗ −0.0248∗
Renal failure 0.0982 0.0334∗ −0.0189∗ −0.0517∗ −0.0251∗
Liver disease 0.0368 0.0158∗ 0.0015 −0.0110∗ 0.0015
Peptic ulcer disease excluding bleeding 0.0046 −0.0037 −0.0027 −0.0053∗ −0.0021
AIDS/HIV 0.0008 −0.0025 0.0097∗ −0.0053∗ −0.0106∗
Lymphoma 0.0076 0.0005 0.0081∗ 0.0032 −0.0184∗
Metastatic cancer 0.1250 0.0243∗ 0.0871∗ 0.1428∗ 0.0281∗
Solid tumor without metastasis 0.0641 0.0003 0.0426∗ 0.0555∗ −0.0346∗
Rheumatoid arthritis/collagen, vascu-
lar diseases

0.0116 −0.0086∗ −0.0008 −0.0153∗ −0.0087∗

Coagulopathy 0.0322 0.0183∗ 0.0325∗ 0.0057∗ −0.0435∗
Obesity 0.0871 −0.0327∗ −0.0050∗ −0.0019 −0.0213∗
Weight loss 0.0311 0.0676∗ −0.0366∗ 0.0059∗ 0.0166∗
Fluid and electrolyte disorders 0.1260 0.0645∗ −0.0662∗ −0.0532∗ −0.0050∗
Blood loss anemia 0.0056 −0.0003 −0.0191∗ −0.0236∗ 0.0129∗
Deficiency anemias 0.0133 −0.0023 −0.0161∗ −0.0210∗ 0.0097∗
Alcohol abuse 0.0324 0.0034 −0.0095∗ −0.0169∗ −0.0015
Drug abuse 0.0040 −0.0079∗ −0.0011 −0.0082∗ −0.0072∗
Psychoses 0.0044 0.0003 −0.0124∗ −0.0137∗ −0.0012
Depression 0.0324 −0.0177∗ −0.0239∗ −0.0082∗ 0.0007
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High High High
Variable Mean Death volume focus con.

Socioeconomic factors for
patient’s region
Employment rate 74.4727 0.0164∗ −0.0792∗ 0.0544∗ 0.1883∗
Residents per physician 666.7671 0.0047∗ −0.1099∗ 0.0819∗ 0.1480∗
Population density 1092.5460 −0.0143∗ 0.1466∗ −0.0671∗ −0.1357∗
GDP per capita 25.4017 0.0195∗ 0.0698∗ −0.0564∗ 0.0184∗
Admission day of the week
Sunday 0.0720 0.0365∗ −0.0361∗ −0.0424∗ 0.0090∗
Monday 0.2124 −0.0204∗ 0.0186∗ 0.0279∗ 0.0019
Tuesday 0.1947 −0.0201∗ 0.0257∗ 0.0302∗ −0.0028
Wednesday 0.1790 −0.0126∗ 0.0186∗ 0.0223∗ −0.0026
Thursday 0.1603 −0.0090∗ 0.0110∗ 0.0080∗ −0.0094∗
Friday 0.1220 0.0169∗ −0.0200∗ −0.0242∗ −0.0041∗
Saturday 0.0596 0.0399∗ −0.0552∗ −0.0674∗ 0.0161∗
Admission, month-year
1-2004 0.0301 0.0027 −0.0239∗ 0.0019 0.0244∗
2-2004 0.0267 0.0045∗ −0.0197∗ −0.0018 0.0234∗
3-2004 0.0312 0.0049∗ −0.0202∗ −0.0036 0.0220∗
4-2004 0.0269 0.0040∗ −0.0204∗ 0.0001 0.0252∗
5-2004 0.0262 0.0012 −0.0193∗ −0.0027 0.0245∗
6-2004 0.0282 0.0012 −0.0172∗ 0.0005 0.0245∗
7-2004 0.0276 0.0018 −0.0198∗ 0.0013 0.0302∗
8-2004 0.0262 0.0058∗ −0.0193∗ −0.0017 0.0315∗
9-2004 0.0270 0.0044∗ −0.0191∗ 0.0036 0.0277∗
10-2004 0.0267 0.0024 −0.0216∗ −0.0010 0.0257∗
11-2004 0.0289 0.0052∗ −0.0160∗ 0.0045∗ 0.0269∗
12-2004 0.0143 0.0012 −0.0236∗ −0.0012 0.0201∗
1-2005 0.0666 −0.0025 0.0140∗ 0.0011 −0.0165∗
2-2005 0.0613 0.0015 0.0024 −0.0066∗ −0.0125∗
3-2005 0.0662 0.0069∗ 0.0004 −0.0042∗ −0.0121∗
4-2005 0.0628 −0.0019 0.0208∗ 0.0040∗ −0.0209∗
5-2005 0.0617 −0.0023 0.0140∗ −0.0000 −0.0167∗
6-2005 0.0612 −0.0069∗ 0.0182∗ 0.0002 −0.0241∗
7-2005 0.0598 −0.0056∗ 0.0151∗ 0.0053∗ −0.0186∗
8-2005 0.0609 −0.0037 0.0234∗ 0.0032 −0.0252∗
9-2005 0.0575 −0.0049∗ 0.0180∗ −0.0037 −0.0230∗
10-2005 0.0592 −0.0019 0.0185∗ 0.0013 −0.0186∗
11-2005 0.0607 −0.0054∗ 0.0153∗ −0.0015 −0.0172∗
12-2005 0.0021 −0.0012 0.0009 0.0034 −0.0006
Federal state
1 0.0068 0.0010 0.0221∗ 0.0218∗ 0.0004
2 0.0474 0.0070∗ −0.1417∗ 0.0108∗ 0.1212∗
3 0.1032 −0.0305∗ 0.0926∗ −0.0476∗ −0.1547∗
4 0.0839 −0.0163∗ 0.0834∗ −0.0231∗ −0.1185∗
5 0.0403 0.0044∗ 0.0774∗ −0.0023 −0.0955∗
6 0.0192 0.0104∗ −0.0414∗ −0.0274∗ 0.0377∗
7 0.0442 0.0017 0.0623∗ −0.0176∗ −0.0282∗
8 0.0159 −0.0009 0.0110∗ 0.0177∗ 0.0346∗
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High High High
Variable Mean Death volume focus con.

9 0.0247 −0.0028 −0.0196∗ 0.0331∗ −0.0460∗
10 0.2008 0.0220∗ −0.0484∗ −0.0492∗ 0.0638∗
11 0.0608 0.0171∗ −0.0786∗ 0.0415∗ 0.0368∗
12 0.0211 0.0098∗ −0.2500∗ 0.0089∗ 0.0888∗
13 0.1093 −0.0122∗ −0.0202∗ 0.0379∗ 0.1206∗
14 0.0597 0.0335∗ −0.0339∗ 0.0194∗ 0.1665∗
15 0.1069 −0.0107∗ 0.0820∗ 0.0280∗ −0.0849∗
16 0.0555 −0.0219∗ 0.0849∗ 0.0032 −0.0946∗
Notes. * p<0.05. Summary and correlation statistics shown at the patient-level.
Segment and Hospital FE not shown.
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3. Calculation of dichotomous independent variables

This section explains the details of the dichotomization of the independent variables segment

volume, segment focus, and segment concentration.

The volume measure.

We define an indicator variable Xish = 1 if patient i∈ {1, . . . ,N} belongs to segment s∈ {1, . . . , S}

and is admitted to hospital h ∈ {1, . . . ,H}, and 0 otherwise, and calculate the annualized volume

of patients in segment s and hospital h as Volsh =
∑N

i=1Xish, for hospitals h with one year of

data and as Volsh = 1
2

∑N

i=1Xish for hospitals h with two years of data. The variable Volsh is then

dichotomized at the segment level via a median split across hospitals for each segment s

V̄sh =

{
1 if Volsh ≥median{Volsh′ | h′ ∈ {1, . . . ,H},Volsh′ > 0}
0 otherwise.

(1)

This binary variable V̄sh splits the hospitals into high- and low-volume hospitals for the fixed disease

segment s. We assign to patient i in segment s= s(i) and hospital h= h(i) the dichotomous volume

variable Vsh = V̄s(i)h(i).

The focus measure.

We calculate a continuous focus measure for segment s in hospital h as the annualized relative

volume of patients in that segment and hospital:

Focsh =

∑N

i=1Xish∑
s′∈S

∑N

i=1Xis′h

, (2)

where Xish = 1 if patient i is in segment s and admitted to hospital h, and 0 otherwise, and N is

the total number of patient episodes in the data. The variable Focsh is then dichotomized at the

segment level via a median split across hospitals for each segment s

F̄sh =

{
1 if Focsh ≥median{Focsh′ | h′ ∈ {1, . . . ,H},Focsh′ > 0}
0 otherwise.

(3)

This binary variable F̄sh splits the hospitals into high- and low-volume hospitals for the fixed

disease segment s. We assign to patient i in segment s= s(i) and hospital h= h(i) the dichotomous

volume variable Fsh = F̄s(i)h(i).

The concentration measure.

Let D= {1, . . . ,D} be the set of all hospital departments in the sample. Denote by h(d) depart-

ment d’s hospital h, by Dh ⊂ D the set of all departments of hospital h, and define the variable

X ′isd = 1 if patient i belongs to segment s and is admitted to hospital department d ∈ D and 0

otherwise. Department d’s proportion of segment s patients in its hospital h(d) is then defined as

Qsd =

∑N

i=1X
′
isd∑

d′∈Dh(d)

∑N

i=1X
′
isd′

. (4)
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The hospital h’s default department for segment s is defined as the department d∈Dh that max-

imizes Qsd, which leads to a continuous measure of departmental concentration for segment s in

hospital h as

Consh = max{Qsd | d∈Dh(d)}. (5)

We dichotomize this continuous measure by splitting the hospitals that admit patients in segment

s into a high- and a low-concentration group for the segment:

C̄sh =

{
1 if Consh ≥median{Consh′ | h′ ∈ {1, . . . ,H},

∑
d′∈Dh′(d)

∑N

i=1X
′
isd′ > 0}

0 otherwise.
(6)

Finally, we assign to a patient i in segment s = s(i) and hospital h = h(i) the dichotomous

concentration variable Csh = C̄s(i)h(i).

4. The need to dichotomize

In the main paper we argue that specifying a linear relationship between the patient’s latent health

status and the volume z-scores is inappropriate because the medical literature provides robust

evidence of non-linear relationships between volume and mortality. Specifically, there is evidence

that suggests that volume has a beneficial effect on quality up to a volume threshold, beyond

which there is no further beneficial effect. We now present an illustrative example to support our

specification choice showing that dichotomization is indeed preferable to a misspecified linear model

if the underlying relationship is non-linear. To do so, we use two fictitious segments, simulate a

skewed volume distribution and calculate the corresponding volume z-scores. For both segments,

we then model a non-linear relationship between the volume z-scores and the patient’s mortality

risk MR, using segment-specific thresholds and slopes, and adding for each observation a simulated

error term (confer Figure 1). We then estimate this relationship in two ways, (i) with a linear

specification

MR= β0 +βSS+βV V olumeZ−Score + ε

, where S denotes the fixed effect for the segment, and (ii) with dichotomous median-split specifi-

cation:

MR= β0 +βSS+βDV olumeDummy + ε

, where V olumeDummy is a binary variable that is equal to 1 if the z-score is higher than the

segment-specific median and 0 otherwise.

Figure 2 shows the predictions from these models, separated by segment. The predictions

obtained from the median-split specifications are more closely aligned with the underlying
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relationship thant the prediction obtained from the linear specification; R2 is higher for the

median-split model (R2 = 0.79) than for the linear model (R2 = 0.64). This lends support to the

argument that a median-split model may well provide a better model fit than a linear specification

provided the underlying relationship is non-linear.

Figure 1 Simulated relationship between volume z-score and patient’s health status for two segments

(a) Segment 1 (b) Segment 2
Figure 2 Predictions

5. Calculation of instrumental variables

In this section, we explain how the instrumental variables (IV) were calculated. We outline the

computation for the endogenous volume variable only as the computations were analogous for the

focus and concentration variables.

The first IV is a continuous differential distance (DD) variable, defined as the difference between

a patient’s distance to the nearest high-volume hospital for her disease segment s and the patient’s
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distance to the nearest hospital that treats patients in segment s, independently of the segment

volume in the hospital (McClellan et al. 1994). The variable is zero if the nearest hospital is a

high-volume hospital; otherwise it is a measure of the inconvenience for the patient to choose a

high-volume hospital over her nearest hospital. While our main database provides information on

the patient’s place of residence, this data covers only a sample of hospitals and not the total hospital

population in Germany. In order to enlarge the sample of hospitals, we therefore use information in

the Hospital Quality Reports (Gemeinsamer Bundesausschuss 2016), which are available for 82%

of the German general hospitals, to approximate the volume of hospital patients in each segment

s. Specifically, the reports list for each clinical departments at least the ten highest volume ICD

3-digit codes. Aggregating the volumes of the listed ICD codes up to the level of ICD blocks (our

disease segments), we obtain a lower bound of the volume of hospital patients in each segment and

hospital department. In line with our prior dichotomization, we then split all hospitals that treat

a fixed segment s into two groups, the 50% of hospitals with the highest approximated volumes in

the segment and the remaining hospitals. We assume that, in addition to the hospitals that record

patients in segment s in their Quality Report, all hospitals that are classified as general hospitals

with a regional service mandate (bed size above 250) in the German hospital plan treat all segments

and consider them a low-volume hospital for segment s if the segment is not listed in their Quality

Report. Having identified high-volume and low-volume hospitals for each segment, we can define

for each patient the nearest high-volume hospital and the nearest permissible hospital based on zip

code information of the patient and hospital using the STATA module geonear (Picard 2012). Based

upon this information, we generate our first instrumental variable, i.e. the additional distance a

patient would have to travel to reach a high-volume hospital for her segment s (McClellan et al.

1994).

We cannot compute exact segment volumes in each hospital and therefore the approximate

volume variable and its dichotomization is not identical to the original volume variable in our

sample hospitals. However, while this reduces the statistical power of the instrument, the strong

conformity (83%) for the two dichotomous variables of the sample hospitals suggests that the

instrument will remain valid. Note that the validity of the exclusion restriction is not affected

by the approximation. We further alleviate any residual concerns about weak instrumentation by

including as a second IV a set of binary variables, based on the idea that a patient’s propensity to

be admitted to a high-volume hospital is the higher, the more high-volume hospitals there are in

the vicinity of her place of residence (KC and Terwiesch 2011). We operationalize this idea with a

set of K binary variables Dik (k ∈ {1, . . . ,K}) which are equal to 1 if the k-th nearest hospital to

patient i is a high-volume hospital for patient i’s segment and 0 otherwise. The results are robust
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with respect to the number of binary variables K that comprise the instrument and our results are

based on K = 5.

The critical assumption for the validity of IVs is the exclusion restriction, which requires that a

valid IV is uncorrelated with unobserved mortality risk factors. While this assumption cannot be

tested statistically, Tables 3-5 provide some evidence for the validity of the exclusion restriction

for the differential distance by demonstrating that observed mortality risk factors, such as age and

the presence of the Elixhauser comorbidities, do not differ substantially across different values of

differential distance for volume (focus, concentration). We present the results in the tables using

a cut off value of 10km due to peculiarities of the German Context. In Germany, distances are

generally much lower than, for example, in the USA, and 97.5% of the population live within 20

minutes drive of their nearest general hospital. In our sample, the differential distance (which is

the distance between hospitals) is above 10 km only for about 10-20% of the sample, depending

on the variable. We therefore found this to be a sensible cut off. We experimented with other cut

offs and the results are similar.

Table 6 further outlines how the instrumental variables are related to each other and supports the

view that differential distance and the dummy IVs are complementary. Nevertheless, to alleviate

concerns about the correlations of the instruments in the three selection equations (i.e. that an

instrument in one selection could be an omitted variable in another selection equation and thereby

cause bias), we have re-estimated the models with all instruments in all three selection equations;

the results in Table 7 confirm the results of the main model. In addition, to alleviate concerns about

overfitting, we varied the number of binary variables K that form the set of binary variables Dk and

we present the results for K = 3 (Table 8), K = 4 (Table 9). We also re-estimated a model with a

parsimonious IV structure, using only one IV per selection equation (D1V ,D1F ,D1C , respectively)

(Table 10). Again, the results are in line with the the results in the main model.
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Table 3 Patient characteristics by differential distance to next high-volume hospital

Differential distance
DD=0 km DD ∈ (0 km; 10 km) DD≥ 10 km

Mean (SD) age 66.6 (14.7) 66.4 (14.9) 66.2 (14.5)
Male 54% 54% 55%
Routine patients 41% 42% 48%
Benchmark patients 44% 45% 43%
Complex patients 15% 13% 10%
Hypertension, uncomplicated 39% 38% 37%
Cardiac arrhythmias 18% 18% 16%
Congestive heart failure 14% 15% 13%
Diabetes, uncomplicated 13% 13% 12%
Fluid and electrolyte disorders 12% 13% 12%
Metastatic cancer 12% 12% 15%
Chronic pulmonary disease 10% 11% 11%
Renal failure 10% 10% 9%
Obesity 9% 9% 9%
Peripheral vascular disorders 8% 8% 7%
Valvular disease 7% 7% 6%
Solid tumor without metastasis 6% 6% 7%
Diabetes, complicated 6% 8% 8%
Hypertension, complicated 6% 8% 7%
Paralysis 6% 5% 5%
Other neurological disorders 6% 6% 5%
Liver disease 4% 3% 4%
Coagulopathy 3% 3% 3%
Hypothyroidism 3% 3% 3%
Alcohol abuse 3% 3% 3%
Depression 3% 3% 3%
Weight loss 3% 3% 4%
Pulmonary circulation disorders 2% 3% 3%
Deficiency anemias 1% 1% 1%
Rheumatoid arthritis/collagen, vascular diseases 1% 1% 1%
Lymphoma 1% 1% 1%
Blood loss anemia 1% 1% 1%
Peptic ulcer disease excluding bleeding 0% 0% 0%
Psychoses 0% 0% 0%
Drug abuse 0% 0% 0%
AIDS/HIV 0% 0% 0%

high-volume treatment 91% 80% 68%
seven-day mortality 2.98% 3.02% 2.97%

Total patients 178,107 59,613 27,413
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Table 4 Patient characteristics by differential distance to next high-focus hospital

Differential distance
DD=0 km DD ∈ (0 km; 10 km) DD≥ 10 km

Mean (SD) age 66.6 (14.7) 66.3 (14.8) 66.3 (14.7)
Male 54% 55% 54%
Routine patients 41% 44% 43%
Benchmark patients 45% 44% 43%
Complex patients 15% 12% 13%
Hypertension, uncomplicated 39% 38% 37%
Cardiac arrhythmias 18% 18% 18%
Congestive heart failure 14% 15% 14%
Diabetes, uncomplicated 13% 13% 12%
Fluid and electrolyte disorders 13% 13% 12%
Metastatic cancer 12% 13% 13%
Chronic pulmonary disease 11% 11% 11%
Renal failure 10% 10% 10%
Obesity 9% 9% 9%
Peripheral vascular disorders 8% 7% 8%
Valvular disease 7% 7% 7%
Diabetes, complicated 6% 7% 8%
Hypertension, complicated 6% 7% 8%
Solid tumor without metastasis 6% 6% 8%
Paralysis 6% 5% 6%
Other neurological disorders 6% 5% 6%
Liver disease 4% 3% 4%
Hypothyroidism 3% 3% 3%
Coagulopathy 3% 3% 3%
Depression 3% 3% 3%
Alcohol abuse 3% 3% 4%
Weight loss 3% 3% 3%
Pulmonary circulation disorders 2% 2% 3%
Deficiency anemias 1% 1% 1%
Rheumatoid arthritis/collagen, vascular diseases 1% 1% 1%
Lymphoma 1% 1% 1%
Blood loss anemia 1% 1% 1%
Psychoses 0% 0% 0%
Peptic ulcer disease excluding bleeding 0% 0% 1%
Drug abuse 0% 0% 0%
AIDS/HIV 0% 0% 0%

high-focus treatment 75% 73% 59%
seven-day mortality 2.96% 3.06% 3.01%

Total patients 173,948 59,112 32,073
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Table 5 Patient characteristics by differential distance to next high-concentration hospital

Differential distance
DD=0 km DD ∈ (0 km; 10 km) DD≥ 10 km

Mean (SD) age 66.5 (14.9) 66.7 (14.6) 66.4 (14.3)
Male 54% 54% 54%
Routine patients 42% 42% 41%
Benchmark patients 44% 45% 45%
Complex patients 14% 13% 14%
Congestive heart failure 39% 39% 38%
Cardiac arrhythmias 17% 18% 18%
Valvular disease 14% 15% 14%
Pulmonary circulation disorders 13% 13% 13%
Peripheral vascular disorders 12% 13% 12%
Hypertension, uncomplicated 12% 13% 13%
Hypertension, complicated 10% 11% 11%
Paralysis 10% 10% 10%
Other neurological disorders 8% 9% 10%
Chronic pulmonary disease 7% 8% 8%
Diabetes, uncomplicated 7% 7% 7%
Diabetes, complicated 7% 7% 6%
Hypothyroidism 6% 7% 8%
Renal failure 6% 7% 9%
Liver disease 5% 6% 5%
Peptic ulcer disease excluding bleeding 5% 6% 6%
AIDS/HIV 4% 3% 4%
Lymphoma 3% 3% 3%
Metastatic cancer 3% 3% 3%
Solid tumor without metastasis 3% 3% 3%
Rheumatoid arthritis/collagen, vascular diseases 3% 4% 3%
Coagulopathy 3% 3% 4%
Obesity 2% 3% 3%
Weight loss 1% 1% 1%
Fluid and electrolyte disorders 1% 1% 1%
Blood loss anemia 1% 1% 1%
Deficiency anemias 1% 1% 1%
Alcohol abuse 0% 0% 0%
Drug abuse 0% 0% 0%
Psychoses 0% 0% 0%
Depression 0% 0% 0%

high-concentration treatment 33% 33% 23%
seven-day mortality 2.96% 3.07% 2.95%

Total patients 146,309 65,572 53,252

Table 6 Correlation of instrumental variables

DDV D1V D2V D3V D4V D5V DDF D1F D2F D3F D4F D5F DDC D1C D2C D3C D4C

D1V -0.51*
D2V -0.18* -0.09*
D3V -0.08* 0.07* 0.03*
D4V 0.02* 0.03* 0.02* 0.03*
D5V -0.06* 0.02* 0.06* 0.11* 0.10*
DDF 0.54* -0.25* -0.12* -0.07* -0.00 -0.02*
D1F -0.22* 0.48* -0.07* -0.01* 0.03* -0.06* -0.51*
D2F -0.05* -0.05* 0.52* 0.01* -0.01* -0.02* -0.16* 0.02*
D3F -0.01* 0.02* 0.04* 0.56* 0.02* 0.06* -0.08* 0.04* 0.09*
D4F 0.07* -0.02* -0.02* 0.00 0.62* 0.07* -0.01* 0.05* -0.04* 0.01*
D5F -0.00 0.02* 0.02* 0.07* 0.09* 0.54* -0.04* 0.02* 0.00* 0.05* 0.12*
DDC 0.08* 0.14* -0.05* 0.02* 0.04* 0.03* 0.24* 0.03* 0.01* 0.02* 0.03* -0.02*
D1C 0.10* -0.19* -0.01* -0.09* -0.04* -0.07* -0.03* 0.08* 0.01* -0.05* 0.01* -0.01* -0.53*
D2C 0.08* 0.08* -0.22* 0.03* -0.03* -0.03* 0.05* 0.01* -0.01* 0.03* -0.03* 0.00* -0.18* 0.02*
D3C 0.03* 0.04* 0.02* -0.15* -0.02* -0.05* 0.002 0.05* 0.02* 0.05* -0.02* 0.03* -0.11* -0.00 0.05*
D4C 0.04* 0.01* -0.04* -0.01* -0.17* 0.01* 0.04* -0.02* 0.03* 0.03* -0.03* 0.05* -0.05* 0.01* 0.05* 0.07*
D5C 0.04* -0.02* -0.01* -0.06* 0.00 -0.25* 0.01* 0.05* 0.08* -0.02* -0.00 0.01* -0.06* 0.01* 0.03* 0.10* 0.03*

* p<0.05
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Table 7 Simultaneous equations models for seven-day mortality: All IVs

Mortality equation Simultaneous equations model

Vol 0.037
(0.056)

Vol * PR 0.016
(0.041)

Vol * PC 0.127∗∗
(0.041)

Foc −0.011
(0.051)

Foc * PR −0.189∗∗∗
(0.037)

Foc * PC 0.038
(0.033)

Con −0.160∗
(0.066)

Con * PR 0.089∗
(0.039)

Con * PC −0.069∗
(0.034)

Selection equations (Ivs) Vol Foc Con

DDV −0.028∗∗∗ −0.004 0.014+
(0.006) (0.007) (0.007)

D1V 0.435∗∗∗ −0.117 0.229∗
(0.097) (0.115) (0.102)

D2V 0.090 −0.189+ −0.153+
(0.082) (0.097) (0.083)

D3V 0.165∗ 0.057 0.136
(0.072) (0.086) (0.083)

D4V −0.031 0.024 0.108
(0.063) (0.078) (0.079)

D5V 0.019 −0.059 −0.061
(0.062) (0.081) (0.073)

DDF −0.006 −0.008 −0.009
(0.007) (0.008) (0.009)

D1F −0.220∗ 0.538∗∗∗ −0.194+
(0.104) (0.115) (0.111)

D2F 0.029 0.304∗∗∗ 0.120
(0.075) (0.090) (0.077)

D3F −0.094 0.087 −0.034
(0.071) (0.087) (0.087)

D4F −0.085 −0.086 −0.004
(0.063) (0.074) (0.067)

D5F −0.011 −0.002 0.057
(0.068) (0.085) (0.077)

DDC 0.022∗∗∗ 0.016∗∗ −0.004
(0.006) (0.006) (0.006)

D1C 0.260∗∗ 0.314∗∗∗ 0.350∗∗∗
(0.083) (0.095) (0.088)

D2C 0.073 0.174∗ 0.092
(0.064) (0.076) (0.066)

D3C 0.063 0.015 0.169∗∗
(0.063) (0.072) (0.062)

D4C 0.096+ 0.138+ 0.152∗
(0.058) (0.074) (0.067)

D5C 0.058 −0.006 −0.043
(0.057) (0.066) (0.061)

Error correlations

ρV D, ρFD, ρCD −0.111∗∗∗ −0.037 0.078∗
(0.032) (0.029) (0.038)

ρV F , ρV C 0.453∗∗∗ −0.418∗∗∗
(0.048) (0.049)

ρFC 0.128∗
(0.058)

Total effect routine patients

Vol 0.052
(0.061)

Foc −0.201∗∗∗
(0.060)

Con −0.070
(0.073)

Total effect complex patients

Vol 0.164∗∗
(0.063)

Foc 0.027
(0.057)

Con −0.228∗∗∗
(0.072)

Effect differences

∆ Vol (PR, PC) −0.111∗
(0.051)

∆ Foc (PR, PC) −0.228∗∗∗
(0.043)

∆ Con (PR, PC) 0.158∗∗∗
(0.047)

Observations 265,133
Segments-in-hospitals 2,067

Standard errors clustered on segments-in-hospitals; controls included as
per Table 2.*** p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 8 Simultaneous equations models for seven-day mortality: K=3

Mortality equation Simultaneous equations model

Vol 0.034
(0.055)

Vol * PR 0.016
(0.041)

Vol * PC 0.127∗∗
(0.041)

Foc −0.003
(0.053)

Foc * PR −0.189∗∗∗
(0.037)

Foc * PC 0.038
(0.033)

Con −0.136+
(0.072)

Con * PR 0.089∗
(0.039)

Con * PC −0.068∗
(0.034)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.002 −0.003
(0.005) (0.006) (0.005)

D1V ,D1F ,D1C 0.461∗∗∗ 0.606∗∗∗ 0.316∗∗∗
(0.080) (0.098) (0.085)

D2V ,D2F ,D2C 0.130∗ 0.229∗∗ 0.141∗
(0.063) (0.074) (0.064)

D3V ,D3F ,D3C 0.138∗ 0.116 0.164∗∗
(0.057) (0.077) (0.062)

Error correlations

ρV D, ρFD, ρCD −0.108∗∗∗ −0.043 0.063
(0.031) (0.030) (0.041)

ρV F , ρV C 0.462∗∗∗ −0.405∗∗∗
(0.049) (0.051)

ρFC 0.138∗
(0.059)

Total effect routine patients

Vol 0.049
(0.061)

Foc −0.192∗∗
(0.061)

Con −0.047
(0.077)

Total effect complex patients

Vol 0.161∗
(0.063)

Foc 0.035
(0.057)

Con −0.205∗∗
(0.079)

Effect differences

∆ Vol (PR, PC) −0.111∗
(0.051)

∆ Foc (PR, PC) −0.227∗∗∗
(0.043)

∆ Con (PR, PC) 0.158∗∗∗
(0.048)

Observations 265,133
Segments-in-hospitals 2,067

Standard errors clustered on segments-in-hospitals; controls included as per
Table 2.*** p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 9 Simultaneous equations models for seven-day mortality: K=4

Mortality equation Simultaneous equations model

Vol 0.035
(0.056)

Vol * PR 0.016
(0.041)

Vol * PC 0.127∗∗
(0.041)

Foc −0.006
(0.053)

Foc * PR −0.189∗∗∗
(0.037)

Foc * PC 0.038
(0.033)

Con −0.142∗
(0.071)

Con * PR 0.089∗
(0.039)

Con * PC −0.068∗
(0.034)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.005)

D1V ,D1F ,D1C 0.460∗∗∗ 0.605∗∗∗ 0.324∗∗∗
(0.080) (0.097) (0.085)

D2V ,D2F ,D2C 0.128∗ 0.225∗∗ 0.144∗
(0.063) (0.074) (0.064)

D3V ,D3F ,D3C 0.134∗ 0.114 0.164∗∗
(0.057) (0.077) (0.062)

D4V ,D4F ,D4C −0.060 −0.071 0.148∗
(0.053) (0.065) (0.068)

Error correlations

ρV D, ρFD, ρCD −0.109∗∗∗ −0.041 0.067+
(0.031) (0.030) (0.040)

ρV F , ρV C 0.462∗∗∗ −0.407∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.059)

Total effect routine patients

Vol 0.051
(0.061)

Foc −0.196∗∗
(0.062)

Con −0.053
(0.076)

Total effect complex patients

Vol 0.162∗
(0.063)

Foc 0.032
(0.058)

Con −0.210∗∗
(0.078)

Effect differences

∆ Vol (PR, PC) −0.111∗
(0.051)

∆ Foc (PR, PC) −0.228∗∗∗
(0.043)

∆ Con (PR, PC) 0.158∗∗∗
(0.048)

Observations 265,133
Segments-in-hospitals 2,067

Standard errors clustered on segments-in-hospitals; controls included as per
Table 2.*** p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 10 Simultaneous equations models for seven-day mortality: Parsimonious model with K=1 and no DD

Mortality equation Simultaneous equations model

Vol 0.041
(0.057)

Vol * PR 0.015
(0.041)

Vol * PC 0.127∗∗
(0.041)

Foc −0.006
(0.054)

Foc * PR −0.189∗∗∗
(0.037)

Foc * PC 0.038
(0.033)

Con −0.156∗
(0.076)

Con * PR 0.089∗
(0.039)

Con * PC −0.069∗
(0.034)

Selection equations (Ivs) Vol Foc Con

D1V ,D1F ,D1C 0.610∗∗∗ 0.610∗∗∗ 0.331∗∗∗
(0.064) (0.064) (0.067)

Error correlations

ρV D, ρFD, ρCD −0.113∗∗∗ −0.041 0.076+
(0.032) (0.031) (0.044)

ρV F , ρV C 0.461∗∗∗ −0.404∗∗∗
(0.048) (0.051)

ρFC 0.143∗
(0.060)

Total effect routine patients

Vol 0.056
(0.063)

Foc −0.194∗∗
(0.063)

Con −0.067
(0.083)

Total effect complex patients

Vol 0.168∗∗
(0.065)

Foc 0.033
(0.060)

Con −0.225∗∗
(0.083)

Effect differences

∆ Vol (PR, PC) −0.112∗
(0.051)

∆ Foc (PR, PC) −0.227∗∗∗
(0.043)

∆ Con (PR, PC) 0.158∗∗∗
(0.048)

Observations 265,133
Segments-in-hospitals 2,067

Standard errors clustered on segments-in-hospitals; controls included as per
Table 2.*** p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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6. Evidence for hospital selection using observed variables

Hospital studies of the mortality effects of volume and focus are rightly concerned with the possi-

bility that a positive effect of a hospital’s high volume or high focus on a disease segment may be

a consequence of the hospital’s ability to cherry-pick healthier patients rather than its operational

superiority. It is therefore necessary to control for unobserved factors that affect hospital selec-

tion, as we do in the simultaneous equations model in the main paper. In this section, we provide

some descriptive evidence that this is necessary by showing that patients’ mortality risks differ

between by independent variable on observed factors. It is therefore likely that there are additional

unobserved selection factors. To this end, we estimate a probit model for mortality at the patient

level, using patient characteristics only (disease segment, age, gender, emergency admission status,

Elixhauser comorbidities) and then test whether the average model-predicted mortality risk differs

between high-volume (focus / concentration) and low-volume (focus / concentration) hospitals by

regressing the model-predicted mortality risk onto the respective binary variables. Table 11 sum-

marizes the results and shows clear differences in mortality risks for the three variables of interest

and suggest the presence of endogeneity.

Table 11 95% Confidence intervals for patient-risk adjusted seven-day mortality rate by hospital type

Variable High Low

Volume [2.78%, 2.81%] [4.10%, 4.19%]
Focus [2.72%, 2.76%] [3.59%, 3.66%]
Concentration [3.32%, 3.38%] [2.80%, 2.84%]

7. Routing process
7.1. Patient flow through departments

In this section we explain the routing processes to hospital departments in some more detail.

Since transfers between general surgery and internal medicine approximately account for 50% of

the transfers, we limit our illustration to these two transfer types. The patient flow in our data,

including seven-day transfer rates, are indicated in Figures 3 and 4. Emergency and elective patients

differ in their initially assigned department. While the percentage of patients admitted to general

surgery is comparable (20.8% vs. 19.4%), emergency patients are more often admitted to internal

medicine (44.0%) than other department types (35.2%), while elective patients are more often

admitted to other departments (53.7%), e.g. cardiology and cardio-surgery, than internal medicine

(26.9%). Note, however, that the indicated likelihoods of transfer within the first seven days are of

similar magnitudes between electives and emergencies, with a small tendency for more transfers of

emergency patients.
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Figure 3 Emergency patient flow

Figure 4 Elective patient flow
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We would have liked to be able to explore the reasons for transfers of elective patients in more

detail but such information is not available in our data. Nevertheless, some observed differences

between the transferred and non-transferred may be indicative of some of the transfer reasons. Table

12 outlines descriptive statistics for elective patients who were initially admitted to general surgery

and subsequently transferred to internal medicine (first column) or not transferred to internal

medicine (either staying in general surgery or transferred to another department). The transfer

group is on average older and more often complex than their non-transferred counterparts. The

most striking difference relates to surgical procedures: Patients transferred from general surgery to

internal medicine receive a surgical procedure in 29% of the cases compared to 72% of the patients

not transferred to internal medicine. This suggests that patients are often transferred from general

surgery to internal medicine because they are not sufficiently healthy to undergo a planned surgery

(which is more likely to be the case for complex and elderly patients). These allocations to the

general surgery department may be deemed as departmental allocation errors.

Table 13 outlines descriptive statistics for elective patients who were initially assigned to internal

medicine and subsequently transferred to general surgery (first column) or not transferred to general

surgery. While there is less of a difference in patient demographics, the notable difference again

exists with respect to surgical procedures. Patients who get transferred to general surgery receive

in 82% of the cases a surgical procedure compared to 6% of the patients not transferred to general

surgery. This suggests that patients are often transferred from internal medicine to general surgery

when a reevaluation of their condition suggests that surgery is preferable to conventional treatment.

Again, this can be regarded as an departmental allocation error.

Table 12 Elective patient flow drivers: Transfers from general surgery to internal medicine

Variable Transfer to IM No Transfer to IM Difference
N=623 N=49,267

Age 69.3 59.2 10.1
Complex 50% 19% 31%
Average day of Transfer 2.6 NA
Surgery 29% 72% -43%

Table 13 Elective patient flow drivers: Transfers from internal medicine to general surgery

Variable Transfer to GS No Transfer to GS Difference
N=1,327 N=67,637

Age 67.2 68.4 -1.20
Complex 42% 36% 6%
Average day of Transfer 3.0 NA
Surgery 82% 6% 76%
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7.2. Segment concentration and allocation errors: A mathematical model

In this section, we present a simple mathematical model that illustrates why patients whose hos-

pitals route a higher proportion of their patient segment in a single “default department” have

fewer departmental allocation errors and that this effect is stronger for more complex patients.

The paper complements the arguments put forward in Section 3.3 of the main paper.

Suppose a gatekeeper has to allocate newly arriving customers to one of two departments, A or

B and that A is the most appropriate department for most but not all customers. When a new

customer arrives, the gatekeeper will always perform a test to confirm that A is indeed the best

department for the customer. If the test result is positive (event τ 1A) then the gatekeeper will refer

the customer to department A. If, however, the test is negative, suggesting that department B

is more appropriate (event τ 1B), the gatekeeper has two conflicting pieces of information: a prior

belief that A is the most appropriate department and a conflicting test results (event τ 1B). To keep

the mathematics simple, we assume that the gatekeeper resolves the tie by performing a second,

decisive test: If the result of this second test contradicts the first test and suggests that A is the

appropriate department (event τ 2A), the gatekeeper will ignore the contradictory first test result

and send the customer to A. If, however, the second test confirms the first test result, suggesting

that B is more appropriate (event τ 2B), then the gatekeeper overrules the larger prior for A and

sends the customer to B.

This simple gatekeeping process reflects practice fairly well and allows for a straightforward

mathematical justification that, under reasonable assumptions about the relative specificity and

sensitivity of the two test, an increase in segment concentration in default department A reduces

department allocation errors and that this effect is more pronounced for more complex patients. We

will indicate by A and B the events that department A or B, respectively, is the most appropriate

department for a sampled customer, and by PA, PB = (1−PA) the corresponding probabilities. Part

1 of the proposition provides conditions that ensure that the total error rate of the gatekeeping

process decreases with increasing PA, while Part 2 provides conditions that ensure that this state-

ment extends to the proportion PR of customers that get routed into department A. Finally, Part

3, provides conditions that ensure that the rate of decrease is larger for more complex patients.

Proposition 1. Let α= min{P (τ 1A | A), P (τ 2A | A,τ 1B)} and β = max{P (τ 1B | B), P (τ 2B | B,τ 1B)}.

1. If α ≥ 1−
√

1−β2, then the error probability of the described gatekeeping process decreases

monotonically with in PA.

2. If
√

3− 1≤ αi, βi ≤ 1 then the proportion PR of customers that get routed into department A

increases monotonically with PA.
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3. Let α1(c) = P (τ 1A | A), α2(c) = P (τ 2A | A,τ 1B), β1(c) = P (τ 1B | B), β2(c) = P (τ 2B | B,τ 1B) be

monotonically decreasing functions of a measure c of patient complexity. If αi(c) ≥ 0.5, βi(c) ≥

0.5 and β′i(c) ≤ α′i(c) ≤ 0 for all c, then the error probability of the described gatekeeping process

decreases more strongly in the probability PA for more complex patients, provided the condition of

Part 1 holds. Since PR is an increasing linear function of PA, the same statement holds for PR,

provided the condition of Part 2 holds.

Proof. Let α1 = P (τ 1A | A), α2 = P (τ 2A | A,τ 1B), β1 = P (τ 1B | B), β2 = P (τ 2B | B,τ 1B). The

routing errors of the described gatekeeping process correspond to three event combinations

(τ 1A,B), (τ 1B, τ
2
A,B), (τ 1B, τ

2
B,A) with associated probabilities

P (τ 1A,B) = PBP (τ 1A | B) = (1−PA)(1−β1)
P (τ 1B, τ

2
A,B) = PB(τ 1B | B)P (τ 2A | B,τ 1B) = (1−PA)β1(1−β2)

P (τ 1B, τ
2
B,A) = PAP (τ 1B | A)P (τ 2B | A,τ 1B) = PA(1−α1)(1−α2).

Summing up the three terms gives the total error probability

PE = (1−β1β2)(1−PA) + (1−α1)(1−α2)PA,

which is a monotonically decreasing function of PA as long as (1− β1β2)≥ (1− α1)(1− α2). The

latter inequality follows from the proposition’s assumption α ≥ 1−
√

1−β2 (which implies (1−

β2)≥ (1−α)2) and the fact that α≤ αi and β ≥ βi for i= 1,2.

To see that Part 2 holds, we calculate the proportion PR of customers routed into department

A by the gatekeeping process

PR = P (τ 1A,A) +P (τ 1A,B) +P (τ 1B, τ
2
A,A) +P (τ 1B, τ

2
A,B)

= PAP (τ 1A | A) +PBP (τ 1A | B) +PAP (τ 1B | A)P (τ 2A | A,τ 1B) +PBP (τ 1B | B)P (τ 2A | B,τ 1B)

= PAα1 + (1−PA)(1−β1) +PA(1−α1)α2 + (1−PA)β1(1−β2). (7)

The coefficient of PA is α1 +α2−α1α2 +β1β2−1 which, under the assumption
√

3−1≤ αi, βi ≤ 1,

is bounded below by (
√

3− 1) + (
√

3− 1)− 1 + (3− 2
√

3 + 1)− 1 = 0

To see Part 3, recall from Part 1 and Part 2 that the total error probability PE is of the form

PE = g(c) + f(c)PA, and PR = h(c) + fR(c)PA. Combining these relations, this yields

PE = g(c) + f(c)
PR−h(c)

fR(c)
= g(c)− f(c)h(c)

fR(c)
+PR

f(c)

fR(c)
.

Then our claim holds if ( f(c)

fR(c)
)′ =

f ′(c)fR(c)−f(c)f ′R(c)

fR(c)2
≤ 0. Since f(c)≤ 0 and fR(c)≥ 0, the inequality

holds if f ′(c)≤ 0 and f ′R(c)≤ 0. Note that

f ′(c) = −α′1(c)−α′2(c) +α′1(c)α2(c) +α1(c)α
′
2(c) +β′1(c)β2(c) +β1(c)β

′
2(c)
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≤ −α′1(c)−α′2(c) +α′1(c)α2(c) +α1(c)α
′
2(c) +α′1(c)β2(c) +β1(c)α

′
2(c)

= α′1(c)(α2(c) +β2(c)− 1) +α′2(c)(α1(c) +β1(c)− 1)

≤ 0.

To see that f ′R(c)≤ 0 note that fR(c) is the coefficient of PR in equation (7) and hence of the form

fR(c) = α1(c) +α2(c)−α1(c)α2(c) +β1(c)β2(c)− 1. Therefore

f ′R(c) = α′1(c) +α′2(c)−α′1(c)α2(c)−α1(c)α
′
2(c) +β′1(c)β2(c) +β1(c)β

′
2(c)

= α′1(c)(1−α2(c)) +α′2(c)(1−α1(c)) +β′1(c)β2(c) +β1(c)β
′
2(c).

The latter term is non-positive because, by assumption, α′1(c), α
′
2(c), β

′
1(c), β

′
2(c) ≤ 0 and

0≤ α1(c), α2(c), β1(c), β2(c)≤ 1. �

Note that the condition for Part 1, α≥ 1−
√

1−β2, is significantly weaker than α≥ β. In fact,

the function f(β) = 1−
√

1−β2 is convex and increases from 0 to 1 as β ranges from 0 to 1, with

f ′(0) = 0 and f ′(1) =∞. Part 2 makes an assumption that the true positive rate exceeds 0.73. As

for Part 3, the assumptions αi, βi ≥ 0.5 (implied by the assumption of Part 2) and α′i(c), β
′
i(c)≤ 0

are uncontroversial: One would not want to use a test with a false positive rate above 50% and it

seems sensible to assume that the identification of the correct department in the various testing

stages is more difficult for more complex patients. The assumption β′i(c)≤ α′i(c) requires that for

those patients who should not be routed to the segment’s default department A, the difficulty

of identifying the correct department with a test declines more rapidly with increasing patient

complexity than for those patients who should be routed to the default department.

7.3. Effect of segment concentration on departmental transfers

In our theory section, we claim that a higher degree of segment concentration reduces departmental

routing errors, in particular for complex patients, who require more time for an accurate departmen-

tal allocation. This section provides empirical support for this claim. We consider internal transfers,

specifically transfers from the admitting department to another hospital department within seven

days of hospital admission, as indicative of department allocation errors; later transfers are more

likely to be part of standard care pathways, as in the case of transfer to a rehabilitation department.

The dependent variable is coded as a binary variable with 1 indicating a departmental transfer

within seven days of the patient’s hospital admission. We discard transfers to intensive care units

as they are not indicative of an allocation error and instead reflect a deterioration in a patient’s

health. Since not all hospitals provided information about transfers in their standardized discharge

records, we restricted the transfer sample to the 56 hospitals that provided this information. We
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further restricted the sample to segments with sufficient variance in transfer rates by excluding

all segments with a seven-day transfer rate below 1%. In addition, we exclude perfect predictors

and these exclusions left us with a seven-day transfer subsample of 383,628 patient episodes in 52

hospitals and 98 disease segments.

We use all control variables defined in the Section Control Variables in the main paper. While

concerns that the relationship between segment concentration and transfers is confounded by fac-

tors related to the hospital structure, specifically the number of departments and therefore the

number of transfer alternatives, are mitigated by incorporating hospital fixed effects, transfer poli-

cies may well differ between segments within the same hospital. Therefore, we control for the

general transfer rate in segment s’s default department d in hospital h by calculating the transfer

rate for all patients i∈ d outside of segment s. We estimate a probit model and additionally test by

means of a biprobit model whether concentration is endogeneous, i.e. whether patients admitted

to a high-concentration hospital differ in their unobservable transfer risk from patients admitted

to a low-concentration hospital.

The probit and biprobit estimation results for the concentration–transfer relationship are pro-

vided in Table 14. We find no evidence for endogeneity for the concentration-transfer relationship

in a recursive biprobit model (ρ = −0.160, p > 0.1) and we can rely on the more efficient probit

estimates, which are shown in Table 14. These results show that hospitals with a higher segment

concentration have a lower transfer rate for benchmark patients (β̃ =−0.253, p < 0.001) and that

this beneficial concentration effect is further amplified for complex patients (β̃ =−0.157, p < 0.001)

and reduced for routine patients (β̃ = +0.100, p < 0.001). While it is weaker, the overall concen-

tration effect remains significant for routine patients (−0.253 + 0.100 =−0.153, p < 0.001). Table

15 shows that the effect sizes are operationally significant, and that the difference in estimated

transfer rates between hospitals with a low and high segment concentration is strongest for complex

patients.

8. Sample selection thresholds and in-hospital observation period
8.1. Varying exclusion criteria

The sample used for the main paper was trimmed to increase its homogeneity, as shown in Figure 5.

The exclusion criteria include several discretionary thresholds (number of hospital patients, number

of departmental patients) and we therefore checked the robustness of the results by varying the

organizational thresholds (hospital, department) between (0,0) (no exclusion), (1000,50) (sample

in main paper), and (2500,100) (increased trimming). At the same time we varied the mortality

thresholds for inclusion of segments between 0% (no exclusion), 1% (sample in main paper), and

2%. We report the analyses for the largest (Table 16) and the smallest sample (Table 17) and the
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Table 14 Probit and biprobit coefficient estimates for seven-day departmental transfer

(1) (2)
Variables Transfer Transfer

Con −0.253∗∗∗ 0.010
(0.028) (0.272)

Con * PR 0.100∗∗∗ 0.100∗∗∗
(0.030) (0.030)

Con * PC −0.157∗∗∗ −0.157∗∗∗
(0.040) (0.040)

Total effect routine patients

Con −0.153∗∗∗ 0.110
(0.034) (0.272)

Total effect complex patients

Con −0.410∗∗∗ −0.147
(0.043) (0.276)

Effect differences

∆ Con (PR, PC) 0.257∗∗∗ 0.257∗∗∗
(0.049) (0.049)

Selection equation Con

DDC −0.012∗∗
(0.004)

D1C 0.231∗∗∗
(0.056)

D2C 0.172∗∗∗
(0.043)

D3C 0.048
(0.040)

D4C 0.012
(0.041)

D5C 0.022
(0.038)

ρCT −0.160
(0.158)

Observations 383,628 383,628
Cluster 4,395 4,395

Clustered standard errors in parentheses. The model
includes the control variables as per Table 2 and the trans-
fer rate of patients outside the focal segment. *** p<0.001,
** p<0.01, * p<0.05

Table 15 Estimated risk-adjusted seven-day in-hospital transfer rates for concentration

Concentration–transfer
Low High p-value

Routine 2.00% 1.41% <0.001
Benchmark 4.01% 2.39% <0.001
Complex 7.48% 3.56% <0.001

results of the other combinations are quite similar: For each of the eight combinations, we obtain

consistent results for our focus-hypotheses and concentration-hypothesis that are at least weakly

significant. The volume-hypothesis finds partial support unless the mortality threshold is increased

to 2%, when statistical power appears to too low to identify significant effects. Note that the signs

of the estimated volume effects (Total effect routine patients / Total effect complex patients /

Effect difference) in the simultaneous equations model are the same as in Table 1 of the main
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paper.

Figure 5 Construction of data sample

8.2. Expansion of observation period

We expanded the observation period by not only focusing on mortality for the first seven days

but also considered events up to day 8, 9, 10 and finally all inpatient deaths irrespective of their

timing. The results concerning the total effects and differential effect between routine and complex

patients remain comparable to the seven-day window reported in the main paper. Table 18 shows

the results of all inpatient deaths.

9. Patient complexity
9.1. Varying comorbidity thresholds for complex patients

In the main paper, we had reported results where complex patients were defined as emergency

patients with at least three Elixhauser comorbidities. We replicate the analysis using two comor-

bidities and four comorbidities as the threshold, with results in Tables 19 and 20. The total effects
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Table 16 Probit and simultaneous equations models for seven-day mortality: largest sample

Mortality equation Probit Simultaneous equations model

Vol −0.065∗ 0.035
(0.029) (0.052)

Vol * PR −0.026 −0.022
(0.037) (0.036)

Vol * PC 0.088∗ 0.086∗
(0.038) (0.038)

Foc −0.072∗∗∗ 0.059
(0.021) (0.047)

Foc * PR −0.178∗∗∗ −0.168∗∗∗
(0.033) (0.033)

Foc * PC 0.048 0.045
(0.031) (0.031)

Con −0.053∗ −0.089
(0.022) (0.067)

Con * PR 0.087∗∗ 0.086∗∗
(0.033) (0.033)

Con * PC −0.053+ −0.052
(0.032) (0.032)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.026∗∗∗ −0.014∗∗∗ −0.011∗∗
(0.003) (0.003) (0.003)

D1V ,D1F ,D1C 0.345∗∗∗ 0.418∗∗∗ 0.205∗∗∗
(0.043) (0.058) (0.051)

D2V ,D2F ,D2C 0.153∗∗∗ 0.172∗∗∗ 0.184∗∗∗
(0.036) (0.047) (0.038)

D3V ,D3F ,D3C 0.121∗∗∗ 0.098∗ 0.075∗
(0.033) (0.045) (0.037)

D4V ,D4F ,D4C −0.063∗ 0.015 0.015
(0.031) (0.040) (0.038)

D5V ,D5F ,D5C 0.006 −0.014 0.012
(0.031) (0.043) (0.036)

Error correlations

ρV D, ρFD, ρCD −0.086∗∗ −0.089∗∗ 0.021
(0.027) (0.027) (0.039)

ρV F , ρV C 0.454∗∗∗ −0.230∗∗∗
(0.027) (0.032)

rhoFC 0.184∗∗∗
(0.035)

Total effect routine patients

Vol −0.091∗ 0.014
(0.036) (0.056)

Foc −0.250∗∗∗ −0.109∗
(0.028) (0.053)

Con 0.034 −0.002
(0.030) (0.068)

Total effect complex patients

Vol 0.023 0.122∗
(0.039) (0.058)

Foc −0.024 0.104∗
(0.029) (0.050)

Con −0.106∗∗∗ −0.140+
(0.031) (0.072)

Effect differences

∆ Vol (PR, PC) −0.114∗ −0.108∗
(0.046) (0.045)

∆ Foc (PR, PC) −0.226∗∗∗ −0.213∗∗∗
(0.038) (0.038)

∆ Con (PR, PC) 0.140∗∗∗ 0.138∗∗∗
(0.041) (0.041)

Observations 653,367 653,367
Segments-in-hospitals 6,095 6,095

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 17 Probit and simultaneous equations models for seven-day mortality: smallest sample

Mortality equation Probit Simultaneous equations model

Vol −0.143∗∗∗ −0.008
(0.039) (0.062)

Vol * PR 0.097∗ 0.100∗
(0.047) (0.046)

Vol * PC 0.130∗∗ 0.128∗∗
(0.047) (0.047)

Foc −0.050+ 0.051
(0.028) (0.061)

Foc * PR −0.214∗∗∗ −0.206∗∗∗
(0.046) (0.045)

Foc * PC 0.031 0.031
(0.040) (0.040)

Con −0.070∗ −0.149+
(0.030) (0.086)

Con * PR 0.127∗∗ 0.123∗∗
(0.047) (0.047)

Con * PC −0.022 −0.019
(0.042) (0.041)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.026∗∗∗ 0.004 0.007
(0.006) (0.007) (0.008)

D1V ,D1F ,D1C 0.494∗∗∗ 0.509∗∗∗ 0.370∗∗∗
(0.110) (0.108) (0.104)

D2V ,D2F ,D2C 0.293∗∗∗ 0.296∗∗ 0.175∗
(0.081) (0.094) (0.085)

D3V ,D3F ,D3C 0.206∗∗ 0.072 0.199∗
(0.074) (0.088) (0.083)

D4V ,D4F ,D4C −0.060 0.008 0.134
(0.070) (0.078) (0.089)

D5V ,D5F ,D5C 0.068 0.023 0.008
(0.067) (0.087) (0.084)

Error correlations

ρV D, ρFD, ρCD −0.113∗∗∗ −0.073∗ 0.058
(0.034) (0.036) (0.051)

ρV F , ρV C 0.471∗∗∗ −0.332∗∗∗
(0.067) (0.071)

ρFC 0.157∗
(0.078)

Total effect routine patients

Vol −0.046 0.092
(0.050) (0.069)

Foc −0.264∗∗∗ −0.158∗
(0.041) (0.064)

Con 0.057 −0.027
(0.042) (0.095)

Total effect complex patients

Vol −0.013 0.119+
(0.049) (0.072)

Foc −0.019 0.081
(0.038) (0.065)

Con −0.092∗ −0.168+
(0.041) (0.093)

Effect differences

∆ Vol (PR, PC) −0.034 −0.027
(0.058) (0.058)

∆ Foc (PR, PC) −0.245∗∗∗ −0.237∗∗∗
(0.051) (0.051)

∆ Con (PR, PC) 0.149∗∗∗ 0.142∗∗
(0.055) (0.055)

Observations 139,028 139,028
Segments-in-hospitals 904 904

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 18 Probit and simultaneous equations models for complete inpatient mortality

Mortality equation Probit Simultaneous equations model

Vol −0.055+ 0.083
(0.030) (0.051)

Vol * PR −0.057 −0.052
(0.036) (0.035)

Vol * PC 0.089∗∗ 0.087∗
(0.034) (0.034)

Foc −0.073∗∗∗ −0.009
(0.021) (0.050)

Foc * PR −0.170∗∗∗ −0.164∗∗∗
(0.032) (0.032)

Foc * PC 0.071∗ 0.069∗
(0.030) (0.029)

Con −0.055∗ −0.115+
(0.021) (0.060)

Con * PR 0.065+ 0.061+
(0.034) (0.034)

Con * PC −0.046 −0.043
(0.029) (0.029)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.004 −0.004
(0.004) (0.005) (0.005)

D1V ,D1F ,D1C 0.442∗∗∗ 0.540∗∗∗ 0.330∗∗∗
(0.066) (0.084) (0.073)

D2V ,D2F ,D2C 0.121∗ 0.217∗∗ 0.158∗∗
(0.052) (0.066) (0.055)

D3V ,D3F ,D3C 0.124∗ 0.145∗ 0.128∗
(0.049) (0.067) (0.052)

D4V ,D4F ,D4C −0.062 −0.016 0.106+
(0.045) (0.057) (0.057)

D5V ,D5F ,D5C 0.007 −0.014 −0.033
(0.045) (0.065) (0.051)

Error correlations

ρV D, ρFD, ρCD −0.105∗∗∗ −0.049+ 0.050
(0.027) (0.028) (0.034)

ρV F , ρV C 0.452∗∗∗ −0.412∗∗∗
(0.042) (0.043)

ρFC 0.136∗∗
(0.051)

Total effect routine patients

Vol −0.111∗∗ 0.031
(0.037) (0.055)

Foc −0.243∗∗∗ −0.173∗∗
(0.031) (0.058)

Con 0.010 −0.054
(0.031) (0.063)

Total effect complex patients

Vol 0.034 0.170∗∗
(0.037) (0.056)

Foc −0.002 0.060
(0.030) (0.054)

Con −0.101∗∗∗ −0.157∗
(0.029) (0.063)

Effect differences

∆ Vol (PR, PC) −0.146∗∗∗ −0.139∗∗∗
(0.044) (0.044)

∆ Foc (PR, PC) −0.241∗∗∗ −0.233∗∗∗
(0.041) (0.040)

∆ Con (PR, PC) 0.111∗ 0.104∗
(0.043) (0.043)

Observations 329,424 329,424
Segments-in-hospitals 2,402 2,402

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10



32 Kuntz, Scholtes, Sülz Separate & Concentrate

for routine and complex patients as well as the effect difference between routine and complex

patients remain comparable to those reported in the main paper, i.e. we find partial support for

our volume-outcome hypothesis and our hypothesis concerning focus and concentration are fully

supported.

9.2. An alternative patient complexity measure

Our measurement of patient complexity in the main paper is based on the number of Elixhauser

comorbidities registered in the patient’s discharge record. This measure is coarse and does not

take into account that the complicating effect of specific comorbidities differ from patient segment

to patient segment. Therefore simple addition leads to measurement errors. Also, there are non-

Elixhauser comorbidities that could lead to increased patient complexity. As a robustness check

we report in this section the results for a different patient complexity classification, akin to the

complexity measure used in Clark (2012). The measure is based on information extracted from a

patient’s diagnosis related group (DRG), which classify patients by conditions or procedures and

are used for reimbursement of hospital services and therefore available in standardized discharge

records. First, like Clark (2012), the DRG complexity measure is based on all actual secondary

diagnoses in the discharge record. In the German system, every secondary diagnosis obtains a

CC score (CCL Wert), ranging from 0 (no comorditidy or complexity) to 4 (extremely severe

comorbidity and complexity). The CC score of a secondary diagnosis is set to 0 if there is a close

connection with the main diagnosis (accordingly to Clark’s requirement that a comorbidity should

be a secondary diagnosis that falls into a different disease category from the primary diagnosis).

The German DRG system then calculates an aggregate CC score for the patient, a patient-level

complexity score (PCCL Wert) between 0 (no relevant comorbidity and complexity) and 4 (most

severe comorbidity and complexity). If different PCCL levels are not associated with different cost

implications, then the DRG codes are not subdivided by PCCL level (indicated by Z as the 4th

digit), otherwise the four levels are included as letters A-D in 4th digit of the DRG code. We

believe this is very close to Clark (2012) and the best we can do to get close to Clarks manual

method with our data. We should also stress that this is a nationally agreed complexity score in

the German hospital system.

We use this classification to identify complex and routine patients within each DRG. Specifi-

cally, we replace the comorbidity criterion ”more than 3 comorbidities” by the criterion ”DRG

classification A”, which refers to the fourth letter of the code, where ”A” always refers to the high-

est complication level. We classify patients as complex if they are emergency admissions and the

DRG CC classification letter is A. Note that DRGs are only subdivided if differences in CC levels

have significant cost implications. When DRGs are not subdivided, we assign them to benchmark

patients if they are emergency admissions and to routine patients if they are elective admissions.
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Table 19 Probit and simultaneous equations models for seven-day mortality: 2 comorbidity threshold

Mortality equation Probit Simultaneous equations model

Vol −0.089∗∗ 0.059
(0.034) (0.056)

Vol * PR −0.079 −0.072
(0.053) (0.052)

Vol * PC 0.068∗ 0.065+
(0.034) (0.034)

Foc −0.130∗∗∗ −0.077
(0.023) (0.054)

Foc * PR −0.089+ −0.084+
(0.048) (0.048)

Foc * PC 0.126∗∗∗ 0.124∗∗∗
(0.030) (0.030)

Con −0.021 −0.112
(0.026) (0.073)

Con * PR 0.029 0.025
(0.045) (0.044)

Con * PC −0.081∗ −0.078∗
(0.032) (0.032)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.005)

D1V ,D1F ,D1C 0.460∗∗∗ 0.604∗∗∗ 0.323∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.127∗ 0.225∗∗ 0.144∗
(0.062) (0.074) (0.064)

D3V ,D3F ,D3C 0.133∗ 0.115 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.061 −0.070 0.147∗
(0.053) (0.064) (0.067)

D5V ,D5F ,D5C 0.020 −0.025 −0.018
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.113∗∗∗ −0.041 0.070+
(0.031) (0.030) (0.042)

ρV F , ρV C 0.462∗∗∗ −0.407∗∗∗
(0.049) (0.051)

ρFC 0.135∗
(0.059)

Total effect routine patients

Vol −0.168∗∗ −0.013
(0.054) (0.070)

Foc −0.219∗∗∗ −0.167∗
(0.044) (0.069)

Con 0.007 −0.087
(0.043) (0.083)

Total effect complex patients

Vol −0.021 0.124∗
(0.036) (0.058)

Foc −0.004 0.046
(0.027) (0.055)

Con −0.103∗∗∗ −0.190∗
(0.030) (0.077)

Effect differences

∆ Vol (PR, PC) −0.147∗ −0.137∗
(0.057) (0.057)

∆ Foc (PR, PC) −0.215∗∗∗ −0.208∗∗∗
(0.050) (0.050)

∆ Con (PR, PC) 0.110∗ 0.103∗
(0.051) (0.051)

Observations 265,133 265,133
Segments-in-hospitals 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 20 Probit and simultaneous equations models for seven-day mortality: 4 comorbidity threshold

Mortality equation Probit Simultaneous equations model

Vol −0.076∗ 0.066
(0.033) (0.055)

Vol * PR −0.032 −0.028
(0.036) (0.036)

Vol * PC 0.120∗ 0.117∗
(0.050) (0.050)

Foc −0.040+ 0.011
(0.023) (0.053)

Foc * PR −0.179∗∗∗ −0.173∗∗∗
(0.033) (0.034)

Foc * PC 0.035 0.035
(0.040) (0.040)

Con −0.081∗∗ −0.175∗
(0.026) (0.073)

Con * PR 0.112∗∗ 0.107∗∗
(0.035) (0.034)

Con * PC −0.051 −0.050
(0.043) (0.043)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.006)

D1V ,D1F ,D1C 0.460∗∗∗ 0.603∗∗∗ 0.324∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.127∗ 0.225∗∗ 0.144∗
(0.062) (0.074) (0.064)

D3V ,D3F ,D3C 0.134∗ 0.115 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.061 −0.069 0.148∗
(0.053) (0.063) (0.067)

D5V ,D5F ,D5C 0.020 −0.024 −0.017
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.112∗∗∗ −0.041 0.072+
(0.031) (0.030) (0.041)

ρV F , ρV CC 0.462∗∗∗ −0.407∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.059)

Total effect routine patients

Vol −0.109∗∗ 0.037
(0.038) (0.059)

Foc −0.219∗∗∗ −0.161∗∗
(0.029) (0.059)

Con 0.030 −0.068
(0.031) (0.075)

Total effect complex patients

Vol 0.043 0.182∗
(0.054) (0.071)

Foc −0.005 0.046
(0.039) (0.062)

Con −0.133∗∗ −0.224∗∗
(0.044) (0.084)

Effect differences

∆ Vol (PR, PC) −0.152∗∗ −0.145∗
(0.058) (0.057)

∆ Foc (PR, PC) −0.214∗∗∗ −0.208∗∗∗
(0.047) (0.047)

∆ Con (PR, PC) 0.163∗∗ 0.156∗∗
(0.053) (0.053)

Observations 265,133 265,133
Segments-in-hospitals 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Note that this revised complexity classification is somewhat less balanced than the complexity

classification used in the main paper. We now classify 7% of the sample patients as complex, 39% as

benchmark and 54% as routine patients as opposed to the original 14% complex, 44% benchmark

and 41% routine patients. The estimation results analogous to Table 1 in the main paper are

reported in Table 21. In line with the results reported in the main paper, we find partial support

for our volume hypothesis and full support for our focus and concentration hypothesis.

9.3. Comorbidities and process uncertainty

We have used process uncertainty as our theoretical lense in the hypothesis development in the

main paper. Process uncertainty relates to a lack of information that allows confident service pro-

cess decisions at the start of the service episode. One can therefore argue that comorbidities that

are known at the start of the service episode do not increase process uncertainty. It would there-

fore be useful to only use those comorbidities that are uncovered later in the service episode to

define complex patients - as patients with multiple such comorbidities are more clearly associ-

ated with high process uncertainty. Unfortunately, our data does not have information about the

time when a comorbidity was discovered. We therefore interviewed five physicians of large general

hospitals and asked them to indicate which comorbidities they believe to be largely known upon

hospital admission. Specifically, we used a 4-point Likert-scale against each comorbidity, indicating

whether the comorbidity is almost always known (=1), predominantly known (=2), predominantly

unknown (=3) and almost never known (=4) at the time of admission. The results show variation

across comorbidities and across physicians. In fact, none of the comorbidities was rated as always

known by all five physicians. For each comorbidity, we computed the average score across all physi-

cians, which we then used to rank the comorbidities. We deleted all comorbidities whose score

was lower than the median score (2.6), leaving us with comorbidities that these five physicians

regard as most likely to be uncovered later in the service process. These are pulmonary circulation

disorders, hypothyroidism, liver disease, lymphoma, solid tumor without metastasis, rheumatoid

arthritis/collagen, vascular diseases, coagulopathy, drug abuse, psychoses, and depression. We then

call an emergency patient complex if the patient has at least one of these comorbidities (note

that one out of 10 is a similar proportion to 3 out of 31 comorbidities used before). The sample

was then composed of 115,399 benchmark patients, 130,384 routine patients, and 19,350 complex

patients. We replicated the analysis and while the effect difference for volume is only weakly sig-

nificant, our hypothesis concerning focus and concentration remain fully confirmed (see Table 22).

All interviewed physicians are based at large tertiary hospitals and may thus not be representa-

tive for general hospitals. However, these hospitals usually serve as the last point of call in the

hospital chain and frequently provide care for patients being transferred from other hospitals and
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Table 21 Probit and simultaneous equations models for seven-day mortality: highest resource consumption

Mortality equation Probit Simultaneous equations model

Vol −0.048 0.100+
(0.034) (0.055)

Vol * PR −0.095∗ −0.089∗
(0.037) (0.037)

Vol * PC 0.025 0.023
(0.048) (0.047)

Foc −0.054∗ 0.004
(0.023) (0.052)

Foc * PR −0.142∗∗∗ −0.136∗∗∗
(0.034) (0.034)

Foc * PC 0.047 0.045
(0.044) (0.044)

Con −0.063∗ −0.157∗
(0.025) (0.073)

Con * PR 0.109∗∗ 0.105∗∗
(0.034) (0.034)

Con * PC −0.146∗∗∗ −0.140∗∗∗
(0.042) (0.042)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.006)

D1V ,D1F ,D1C 0.460∗∗∗ 0.603∗∗∗ 0.323∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.128∗ 0.225∗∗ 0.144∗
(0.063) (0.074) (0.064)

D3V ,D3F ,D3C 0.133∗ 0.115 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.061 −0.069 0.147∗
(0.053) (0.063) (0.067)

D5V ,D5F ,D5C 0.020 −0.025 −0.017
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.117∗∗∗ −0.046 0.073+
(0.031) (0.029) (0.042)

ρV F , ρV C 0.461∗∗∗ −0.406∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.059)

Total effect routine patients

Vol −0.143∗∗∗ 0.011
(0.039) (0.059)

Foc −0.195∗∗∗ −0.132∗
(0.029) (0.059)

Con 0.046 −0.052
(0.032) (0.076)

Total effect complex patients

Vol −0.023 0.124+
(0.049) (0.067)

Foc −0.007 0.049
(0.042) (0.065)

Con −0.209∗∗∗ −0.297∗∗∗
(0.047) (0.083)

Effect differences

∆ Vol (PR, PC) −0.120∗ −0.122∗
(0.029) (0.059)

∆ Foc (PR, PC) −0.188∗∗∗ −0.181∗∗∗
(0.051) (0.051)

∆ Con (PR, PC) 0.255∗∗∗ 0.248∗∗∗
(0.049) (0.049)

Observations 265,133 265,133
Segments-in-hospitals 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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are thus more likely to have more information than the patients’ first hospital. Thus, if comorbidi-

ties are predominantly not known in these tertiary hospitals, we may reasonable assume that this

knowledge is also not present in upstream hospitals. This renders our approach conservative.

9.4. Admission status and process uncertainty

In addition to the comorbidity burden, we used admission type to classify complex patients. In

doing so, we assume that for patients admitted as an emergency case, less information is available

to make informed decisions about the patient’s diagnosis and treatment trajectory compared to

patients with a planned admission. Besides presenting with less information, emergency patients

may, however, also differ from non-emergency patients in terms of the acuity of their disease

and therefore the results we find may not be entirely due to process uncertainty but due to the

hospital’s ability to respond rapidly to acute conditions. While we cannot isolate the acuity aspect

from process uncertainty completely, we can exploit more granular data that we have available for

some of our sample hospitals, with information about which procedures were applied and when,

to analyse these patients’ diagnosis and treatment trajectories in more detail, and specifically the

differences between routine and complex patients.

9.4.1. Task variety Resolving uncertainty related to diagnosis and treatment involves search

processes. We therefore expect the variety of executed tasks to be higher for patients with higher

process uncertainty and, if process uncertainty is related to our complexity measure, that this

would also be the case for complex patients, relative to routine patients. To test this, we choose

groups of related procedures and calculated the number of different procedure groups for every

patient (for the aforementioned subsample of hospitals) with the procedure groups based upon

the German procedure classification (DIMDI - Deutsches Institut für Medizinische Dokumentation

und Information 2014). We find that complex patients have an average of 2.8 (SD: 1.9), benchmark

patients an average of 2.6 (SD: 1.8), and routine patients an average of 2.2 (SD: 1.5) types of

procedures. We additionally test whether these differences are statistically significant by means

of a Poisson regression, with the number of procedure groups as dependent variable, controlling

for patient demographics via age and gender, substantial variation between segments via segment

fixed effects and for variation across hospitals by means of hospital characteristics (beds, teaching

status, ownership). We obtain a negative coefficient for routine patients (β = −0.176, p < 0.001)

and a positive coefficient for complex patients (β = 0.095, p < 0.001), with a significant difference

between the coefficients (−0.176− 0.095 =−0.271, p < 0.001). These results offer some support for

our argument that our complexity measure also captures process uncertainty.
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Table 22 Probit and simultaneous equations models for seven-day mortality: Unknown comorbidities only

Mortality equation Probit Simultaneous equations model

Vol −0.054 0.104+
(0.034) (0.056)

Vol * PR −0.067+ −0.063+
(0.036) (0.036)

Vol * PC 0.030 0.032
(0.052) (0.051)

Foc −0.059∗ 0.005
(0.023) (0.053)

Foc * PR −0.127∗∗∗ −0.122∗∗∗
(0.033) (0.033)

Foc * PC 0.076+ 0.079+
(0.043) (0.043)

Con −0.071∗∗ −0.169∗
(0.027) (0.074)

Con * PR 0.084∗ 0.080∗
(0.034) (0.034)

Con * PC −0.046 −0.048
(0.045) (0.044)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.006)

D1V ,D1F ,D1C 0.460∗∗∗ 0.603∗∗∗ 0.324∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.127∗ 0.224∗∗ 0.144∗
(0.062) (0.074) (0.064)

D3V ,D3F ,D3C 0.133∗ 0.115 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.061 −0.068 0.147∗
(0.053) (0.063) (0.067)

D5V ,D5F ,D5C 0.020 −0.024 −0.017
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.124∗∗∗ −0.050+ 0.076+
(0.031) (0.030) (0.041)

ρV F , ρV C 0.462∗∗∗ −0.407∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.060)

Total effect routine patients

Vol −0.120∗∗∗ 0.041
(0.038) (0.057)

Foc −0.185∗∗∗ −0.117∗
(0.028) (0.057)

Con 0.013 −0.088
(0.030) (0.074)

Total effect complex patients

Vol −0.024 0.136+
(0.054) (0.071)

Foc 0.017 0.083
(0.042) (0.065)

Con −0.117∗∗ −0.217∗∗
(0.043) (0.081)

Effect differences

∆ Vol (PR, PC) −0.096+ −0.095+
(0.058) (0.057)

∆ Foc (PR, PC) −0.202∗∗∗ −0.200∗∗∗
(0.049) (0.048)

∆ Con (PR, PC) 0.130∗∗ 0.128∗
(0.051) (0.050)

Observations 265,133 265,133
Segments-in-hospitals 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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9.4.2. Timing of procedures: Date of surgery Resolving uncertainty related to diagnosis

and treatment is also time-consuming. Complex patients whose diagnosis and treatment trajectory

is unknown in advance pose a high degree of uncertainty and sufficient time is required to decide

upon the feasibility and appropriateness of specific procedures. Routine patients, on the other hand,

present with less uncertainty and are more likely to have a treatment plan in place upon admission.

In this case, less time is required for service planning. One aspect of timing that we can identify

in our data is the time of surgery (for patients who had surgery). While the probability of surgery

on the admission day (day=0) is similar across patient types (routine, benchmark, complex), the

probability of surgery on day 1 is more than twice as high for routine patients compared to complex

patients and from day 4 onwards, the probability is higher for complex patients than routine

patients (see Figure 6). We find that routine patients that undergo surgery are on average operated

on day 2.8 (SD: 4.6), benchmark patients on day 4.3 (SD: 6.3) and complex patients on day 5.9

(SD: 7.6). We additionally test whether the differences are statistically significant by regressing

surgery date on patient types, controlling for patient demographics via age and gender, substantial

variation between segments via segment fixed effects and for variation across hospitals by means of

hospital characteristics (beds, teaching status, ownership). We find a negative coefficient for routine

patients (β = −1.251, p < 0.001) and a positive coefficient for complex patients (β = 1.449, p <

0.001), with a significant difference between them (−1.251−1.449 =−2.700, p < 0.001), these results

lend additional support to our argument that an increase in complexity is associated with longer

search processes.

Figure 6 Probability of surgery on day t, conditional on having surgery
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10. Heterogeneity in segments: Subsample analyses
10.1. Diseases of the circulatory system

In the main paper we estimate effects across multiple segments simultaneously, in order to max-

imize statistical power. However, this may lead to concerns about heterogeneity as the segment

effects may differ substantially. We therefore conduct analogous estimations for subsamples in this

section. In order to maximize statistical power, we first re-estimate the model for all patients in the

ICD chapter “Diseases of the circulatory system”, which is the largest ICD chapter in our data,

accounting for 37% of the patients. This chapter consists of only five patient segments (as defined

by ICD blocks). Table 23 shows the estimation results, with the relevant total effect and effect

differences supporting all hypotheses. Note that, in contrast to the main paper, this subsample

does not show evidence for endogeneity in the volume–mortality relationship (ρ is not significant).

10.2. Six high-risk conditions

Finally, we consider a subsample of six high-risk conditions “for which mortality has been shown

to vary substantially across institutions and for which evidence suggests that high mortality may

be associated with deficiencies in the quality of care”(Agency for Healthcare Research and Quality

2015): acute myocardial infarction, stroke, congestive heart failure, gastrointestinal hemorrhage,

hip replacement after fracture, and pneumonia. Table 24 reports the results for the six high-risk

conditions. This subsample does not provide evidence of a volume-selection effect and while the

probit model fully supports our focus and concentration hypotheses, the results do not confirm

the volume hypothesis at conventional significance levels. Taken together with the results for the

subsample of diseases of the circulatory system, this indicates segment-specific heterogeneity. While

our hypotheses are (partially) supported across our main segments and thus provide us with an

average effect, this does not have to hold for every segment in our main sample.

11. Continuous independent variables

In the main paper, we use dichotomized versions of the continuous variables volume, focus and

concentration level, because this approximate heterogeneous nonlinear relationships between these

variables and the patient’s latent health index better than a linear approximation. While we believe

dichotomization to be the most appropriate model specification for our context, it is nevertheless

interesting to see whether the results are robust when standardized continuous variables are used.

Noite that outliers are particularly problematic when nonlinear relationships are approximated by

a linear function. We therefure curtailed our sample to avoid such outlier effects. Specifically, we

restrict our sample to segments-in-hospitals where the volume z-score is below 3, the focus z-score

is below 3, and the concentration z-score is above -3 (see Figure 7).
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Table 23 Probit and simultaneous equations models for seven-day mortality: Diseases of the circulatory system

Mortality equation Probit Simultaneous equations model

Vol −0.132+ −0.087
(0.075) (0.106)

Vol * PR −0.073 −0.070
(0.074) (0.074)

Vol * PC 0.127+ 0.126+
(0.066) (0.066)

Foc −0.004 0.012
(0.037) (0.093)

Foc * PR −0.215∗∗ −0.214∗∗
(0.072) (0.072)

Foc * PC 0.009 0.009
(0.053) (0.053)

Con −0.085+ −0.076
(0.046) (0.128)

Con * PR 0.089 0.087
(0.065) (0.065)

Con * PC −0.079 −0.078
(0.053) (0.054)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.027∗∗∗ −0.012 0.017+
(0.008) (0.012) (0.009)

D1V ,D1F ,D1C 0.326∗ 0.374∗ 0.451∗∗
(0.149) (0.186) (0.144)

D2V ,D2F ,D2C 0.112 0.232+ 0.262∗
(0.106) (0.128) (0.117)

D3V ,D3F ,D3C 0.233∗ 0.067 0.333∗∗
(0.106) (0.137) (0.118)

D4V ,D4F ,D4C −0.146 −0.191 0.053
(0.094) (0.121) (0.122)

D5V ,D5F ,D5C 0.074 −0.263∗ 0.042
(0.095) (0.134) (0.103)

Error correlations

ρV D, ρFD, ρCD −0.028 −0.015 0.003
(0.061) (0.052) (0.078)

ρV F , ρV C 0.417∗∗∗ −0.626∗∗∗
(0.095) (0.074)

ρFC 0.116
(0.111)

Total effect routine patients

Vol −0.205∗ −0.157
(0.083) (0.116)

Foc −0.219∗∗∗ −0.202+
(0.063) (0.110)

Con 0.003 0.116
(0.068) (0.144)

Total effect complex patients

Vol 0.005 0.039
(0.081) (0.106)

Foc −0.005 0.021
(0.048) (0.092)

Con −0.164∗∗ −0.154
(0.056) (0.137)

Effect differences

∆ Vol (PR, PC) −0.200∗ −0.195∗
(0.085) (0.086)

∆ Foc (PR, PC) −0.224∗∗ −0.223∗∗
(0.075) (0.075)

∆ Con (PR, PC) 0.168∗ 0.166∗
(0.081) (0.081)

Observations 94,622 94,622
Segments-in-hospitals 296 296

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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Table 24 Probit and simultaneous equations models for seven-day mortality: Six high risk conditions

Mortality equation Probit Simultaneous equations model

Vol −0.057 −0.055
(0.048) (0.095)

Vol * PR 0.051 0.051
(0.063) (0.063)

Vol * PC 0.125∗ 0.125∗
(0.063) (0.063)

Foc −0.031 0.002
(0.033) (0.082)

Foc * PR −0.203∗∗∗ −0.202∗∗∗
(0.059) (0.059)

Foc * PC 0.008 0.008
(0.052) (0.052)

Con −0.063 −0.061
(0.042) (0.119)

Con * PR 0.133∗ 0.132∗
(0.060) (0.060)

Con * PC −0.055 −0.055
(0.054) (0.053)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.043∗∗∗ −0.006 0.019∗
(0.007) (0.010) (0.009)

D1V ,D1F ,D1C 0.240+ 0.599∗∗∗ 0.730∗∗∗
(0.125) (0.157) (0.121)

D2V ,D2F ,D2C 0.219∗ 0.250∗ 0.169+
(0.094) (0.116) (0.100)

D3V ,D3F ,D3C 0.112 0.089 0.053
(0.094) (0.115) (0.092)

D4V ,D4F ,D4C −0.135+ −0.091 −0.092
(0.081) (0.101) (0.092)

D5V ,D5F ,D5C 0.010 −0.039 −0.006
(0.083) (0.112) (0.091)

Error correlations

ρV D, ρFD, ρCD −0.005 −0.022 −0.003
(0.052) (0.049) (0.065)

ρV F , ρV C 0.329∗∗∗ −0.436∗∗∗
(0.076) (0.077)

ρFC 0.182∗
(0.085)

Total effect routine patients

Vol −0.006 −0.004
(0.061) (0.105)

Foc −0.234∗∗∗ −0.200∗
(0.051) (0.091)

Con 0.070 0.071
(0.055) (0.120)

Total effect complex patients

Vol 0.068 0.070
(0.058) (0.105)

Foc −0.023 0.011
(0.043) (0.084)

Con −0.118∗ −0.116
(0.047) (0.117)

Effect differences

∆ Vol (PR, PC) −0.074 −0.074
(0.073) (0.074)

∆ Foc (PR, PC) −0.211∗∗ −0.210∗∗
(0.068) (0.068)

∆ Con (PR, PC) 0.188∗∗ 0.187∗∗
(0.067) (0.067)

Observations 62,470 62,470
Segments-in-hospitals 575 575

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10.
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We also computed new instrumental variables, based on the continuous variables. For each

independent variable (volume, focus, concentration), we use a set of 5 variables Dik (k ∈ {1, . . . ,5})
which are equal to the standardized (volume-, focus-, concentration-) measure of the k-th nearest

hospital to patient i. Although the differential distance is a continuous variable, it captures the

incremental difference between two hospitals of specific types. However, this requires categorization

of hospitals and as such categorization of the continuous measures which isn’t aligned with the

approach taken here. Therefore, the model does not incorporate this second type of instrumental

variable.

The results of the linear model are summarized in Table 25. In contrast to the dichotomous

model in Table 1 of the main paper, the correlations ρV D, ρFD and ρCD between the selection

equations and the outcome equation (D) are not significant and the model therefore does not

identify endogeneity as a critical issue. We do not find the model convincing, though, because

the significance pattern of the focus selection equation (second panel, column 3) suggests that the

instruments are weak for focus. We therefore refrain from interpreting the results of this model

and include it only for completion. We also point out that, if there is no endogeneity, then the

probit results should be interpreted instead of the results of the statistically less powerful multi-

variate probit model. These results (column 1) are in line with the endogeneity controlled results

of column 2 in Table 1 in the main paper: Volume does not have a statitsically significant effect on

mortality for routine patients, with some evidence that the effect is negative (increases mortality)

for complex patients; routine patients benefit from focus and more so than complex patients, and

complex patients benefit from segment concentration, and more so than routine patients.

Figure 7 Distribution of standardized continuous variables
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Table 25 Probit and simultaneous equations models for standardized independent variables

Mortality equation Probit Simultaneous equations model

Vol −0.012 0.024
(0.029) (0.069)

Vol * PR −0.019 −0.019
(0.026) (0.026)

Vol * PC 0.070∗∗ 0.069∗∗
(0.024) (0.024)

Foc −0.086∗∗∗ −0.085
(0.018) (0.123)

Foc * PR −0.084∗∗ −0.084∗∗
(0.027) (0.027)

Foc * PC 0.018 0.018
(0.022) (0.022)

Con −0.012 −0.010
(0.014) (0.053)

Con * PR 0.065∗∗ 0.065∗∗
(0.021) (0.021)

Con * PC −0.046∗ −0.046∗
(0.020) (0.020)

Selection equation Vol Foc Con

D1V ,D1F ,D1C 0.135∗∗∗ 0.077+ 0.249∗∗∗
(0.024) (0.043) (0.036)

D2V ,D2F ,D2C 0.076∗∗∗ 0.052∗ 0.154∗∗∗
(0.016) (0.026) (0.038)

D3V ,D3F ,D3C 0.061∗∗∗ 0.003 0.038
(0.014) (0.017) (0.027)

D4V ,D4F ,D4C 0.011 0.004 0.045
(0.012) (0.015) (0.030)

D5V ,D5F ,D5C 0.036∗ −0.014 0.039
(0.017) (0.014) (0.028)

Error correlations

ρV D, ρFD, ρCD −0.025 −0.010 0.007
(0.038) (0.088) (0.040)

ρV F , ρV C 0.341∗∗∗ −0.343∗∗∗
(0.043) (0.045)

ρFC 0.066
(0.055)

Total effect routine patients

Vol −0.033 0.005
(0.030) (0.070)

Foc −0.171∗∗∗ −0.169
(0.024) (0.123)

Con 0.053∗∗ 0.055
(0.019) (0.054)

Total effect complex patients

Vol 0.057+ 0.093
(0.030) (0.068)

Foc −0.068∗∗ −0.067
(0.022) (0.126)

Con −0.058∗∗ −0.056
(0.019) (0.054)

Effect differences

∆ Vol (PR, PC) −0.089∗∗ −0.088∗∗
(0.029) (0.029)

∆ Foc (PR, PC) −0.103∗∗∗ −0.102∗∗∗
(0.019) (0.029)

∆ Con (PR, PC) 0.111∗∗∗ 0.111∗∗∗
(0.025) (0.025)

Observations 197,921 197,921
Segments-in-hospitals 1,970 1,970

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10
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12. Alternative model specifications
12.1. Standard errors clustered at the hospital level

n our main model, we clustered standard errors at the segment-in-hospital level. This is in line with

the assumption that patients, who receive service in one disease segment (such as ischemic heart

diseases) are independent from patients, who receive service in another disease segment (such as

malignant neoplasm of digestive organs) despite being admitted to the same hospital. However,

even though the degree of dependence is arguably higher within a hospital-segment than across

hospital-segments, we cannot neglect residual dependency at the hospital level. Therefore, we test

the robustness of our results and cluster standard errors at the hospital level (Table 26). The

significance levels concerning the total effects and effect differences between routine and complex

patients remain in line with the results reported in the paper, only for the differential volume-effect

it is slightly weaker (p=0.058 instead of p<0.05).

12.2. Mixed effect probit model

Our econometric models account for the hierarchy in our data by means of cluster-specific probit

models with an unobserved cluster-specific effect νsh. Given that our independent variables do not

vary at the segment-within-hospital level, we cannot estimate the cluster-specific effect as fixed

effect but rather treated it as random and integrated it out. As an alternative, we also estimated

a model that incorporated random effects explicitly, as a standard random effects equation, and

estimated probit models with random effects at the segment-in-hospital level, using the meprobit

command in STATA 14 and endogeneity controlled models with random effects by means of the

user written STATA command cmp (Roodman 2011). Table 27 provides the results. The results

concerning the total effects and effect differences between routine and complex patients remain in

line with the results reported in the paper.

12.3. Linear probability models

We estimated linear probability models as alternatives to probit models. However, these models

were a poor fit to our data and predicted a negative mortality probability for more than 20% of

the data. It is well known that linear probability models are severely biased and inconsistent when

they predict a substantial proportion of probabilities outside the unit interval and that the bias

grows with the proportion of predictions that fall outside this interval (Horrace and Oaxaca 2006).

The linear probability specification is therefore inappropriate for our sample and we refrain from

reporting the results.

12.4. Survival models with discharge as a competing risk

Since we consider mortality during an observation period of seven days, we may be concerned about

two types of censoring: Patients may die after the first seven days or patients may die outside of
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Table 26 Probit and simultaneous equations models: SE clustered at the hospital level

Mortality equation Probit Simultaneous equations model

Vol −0.106∗∗ 0.035
(0.036) (0.064)

Vol * PR 0.011 0.016
(0.046) (0.046)

Vol * PC 0.129∗∗ 0.127∗∗

(0.043) (0.042)
Foc −0.057∗ −0.007

(0.024) (0.051)
Foc * PR −0.196∗∗∗ −0.189∗∗∗

(0.029) (0.029)
Foc * PC 0.038 0.038

(0.030) (0.029)
Con −0.056∗ −0.144+

(0.023) (0.080)
Con * PR 0.094∗∗ 0.089∗∗

(0.033) (0.089)
Con * PC −0.071∗ −0.068∗

(0.032) (0.032)

Selection equations (IVs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.007) (0.009) (0.005)

D1V ,D1F ,D1C 0.460∗∗∗ 0.603∗∗∗ 0.323∗∗∗

(0.123) (0.160) (0.090)
D2V ,D2F ,D2C 0.127 0.225∗∗ 0.144

(0.102) (0.076) (0.090)
D3V ,D3F ,D3C 0.134∗ 0.115 0.165∗∗

(0.066) (0.076) (0.062)
D4V ,D4F ,D4C −0.061 −0.069 0.147∗

(0.062) (0.067) (0.074)
D5V ,D5F ,D5C 0.020 −0.024 −0.018

(0.071) (0.072) (0.065)

Error correlations

ρV D, ρFD, ρCD −0.109∗∗ −0.041 0.068+

(0.039) (0.029) (0.051)
ρV F , ρV C 0.462∗∗∗ −0.407∗∗∗

(0.075) (0.062)
ρFC 0.136∗

(0.060)

Total effect routine patients

Vol −0.094+ 0.051
(0.054) (0.075)

Foc −0.253∗∗∗ −0.196∗∗∗

(0.031) (0.057)
Con 0.038 −0.055

(0.029) (0.087)

Total effect complex patients

Vol 0.024 0.162∗

(0.047) (0.077)
Foc −0.018 0.032

(0.031) (0.058)
Con −0.127∗∗∗ −0.212∗

(0.033) (0.092)

Effect differences

∆ Vol (PR, PC) −0.118∗ −0.111+

(0.059) (0.058)
∆ Foc (PR, PC) −0.234∗∗∗ −0.228∗∗∗

(0.037) (0.037)
∆ Con (PR, PC) 0.165∗∗∗ 0.158∗∗∗

(0.041) (0.042)

Observations 265,133 265,133
Hospitals 60 60

Standard errors clustered on hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10
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Table 27 Mixed-effect probit and simultaneous equations models for seven-day mortality: Hospital-Segment RE

Mortality equation Probit Simultaneous equations model

Vol −0.111∗∗∗ −0.007
(0.033) (0.051)

Vol * PR 0.012 0.015
(0.037) (0.047)

Vol * PC 0.132∗∗∗ 0.130∗∗
(0.039) (0.050)

Foc −0.066∗∗ −0.022
(0.023) (0.050)

Foc * PR −0.187∗∗∗ −0.183∗∗∗
(0.031) (0.043)

Foc * PC 0.036 0.036
(0.031) (0.044)

Con −0.047∗ −0.090
(0.024) (0.058)

Con * PR 0.092∗∗ 0.090∗
(0.029) (0.041)

Con * PC −0.071∗ −0.069
(0.033) (0.046)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003∗∗∗ −0.002∗∗∗
(0.001) (0.001) (0.001)

D1V ,D1F ,D1C 0.460∗∗∗ 0.604∗∗∗ 0.323∗∗∗
(0.009) (0.007) (0.007)

D2V ,D2F ,D2C 0.127∗∗∗ 0.226∗∗∗ 0.144∗∗∗
(0.008) (0.006) (0.006)

D3V ,D3F ,D3C 0.134∗∗∗ 0.116∗∗∗ 0.165∗∗∗
(0.007) (0.006) (0.006)

D4V ,D4F ,D4C −0.061∗∗∗ −0.070∗∗∗ 0.147∗∗∗
(0.007) (0.006) (0.006)

D5V ,D5F ,D5C 0.020∗∗ −0.024∗∗∗ −0.017∗∗
(0.007) (0.006) (0.006)

Error correlations

ρV D, ρFD, ρCD −0.077∗∗ −0.035 0.036
(0.025) (0.026) (0.032)

ρV F , ρV C 0.462∗∗∗ −0.406∗∗∗
(0.004) (0.004)

ρFC 0.136∗∗∗
(0.004)

Total effect routine patients

Vol −0.099∗ 0.009
(0.040) (0.059)

Foc −0.253∗∗∗ −0.206∗∗∗
(0.030) (0.058)

Con 0.045 0.000
(0.028) (0.062)

Total effect complex patients

Vol 0.021 0.124∗
(0.041) (0.060)

Foc −0.030 0.013
(0.031) (0.056)

Con −0.118∗∗∗ −0.159∗
(0.032) (0.066)

Effect differences

∆ Vol (PR, PC) −0.120∗∗ −0.115∗
(0.046) (0.058)

∆ Foc (PR, PC) −0.223∗∗∗ −0.219∗∗∗
(0.037) (0.052)

∆ Con (PR, PC) 0.163∗∗∗ 0.160∗∗
(0.037) (0.051)

Random effects

σ2, σ 0.027∗∗∗ 0.164∗∗∗
(0.003) (0.010)

Observations 265,133 265,133
Groups 2,670 2,670

Standard errors in parentheses; controls included as per Table 2.*** p<0.001, ** p<0.01,
* p<0.05 + p<0.10.
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the hospital if they are discharged prior to day seven. While death after seven days constitutes

non-informative censoring and does not affect the seven-day mortality estimates, discharge prior to

Day 7 is informative because it is affected by the patient’s health status. We therefore replicate our

analysis with discharge as a competing risk within a discrete survival analysis model. In line with

Kuntz et al. (2015), we keep records of patients discharged prior to day t=7 in the data set. This

assumes that all patients discharged prior to day 7 would have survived had they stayed within

the hospital. As such, it renders our seven-day mortality estimation approach conservative (see

Kuntz et al. (2015) for details). Table 28 provides the results of the survival analysis. In line with

the main paper, we find partial effect for the volume-hypothesis - i.e. a significant effect difference

between routine and complex patient yet not a beneficial total effect for routine patients -, and

full support for our focus-hypothesis. Opposed to the main paper, the concentration-hypothesis is

no longer fully supported, the total effect for complex patients is no longer significant. However,

the effect difference between routine and complex patients still remains significant lending partial

support to our concentration-hypothesis.

12.5. Disentangling emergency and comorbidity effects

As previously outlined, we use admission type and the patient’s comorbidity burden to classify

different levels of patient complexity. One may therefore ask the question which of the two factors

is the dominant moderator of the independent variables. Is patient complexity more likely to be

caused by the admission type or by the comorbidity burden or by the combination of both? In

the main paper, our benchmark patients were either elective patients with a high comorbidity

burden or emergency patients with a low comorbidity burden. We now split the benchmark patients

into two categories: Benchmark I, containing high-comorbidity electives (BCom), and Benchmark

II capturing low-comorbidity emergencies (BEm). Pairwise comparison of the patient types then

allows us to disentangle the admission type from the comorbidity effect. The results are summarized

in Tables 29 and 30. The “Total effects...” panels in the second half of Table 29 show that the

volume effect remains insignificant for benchmark patients, independently of emergency (BEm)

or elective (BCom) types. As in Table 1 of the main paper, only complex patients (PC) show a

significant volume effect, with higher volume being associated with higher mortality. The focus

effect remains significant only for routine patients and the difference in the focus effects between

routine and non-routine patient remains highly significant (see Table 30, “Focus” panel, “PR” row).

Concentration, however, now has a significant beneficial effect on the emergency patients amongst

the benchmark patients. This is entirely in line with our reasoning that concentration of patient

segments into single departments is particularly beneficial when there is less information available

for these patients, which is particularly relevant for emergency patients. While the coefficient for
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Table 28 Probit coefficient of death on day t, conditional on survival up to the end of day t-1

Mortality equation Probit Simultaneous equations model

Vol −0.075∗∗ 0.030
(0.025) (0.041)

Vol * PR 0.004 0.008
(0.031) (0.031)

Vol * PC 0.100∗∗∗ 0.099∗∗∗
(0.030) (0.030)

Foc −0.042∗ 0.026
(0.017) (0.040)

Foc * PR −0.153∗∗∗ −0.146∗∗∗
(0.029) (0.029)

Foc * PC 0.023 0.021
(0.025) (0.025)

Con −0.043∗ −0.025
(0.019) (0.052)

Con * PR 0.075∗ 0.072∗
(0.030) (0.030)

Con * PC −0.054∗ −0.051∗
(0.025) (0.025)

Day 1 0.142∗∗∗ 0.142∗∗∗
(0.016) (0.016)

Day 2 0.026 0.025
(0.020) (0.020)

Day 3 −0.021 −0.021
(0.020) (0.020)

Day 4 −0.082∗∗∗ −0.082∗∗∗
(0.021) (0.021)

Day 5 −0.098∗∗∗ −0.098∗∗∗
(0.021) (0.021)

Day 6 −0.154∗∗∗ −0.153∗∗∗
(0.022) (0.022)

Day 7 −0.183∗∗∗ −0.183∗∗∗
(0.023) (0.022)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.005)

D1V ,D1F ,D1C 0.458∗∗∗ 0.604∗∗∗ 0.320∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.127∗ 0.224∗∗ 0.142∗
(0.063) (0.074) (0.064)

D3V ,D3F ,D3C 0.133∗ 0.114 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.060 −0.070 0.148∗
(0.053) (0.064) (0.068)

D5V ,D5F ,D5C 0.019 −0.027 −0.017
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.075∗∗∗ −0.054∗ −0.001
(0.022) (0.022) (0.030)

ρV F , ρV C 0.460∗∗∗ −0.407∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.059)

Total effect routine patients

Vol −0.071∗ 0.038
(0.032) (0.045)

Foc −0.195∗∗∗ −0.120∗∗
(0.025) (0.046)

Con 0.032 0.475
(0.027) (0.056)

Total effect complex patients

Vol 0.025 0.129∗∗
(0.031) (0.047)

Foc −0.020 0.047
(0.023) (0.042)

Con −0.096∗∗∗ −0.076
(0.025) (0.057)

Effect differences

∆ Vol (PR, PC) −0.098∗ −0.091∗
(0.039) (0.038)

∆ Foc (PR, PC) −0.176∗∗∗ −0.167∗∗∗
(0.033) (0.033)

∆ Con (PR, PC) 0.129∗∗∗ 0.123∗∗∗
(0.036) (0.036)

Observations 2,088,469 2,088,469
Cluster 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10
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complex patients is larger in magnitude than the coefficient for emergency benchmark patients,

Table 30 shows that this difference is not statistically significant (“Concentration” panel, “BEm”

row, coeff = 0.020).
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Table 29 Probit and simultaneous equations model: splitting benchmark patients

Mortality equation Probit Simultaneous equations model

Vol −0.127∗∗ 0.010
(0.043) (0.063)

Vol * PR 0.038 0.043
(0.050) (0.050)

Vol * PC 0.151∗∗ 0.149∗∗
(0.048) (0.048)

Vol * BEm 0.035 0.036
(0.049) (0.048)

Foc −0.077∗ −0.022
(0.033) (0.058)

Foc * PR −0.184∗∗∗ −0.179∗∗∗
(0.045) (0.045)

Foc * PC 0.058 0.056
(0.042) (0.041)

Foc * BEm 0.050 0.047
(0.042) (0.041)

Con −0.014 −0.115
(0.036) (0.077)

Con * PR 0.048 0.046
(0.047) (0.047)

Con * PC −0.105∗ −0.101∗
(0.043) (0.043)

Con * BEm −0.084+ −0.081+
(0.045) (0.045)

Selection equations (Ivs) Vol Foc Con

DDV ,DDF ,DDC −0.023∗∗∗ −0.003 −0.002
(0.005) (0.006) (0.006)

D1V ,D1F ,D1C 0.460∗∗∗ 0.602∗∗∗ 0.324∗∗∗
(0.080) (0.096) (0.085)

D2V ,D2F ,D2C 0.127∗ 0.226∗∗ 0.144∗
(0.063) (0.074) (0.064)

D3V ,D3F ,D3C 0.133∗ 0.114 0.165∗∗
(0.057) (0.077) (0.061)

D4V ,D4F ,D4C −0.061 −0.070 0.147∗
(0.053) (0.063) (0.068)

D5V ,D5F ,D5C 0.020 −0.024 −0.018
(0.053) (0.074) (0.060)

Error correlations

ρV D, ρFD, ρCD −0.109∗∗∗ −0.042 0.075+
(0.031) (0.029) (0.042)

ρV F , ρV C 0.462∗∗∗ −0.406∗∗∗
(0.049) (0.051)

ρFC 0.136∗
(0.059)

Total effect low-comorbity electives (PR)

Vol −0.089∗ 0.053
(0.043) (0.061)

Foc −0.261∗∗∗ −0.200∗∗∗
(0.033) (0.062)

Con 0.034 −0.070
(0.036) (0.078)

Total effect high-comorbidity electives (BCom)

Vol −0.127∗∗ 0.010
(0.043) (0.063)

Foc −0.077∗ −0.022
(0.033) (0.058)

Con −0.014 −0.115
(0.036) (0.077)

Total effect low-comorbidity emergencies (BEm)

Vol −0.092∗ 0.046
(0.040) (0.058)

Foc −0.027 0.025
(0.029) (0.055)

Con −0.099∗∗ −0.196∗
(0.033) (0.076)

Total effect high-comorbidity emergencies (PC)

Vol 0.025 0.160∗
(0.043) (0.062)

Foc −0.019 0.034
(0.031) (0.058)

Con −0.119∗∗∗ −0.216∗∗
(0.035) (0.079)

Observations 265,133 265,133
Cluster 2,067 2,067

Standard errors clustered on segments-in-hospitals; controls included as per Table 2.***
p<0.001, ** p<0.01, * p<0.05 + p<0.10
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Table 30 Effect differences between patient types based on simultaneous equations model in Table 29

Volume
BCom BEm PC

PR 0.043 0.007 −0.106∗
(0.050) (0.046) (0.051)

BCom −0.036 −0.149∗∗
(0.048) (0.048)

BEm −0.114∗
(0.046)

Focus
BCom BEm PC

PR −0.179∗∗∗ −0.225∗∗∗ −0.234∗∗∗
(0.045) (0.041) (0.043)

BCom −0.047 −0.056
(0.041) (0.041)

BEm −0.009
(0.037)

Concentration
BCom BEm PC

PR 0.046 0.127∗∗ 0.147∗∗
(0.047) (0.047) (0.049)

BCom 0.081+ 0.101∗
(0.044) (0.043)

BEm 0.020
(0.040)

*** p<0.001, ** p<0.01, * p<0.05 +
p<0.10



Kuntz, Scholtes, Sülz Separate & Concentrate 53

References

Agency for Healthcare Research and Quality. 2015. Inpatient safety indicators. URL http://hcupnet.

ahrq.gov/IQIV21R3.htm. Last access: 2015-11-03.

Clark, JR. 2012. Comorbidity and the limitations of volume and focus as organizing principles. Medical Care

Research and Review 69(1) 83–102.

DIMDI - Deutsches Institut für Medizinische Dokumentation und Information. 2014. Ops. URL http:

//www.dimdi.de/static/de/klassi/ops/index.htm.
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