Cambridge Centre for Risk Studies

Research Showcase 21 June 2015

CAMBRIDGE BANKING MODEL

Dr Olaf Bochmann Research Associate, Centre for Risk Studies Dr Fabio Caccioli Dept of Computer Science, University College London

Centre for Risk Studies

S111 7

 $\cos(2x)$

 $= \sin(x)$

Cambridge Banking Model

Olaf Bochmann¹ Fabio Caccioli²

 $^1 {\rm University}$ of Cambridge — Centre for Risk Studies

²University College London — Department of Computer Science

O.Bochmann@cam.ac.uk

June 21, 2015

Centre for Risk Studies

Overview

Stress Test Framework Financial Network Model **Balance Sheets** Loss in Equity Suffered Loss in Equity Induced to the System **Distress Propagation Circle** Asset Losses Inter-Bank Losses Fire Sale Network reconstruction Fitness Model Exposure Volume Allocation

Stress Test Scenarios

n institutions (banks)

Α 0.3 0.4 В 0.4 0.2 0.8 0.1

Banks can invest in n-1 institutions

Banks can invest in n-1 institutions

Assets (liabilities) can be external or inter-bank, with totals as

$$A_i^e = \sum_{k=1}^m A_{ik}^e$$
 and $A_i^b = \sum_{j=1}^n A_{ij}^b$

ଚରଙ

Balance Sheets

State Variables

- $E_i(t)$ equity of institution *i* at time *t*
- $A_i(t)$ total assets of institution *i* at time *t*
- $D_i(t)$ total liabilities of institution *i* at time *t*
 - A_{ij}^b amount institution i lends to institution j
 - $\begin{array}{l} A^e_{ik} \text{ amount institution } i \\ \text{ invests in asset } k \end{array}$
 - $l_i(t)$ leverage of institution *i* at time *t*

Assets	Liabilities		
$A^{e} = 0.4$	$D^{b} = 0.6$		
$A^{b} = 0.7$	Ε		

Table: Balance Sheet of Bank A

The balance sheet is defined as $A_i^e(t) + A_i^b(t) = A_i(t)$ $= D_i(t) + E_i(t)$

Leverage of a bank is the ratio of assets and equity

$$l_i(t) = \frac{A_i(t)}{E_i(t)}$$

 $\mathcal{O} \land \mathbb{C}$

Balance Sheets (cont.)

Financial System

- $l_i(t)$ leverage of institution *i* at time *t*
- $l_{ik}^{e}(t)$ external leverage of institution *i* with respect to asset *k* at time *t*
- $J_{ij}^{b}(t)$ inter-bank leverage of institution *i* towards institution *j* at time *t*
- $I_i^e(t)$ total external leverage of institution *i* at time *t*
- $l_i^b(t)$ total inter-bank leverage of institution *i* at time *t*

Leverage (disaggregated) of a bank is the sum of it's external and inter-bank leverage.

$$egin{aligned} &I_i(t)=rac{A_i^e(t)}{E_i(t)}+rac{A_i^b(t)}{E_i(t)}\ &=I_{ik}^e(t)+I_{ij}^b(t) \end{aligned}$$

 l_{ik}^{e} can be seen as elements of the adjacency matrix of an bi-partite external leverage network and l_{ij}^{b} of a mono-partite interbank leverage network. The totals would be the sum along the columns:

$$I_i^e = \sum_{k=1}^m I_{ik}^e$$
 and $I_i^b = \sum_{j=1}^n I_{ij}^b$

Loss in Equity Suffered

Distress or Vulnerability

- $h_i(t)$ cumulative relative equity loss of institution *i* at time *t*
- H(t) cumulative relative equity loss of of the financial system at time t

losses of banks relative to it's equity and with respect to a baseline at t = 0:

$$h_i(t) = \min \{1, rac{E_i(0) - E_i(t)}{E_i(0)}\}$$

with bank under distress for $h_i(t) \in (0,1] \forall t$ and default for $h_i(t) = 1$.

losses of the financial system relative to total equity and with respect to a baseline at t = 0 is the weighted average cumulative relative equity loss of each bank:

$$H(t) = \sum_{i=1}^{n} w_i h_i$$

= $\sum_{i=1}^{n} \frac{E_i(0)}{\sum_{j=1}^{n} E_j(0)} h_i$

Loss in Equity Induced to the System

Impact

DR_i global relative equity loss induced by the default of institution *i* DebtRank *DR_i* is the impact induced by the default of each bank individually on the system:

$$DR_k(t) = \sum_{i=1}^n h_i(T)E_i(0)$$

This is the exact solution for systemic risk as defined in BCBS [2013]

Distress Propagation Circle

Asset Losses

negative shock on the value of assets causes losses in banks, which is absorbed by equity.

Inter-Bank Losses

Inter-Bank Losses: distress from asset losses puts inter bank obligations under pressure. Those losses are again absorbed by equity.

Fire Sale

banks need to adjust their leverage to meet regulatory requirements by selling assets. The price impact leads to further pressure on asset prices. This closes the virtuous circle.

Asset Losses

Price Shock

- $p_k(t)$ unit price of asset k at time t
- $r_k(t)$ relative price (shock) of asset k at time t

a shock

$$r_k(1) = \frac{p_k(0) - p_k(1)}{p_k(1)} < 0$$

on the value of asset *k* reduces the value of the investment in external assets in bank *i* by

$$\sum_{k} r_{k}(1) A_{ik} = \sum_{k} r_{k}(1) I_{ik} E_{i} = E_{i} \sum_{k} r_{k}(1) I_{ik}$$

the loss needs to be compensated by reduction in equity

$$A_{ik}^{e}(0) - A_{ik}^{e}(1) = \sum_{k} r_{k}(1)A_{ik}^{e}(0) = E_{i}(0) - E_{i}(1)$$

individual and global relative equity loss at time t = 1 are:

$$h_i(1) = \min\{1, \sum_k l_{ik}r_k(1)\}$$
 and $H(1) = \sum_{i=1}^n w_ih_i(1)$

Inter-Bank Losses

Distress Propagation

 $V_t(A_{ij})$ market to market value of A_{ij} The distress that propagates from *j* into each of the lenders *i* is the relative loss with respect to the original face value

$$rac{A_{ij}-V_t(A_{ij})}{A_{ij}}=f(h_j(t-1)).$$

individual relative loss in equity:

$$h_{i}(t) = \frac{E_{i}(t) - E_{i}(0)}{E_{i}(0)} = \min\left\{1, \sum_{i \in S_{A}(t)} l_{ij}f(h_{i}(t-1))\right\}$$
$$= \left(l_{i}^{e} + \sum_{j} l_{ij}^{b}l_{j}^{e}\right)r(1)$$

where $S_A(t)$ is the set of active¹ nodes.

¹nodes that transmit distress at time t, as in Battiston etal. [2012] $\equiv \cdots \equiv -\infty \propto c$

Fire Sale

Price Impact

- Q_i quantity of assets of bank *i*
 - p shock price
 - $\begin{array}{l} \eta \;\; {\rm price \; impact} \\ {\rm factor} \end{array}$

Banks try to sell external assets in order to repay obligations to move to the original leverage:

$$egin{aligned} &I_i(0) = I_i(t) = rac{A_i^e(t) + A_i^b(t)}{E_i(t)} \ &= rac{(Q_i(0) + \Delta Q)\hat{p} + A_i^b(t)}{E_i(t)} \end{aligned}$$

price impact is linear (proportional to relative change in demand):

$$r(t) = \eta \frac{\Delta Q_i}{Q_i(0)} = \eta \frac{D_i(0)}{Q_i(0)\hat{p}} (l_i^e)^2 r(1)$$

relative loss in equity:

$$h_i(t) = \frac{E_i(t) - E_i(0)}{E_i(0)} = \left(l_i^e + \sum_j l_{ij}^b l_j^e\right) r(1) + \eta \frac{D_i(0)}{Q_i(0)\hat{p}} (l_i^e)^2 r(1)$$

(0.0	0.3	0.4	$\left(\begin{array}{c} 0.7 \end{array}\right)$
	0.4	0.0	0.1	0.5
	0.2	0.8	0.0	(1.0)
(0.6	1.1	0.5	

0.0	0.3	0.4	(0.7)
0.4	0.0	0.1	0.5
0.2	0.8	0.0	(1.0)
0.6	1.1	0.5	

$\left(\right)$	0.0	0.3	0.4	(0.7)
L	0.4	0.0	0.1	0.5
	0.2	0.8	0.0	1.0

		$\left(\begin{array}{c} 0.7 \end{array}\right)$
		0.5
		(1.0)

Quiz

Why are this two matrices similar?

(0.0	0.2	0.5	0.0	0.3	0.4	١
	0.5	0.0	0.0	0.4	0.0	0.1	
	0.1	0.9	0.0	0.2	0.8	0.0	

Why are this two matrices similar?

$$\begin{pmatrix} 0.0 & 0.2 & 0.5 \\ 0.5 & 0.0 & 0.0 \\ 0.1 & 0.9 & 0.0 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.5 \\ 1.0 \end{pmatrix} \begin{pmatrix} 0.0 & 0.3 & 0.4 \\ 0.4 & 0.0 & 0.1 \\ 0.2 & 0.8 & 0.0 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.5 \\ 1.0 \end{pmatrix}$$
$$\begin{pmatrix} 0.6 & 1.1 & 0.5 \end{pmatrix} \begin{pmatrix} 0.6 & 1.1 & 0.5 \end{pmatrix}$$

Both matrices have the same sum over rows and columns

- no unique mapping between marginals and exposure
- possible networks range from maximum entropy to minimum density (e.g. diversification vs. costs for relationships)

Fitness Model

 x_i^{in} lending propensity

 x_i^{out} borrowing propensity

p_{ij} exposure probability

Lending and borrowing propensity is the relative exposure

$$x_i^{in} = rac{A_i}{\sum_j A_j} ext{ and } x_i^{out} = rac{L_i}{\sum_j L_j}$$

Fitness model applied to interbank network we assume x_i to be the fitness level.

The probability that bank i lends to bank j is :

$$p_{ij} = \frac{z x_i^{in} x_j^{out}}{1 + z x_i^{in} x_j^{out}},$$

where z is a free parameter. The total number of links is equal to the expected value $\sum_{i} \sum_{j \neq i} p_{ij}$

[De Masi et al., 2006]

Network reconstruction (cont.)

Exposure Volume Allocation

 π_{ij} average relative exposure

$$\pi_{ij} = \frac{1}{2} \left(x_{ij}^{in} + x_{ij}^{out} \right)$$

Constraint: sum of exposures equal total assets of bank *i*

$$1 = \sum_j \pi_{ij}$$

Interactive prop. fitting algorithm: estimate the relative exposure π_{ij} iterating (1) and (2).

Stress Test Scenarios

Trigger by Asset Shock

Shock on assets causes losses in banks; losses propagate to the inter-bank market, spread across the network causes further losses. Feedsback on asset prices.

Historic examples:

- > The Tulip and Bulb Craze (1637)
- South Sea Bubble (1720)
- Subprime Mortgage Crisis (2008)

Trigger by Bank Default

Banks fail and default on their obligations. Losses propagate via inter-bank and common asset holdings. Feedback on prises.

Historic examples:

- Jay Cooke & Company crisis (1873)
- Banker's Panic (1907)
- Great Depression (1929)

References

- S. Battiston, M. Puliga, R. Kaushik, P. Tasca, and G. Caldarelli. Debtrank: Too central to fail? financial networks, the fed and systemic risk. *Scientific Reports*, 2(541), 2012.
- BCBS. Global systemically important banks: updated assessment methodology and the higher loss absorbency requirement. Technical report, BIB, 2013. URL http://www.bis.org/publ/bcbs255.htm.
- G. De Masi, G. Iori, and G. Caldarelli. Fitness model for the italian interbank money market. *Phys Rev E Stat Nonlin Soft Matter Phys*, 74(6 Pt 2): 066112, Dec 2006.
- E. R. Tufte. *The visual display of quantitative information*. Graphics Press, Cheshire, Conn., 2nd ed edition, 2001. ISBN 0961392142.

The End