Risks to business and the economy from future pandemics

John Edmunds LSHTM

John.Edmunds@lshtm.ac.uk

National Risk Register of Civil Emergencies, 2017

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/at tachment_data/file/644968/UK_National_Risk_Register_2017.pdf

What are pandemics, and how do they arise?

Antigenic Drift (seasonal flu)

Antigenic Shift (pandemic flu)

Pandemics can also occur when a strain jumps species (perhaps via an intermediate host)

Jumping the "species barrier"

Image from www.ktis.fm/blogs/lisa/wp-content/swine-flu.bmp

Frequency of pandemics

- Difficult to determine from historical record
 - Flu not consistently reported as a disease
 - Small pandemics?
 - Large seasonal flu epidemics?
- 4 during the 20th century

"Influenza pandemics from 1510-2010." Morens, Taubenberger, Folker, & Fauci (2010)

Speed of spread and duration of pandemic:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/61252/the2009influenzapandemic-review.pdf

Cumulative % of population that report being ill

"Excess" deaths

Second wave Oct. 1918 - Jan. 1919

"Excess" deaths

~800 deaths in total associated with 2009 Pandemic (Cl 0-2275)

Green et al. PLoS One (2013)

Figure 1. Weekly number of all-cause deaths by age group. The weekly numbers of all-cause deaths are blue and the proportion of those deaths classified as pneumonia and influenza (ICD-10 J9-J18) are red. Weeks shaded grey correspond to significant influenza activity, defined as an influenza incidence proxy (influenza-like illness consultation rates multiplied by proportion of samples positive for influenza) greater than 0 for three consecutive weeks. Horizontal black lines correspond to weeks with significant RSV activity, defined as a RSV incidence proxy (acute bronchitis consultation rates multiplied by proportion of samples positive weeks. Orange circles correspond to weeks in which mean CET was below 0°C. doi:10.1371/journal.pone.0079360.g001

Age-specific "excess" deaths

4000 3500 3000 excess deaths 2500 2000 1500 1000 500 0 10-15 15-20 20-25 25-35 35-45 45-55 55-65 65-75 75+ <1 1-2 2-5 5-10 age group

Estimated impact on the economy

Computable General Equilibrium Model, UK Smith et al. Soc Sci Med (2011)

Fig. 1. Impact on GDP and exchange rate.

Universal Health Insurance Claims, Korea 2009 Kim et al. Scan J Inf Dis (2013)

Total estimated cost US\$ 1091 million

Direct Medical Costs
Direct Non-medical costs
Indirect costs

Total = 0.14% of GDP Overall CAR = 6.6%

Possible impact of mitigation strategies

Vaccines: pandemic specific vaccine

Groups to vaccinate	Only risk groups	Risk groups and 0–4 year olds	Risk groups and 5–14 year olds	Risk groups and 65+ year olds	Risk groups and 0–14 year olds	Risk groups and 0–14 and 65+ year olds
Number of cases preve	ented					
Mean	452,990	486,532	558,168	458,954	573,355	576,503
Median	422,175	448,900	511,930	427,119	524,127	526,817
10th centile	234,274	243,375	267,800	236,046	272,628	273,636
90th centile	710,252	777,693	908,364	721,682	938,357	944,056
Number of deaths prev	/ented					
wiedii	45	46	48	45	48	47
Median	43	44	40	40	40	46
10th centile	26	26	27	26	27	27
90th centile	67	68	72	67	73	73

Real-time modelling predictions

Jun 1

Aug 1

Oct 1

Dec 1

Feb 1

Apr 1

95%

75%

50%

25%

Baguelin et al. Vaccine (2010)

Antivirals (neurominidase inhibitors): alleviation of symptoms

Hayden et al. JAMA (1999)

Figure 2. Effect of Oral Oseltamivir Prophylaxis on Illness Following Experimental Influenza A/Texas/36/91(H1N1) Inoculation

The total symptom score area under the curve value was lower in the combined oseltamivir groups (n = 21) compared with placebo (n = 12); P = .02. Fourteen symptoms related to influenza were included in the score.

Dobson et al. Lancet (2015)

	Oseltamiviı N		[·] Placebo N				Time ratio (95% CI)	Interaction p value	Estimated median (h)		
									Oseltamivir	Placebo	Difference (95% CI)
Age (years)											
<65	1273	990 -	•	-			0.77 (0.71 - 0.83) ך	N 0 086	87.2	114.0	-26.8 (-36.6 to -16.
≥65	292	304			•		0·89 (0·76 - 1·05) ∫	2 0.000	147.9	165-2	-17·4 (-49·8 to 15·6)
High risk–1											
No	1186	879 —	•				ך (0.69 - 0.82) ך	N 0 0007	83.9	112.0	-28·1 (-38·7 to -18·2
Yes (≥65 years/	379	416	_		•		0·93 (0·81 - 1·07) ∫	20.0097	145.9	157-2	-11·2 (-37·5 to 18·2)
chronic i ll ness/C	OAD)										
High risk–2											
No	1018	752 —	•				ך (0.69 – 0.82) ך	0.041	82.3	109.7	-27·3 (-38·9 to -17·0
Yes (≥50 years/	547	543		•		_	0·88 (0·78 - 0·99) ∫	> 0.041	129.8	147.9	-18·1 (-39·7 to 5·1)
chronic i ll ness/C	OAD)										
Time since influ	venza onset (h)									
<24	727	578			_		0·81 (0·73 - 0·90) ጊ	0.66	95.8	118.4	-22.6 (-36.8 to -8.2)
≥24	838	717	•				0·78 (0·71 - 0·86) ∫	> 0.00	98.9	126.3	-27·4 (-41·4 to -13·2
Total symptom	score										
<14	665	590 ┥	•				0·74 (0·66 – 0·82) ך	0.000	77.5	105.2	-27·7 (-41·2 to -14·2
≥14	884	692		•			ل (0.76 - 0.92) ل	> 0.096	114·7	137.9	-23·1 (-37·3 to -8·2)
Virus type											
A	1373	1162					0·78 (0·72 - 0·84) ך	0.10	94·7	121·3	-26·5 (-36·6 to -15·7
В	183	125			•		→ 0.91 (0.73-1.13) ∫	> 0.19	122.3	134.1	-11.8 (-44.7 to 23.6)
					1						
		0.68	0.8		0.9	1	1.11				
			Favours oselta	mivir		Favour	s placebo				
					Time	ratio (0E% C					

Figure 3: Subgroup analyses for time to alleviation of all symptoms in the intention-to-treat infected population

COAD=chronic obstructive airways disease. Estimated median (h)=estimated median time to alleviation of all symptoms from accelerated failure time model adjusted for trial. Diff (95% CI)=the difference in the estimated medians with bootstrap 95% CI.

ITT analysis: median times to alleviation = 97.5 h for oseltamivir and 122.7 h for placebo

Antivirals (neurominidase inhibitors): complications and hospitalisations

Figure 4: LRTC, intention-to-treat infected, and intention-to-treat population LRTC=lower respiratory tract complications. Events=number of participants who had one or more events. *No events in oseltamivir group. The trial still contributes to the overall estimates.

Dobson et al. Lancet (2015) 9 RCTs included in individual-level

meta-analysis

Figure 5: Admittance to hospital, intention-to-treat infected, and intention-to-treat population Events=number of participants who had one or more events. *No events in oseltamivir group. The trial still contributes to the overall estimates.

Antivirals (neurominidase inhibitors): hospitalisations

Adults

Figure 5: Oseltamivir versus placebo for treatment. Hospital admission in adult treatment (safety population).

	Oseltar	nivir	Place	bo	Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
M76001	9	965	4	482	17.2%	1.12 [0.35, 3.63]	
WV15670	1	484	2	235	4.1%	0.24 [0.02, 2.66]	
WV15671	6	411	1	204	5.3%	2.98 [0.36, 24.57]	
WV15707	2	17	1	9	4.6%	1.06 [0.11, 10.15]	
WV15812MV15872	9	199	9	202	29.0%	1.02 [0.41, 2.50]	
WV15819MV15876MV15978	9	362	11	373	31.4%	0.84 [0.35, 2.01]	
WV16277	2	225	4	226	8.3%	0.50 [0.09, 2.71]	
Total (95% CI)		2663		1731	100.0%	0.92 [0.57, 1.50]	•
Total events	38		32				
Heterogeneity: Tau ² = 0.00; Chi ²							
Test for overall effect: Z = 0.34 (P = 0.73)							Favours oseltamivir Favours placebo

Jefferson et al. BMJ (2014)

20 RCTs included in individuallevel meta-analysis

Children

Figure 6: Oseltamivir versus placebo for treatment. Hospital admission in child treatment (safety population).

	Oseltan	nivir	Placebo		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI		
NV16871	1	165	1	164	13.2%	0.99 [0.06, 15.76]			
WV15758	4	342	3	353	45.3%	1.38 (0.31, 6.10)			
WV15759MW15871	7	170	2	165	41.5%	3.40 [0.72, 16.11]	+		
Total (95% CI)		677		682	100.0%	1.92 [0.70, 5.23]	•		
Total events	12		6						
Heterogeneity: Tau ² = (0.00; Chi ^z								
Test for overall effect: Z	Z = 1.27 (P	Favours oseltamivir Favours placebo							

School closure

Prior to 2009 some data to suggest that mass school closure could interrupt transmission

- Teacher's strike
- Holiday periods

– etc

Cauchemez et al. (2008) Nature 452, 750-754

School closure & behaviour change: changes in contact patterns

Flusurvey is an online survey of influenza-like-illness, launched during 2009 pandemic

- Participants asked to report # people met in previous day
- Over 9000 reports during pandemic

Eames et al. PLoS Comp Biol (2012)

School closure & behaviour change: changes in contact patterns

Fit age-structured model to incidence data

- transmission rate per encounter
- seeding of infection & holiday timing
- scaling factor for asymptomatic/mild

Summary of interventions for pandemic flu

Vaccines

- Pandemic specific vaccines available too late to have major impact. APA in place.
- Pre-pandemic vaccines need to guess the strain. Limited stockpile.
- Universal vaccines not available

Antivirals

• Probably effective at reducing illness and severe disease. Stockpiled.

School closure

- Probably effective at delaying an epidemic, but very disruptive and costly Antibiotics
- Probably effective at preventing some mortality and morbidity. Buffer stocks.
 Travel restrictions
- Probably ineffective and very disruptive.
 Mask wearing by the public
- Probably limited or no impact.

Other pandemic threats

Other pandemic threats: respiratory and close contact

Avian and swine influenzas

- Significant risk
- Monitored

Other respiratory viruses, such as ^{*} coronaviruses e.g. SARS and MERS, adenoviruses, enteroviruses, etc

• Significant risk

Other close contact, highly pathogenic viruses, e.g. Ebola, Nipah etc.

- Heightened awareness & surveillance
- New vaccines, antivirals being developed
- Instability increases risk

https://apps.who.int/iris/bitstream/handle/10665/325242/SITREP_EVD_DRC_UGA_20190612-eng.pdf?ua=1

Other pandemic threats: sexual and blood-borne

Virus

• HIV-like?

Bacteria

• Antibiotic resistant gonorrhea

Other pandemic threats: vector-borne diseases

Fig. 1 | **Reconstruction of** *Ae. albopictus* **and** *Ae. aegypti* **spread. a**-**c**, Spread of *Ae. albopictus* (**a**) and *Ae. aegypti* (**b**) in the United States, and spread of *Ae. albopictus* in Europe (**c**). Estimates of speed of spread in km per year are based on thin spline regression on mosquito observations since their earliest detection in each continent. Red indicates fast dispersal whereas yellow and white indicate slower spread velocity measured in km per year (see legend below **b**). Areas highlighted in grey have no reported mosquito presence. **d**-**f**, Summaries of the speed of dispersal of *Ae. albopictus* (**d**) and *Ae. aegypti* (**e**) spread in the United States and of *Ae. albopictus* spread in Europe (**f**) starting from their date of first detection until 2017. The red line indicates the average velocity per year across all districts using the thin spline regression model.

Kraemer et al. Nature Microbiology (2019)

Pandemics: changing risks?

• Influenza

- Risk of pandemic largely unchanged
- No significant new technologies over last 10 years, no new technologies on horizon
- Other respiratory / close contact viruses
 - Highly likely to lead to future pandemics: risk increasing due to interconnectedness
 - Fewer countermeasures
- Other highly-pathogenic direct-contact viruses, e.g. Ebola
 - Heightened awareness and new countermeasures being developed
 - Health system failures are the greatest risk
- HIV
 - Huge gains over the last 10-20 years. Sustainable?
- Vector-borne diseases
 - **Arboviruses**: pandemics occurring at the moment (zika, chikungunya) and others expanding range (dengue, yellow fever?)
 - Difficult to control, vaccines being developed for some
 - Malaria: huge gains over recent years, stalled partly due to increasing resistance