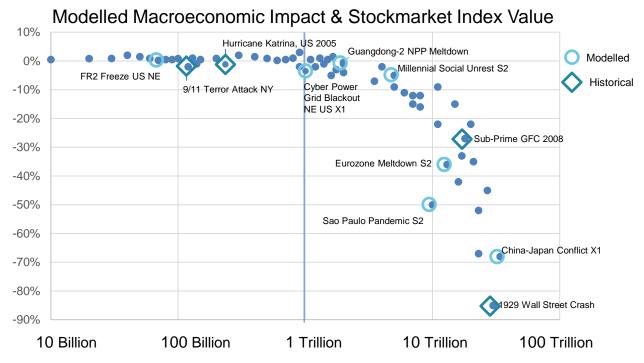


How Bad Could it Get? Identifying Trillion Dollar Scenarios

Centre for Risk Studies


Simon Ruffle

Director of Research & Innovation Cambridge Centre for Risk Studies

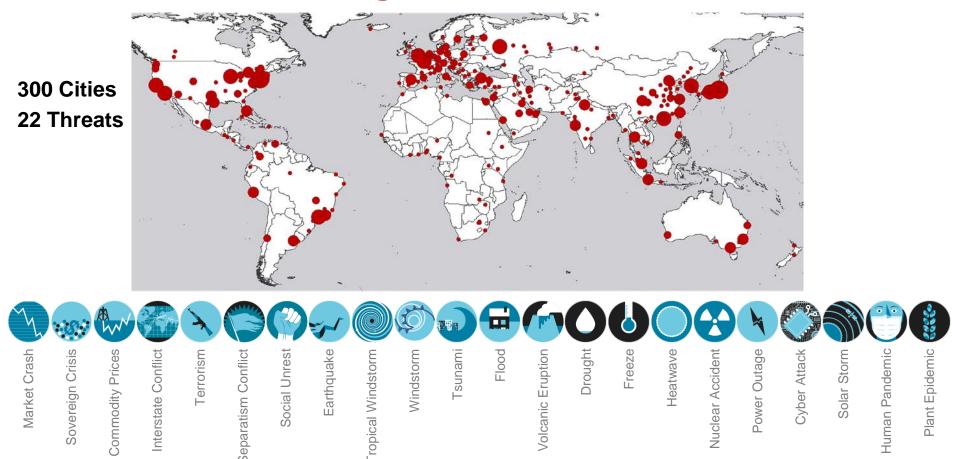
Defining ALL the Trillion Dollar Event Scenarios

- The economy is relatively robust to minor and localized shocks
- A shock that destroys a trillion dollars or more of economic output is sufficiently large to trigger significant stockmarket equity devaluations
 - It becomes systemic and impacts connections and wider scale relationships
- Our objective to define all the likely causes of trillion dollar shocks to the global economy in a scenario event set

Stockmarket
Shock
Reduction of S&P500
Index in One Quarter

\$ Economic Output Loss from Event

Primary Trigger


How One Shock Might Cascade into Another

Consequential Threat

		Consequential Inreat																					
		Market Crash	🐔 Sovereign Crisis	Price Shock	Interstate War	Terrorism	Separatism	Social Unrest	🐔 Earthquake	Volcanic Eruption	💮 Tropical Windstorm	Temperate Windstor	Flood	Tsunami	O Drought	Freeze	Heatwave	Power Outage			Nuclear Accident		📷 Plant Epidemic
Finance,	Market Crash 🚳	4	3	3	2	3	2	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Economics	Sovereign Crisis 🧟	3	4	3	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
& Trade	Price Shock	2	2	4	2	2	2	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Geopolitics	Interstate War 💌	3	3	3	4	3	3	3	1	1	1	1	1	1	1	1	1	2	3	1	2	2	2
& Security	Terrorism 🔇	2	2	2	2	4	3	2	1	1	1	1	1	1	1	1	1	2	2	1	2	2	2
	Separatism 🏽	2	3	3	3	3	4	3	1	1	1	1	1	1	1	1	1	2	2	1	2	1	1
	Social Unrest 🛨	2	2	2	2	3	3	4	1	1	1	1	1	1	1	1	1	2	2	1	2	1	1
Natural	Earthquake 🦪	2	2	2	1	1	1	2	0	0	1	1	1	3	0	0	0	3	0	0	3	2	1
Catastrophe	Volcanic Eruption 🌈	2	2	2	1	1	1	2	0	0	0	0	0	0	0	2	0	2	0	0	0	2	1
& Climate	Tropical Windstorm 🧶	2	2	2	1	1	1	1	0	0	0	0	3	0	0	0	0	3	0	1	1	1	0
Te	mperate Windstorm 💇	1	1	1	1	1	1	1	0	0	0	0	2	0	0	1	0	3	0	1	0	0	0
	Flood	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	2	0	0	1	2	0
	Tsunami 🥡	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	2	0	0	3	0	0
	Drought O	-	2	3	2	1	1	2	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
	Freeze		1	2	1	0	0	2	0	0	0	0	0	0	0	0	0	3	0	1	1	1	1
	Heatwave (1	1	1	2	1	2	2	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
Technology	Power Outage N	1	2	2	1	0	0	2	1	1	1	1	1	1	1	1	1	4	0	0	2	1	1
& Space	Cyber Attack		2	1	2	0	1	2	0	0	0	0	0	0	0	0	0	3	4	0	2	0	0
	Solar Storm		2	2	0	0	0	2	0	0	0	0	0	0	0	1	1	3	0	0	2	0	0
	Nuclear Accident		2	1	2	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
Health	Human Epidemic		3	3	1	1	0	2	1	1	1	1	1	1	1	1	1	2	1	1	1	2	0
& Humanity	Plant Epidemic 📵	2	2	3	2	1	2	2	0	1	0	0	0	0	1	1	1	0	0	0	0	0	2

- No causal linkage
 No significant ability to exacerbate
- No causal linkage, but would exacerbate consequences if they occur
- Weak potential to trigger threat occurrence
- 3 Strong potential to trigger threat occurrence
- Ability to trigger
 Other threats within same type class

Cambridge Global Risk Index

- For each threat and each city we model the effects of Local Impact Severities (LIS):
- Estimated loss to the GDP economic output of each city from 3 levels of severity

A Scenario is Defined By...

Interstate Conflict Scenario: IC04

Name: Saudi Arabia & Iran

Description: Bilateral border conflict

between two medium powers

	Local Im	pact Severities (\$US bn)
--	----------	-------------------	----------

IC1 (small)

City mobilized for war, but not attacked; mobilization switches civilian commerce to military production; population gripped by fear, consumer demand drops, parts of population flees. Investor confidence is affected; Conflict lasts a

IC2 (medium)

City suffers sporadic attack from occasional missiles or aerial bombardment, possible damage to city infrastructure from military cyber attack; City is mobilized for war; significant emigration of population from city. Investors withdraw

IC3 (large)

City is the target of strategic bombing by enemy forces, destroying industrial and commercial output and military facilities in the city; Major emigration by population. Possible rebuilding afterwards by major injection of capital. Conflict lasts 3 years.

		Investor confidence is	population from city.	major injection of capital.		
CRS City ID City Name		affected; Conflict lasts a year.	Investors withdraw	Conflict lasts 3 years.		
SAU_ARI	Riyadh	43.6	224.6	391.8		
SAU_JED	Jeddah	42.4	218.6	381.0		
IRN_TER	Tehran	29.2	167.4	296.4		
IRN_KHR	Mashhad	9.3	53.8	95.0		
IRN_ISF	Isfahan	6.2	35.9	63.4		
IRN_34807	Karaj	5.4	31.4	55.4		
IRN_AEK	Tabriz	5.4	31.2	55.0		
IRN_FAR	Shiraz	4.7	27.4	48.3		
IRN_KHZ	Ahvaz	3.8	21.8	38.4		
IRN_QOM	Qom	3.7	21.5	37.8		
IRN_38338	Kermanshah	3.0	17.6	31.0		

Total GDP@Risk (\$US bn)
Estimated Return Period

1,009 600

Subject Matter Specialists and Collaborators

Finance, Economics & Trade

Cambridge Centre for Financial History Dr. Duncan Needham, *Director* FNA
Financial Network
Analytics Ltd.
Dr. Kimmo Soramaki. CEO

Office of Financial Research U.S. Federal Reserve

Dr. Mark Flood. Director

Keith Church, Senior Economist

Geopolitics & Security

Richard Hartley CEO
Joshua Wallace, Product Director

International Centre for Political Violence and Terrorism Research

Prof. Rohan Gunaratna. Director

Natural Catastrophe & Climate

Cambridge Architectural Research Ltd

Dr. Robin Spence, *Director*

CatInsight

Dr. Richard Dixon, Meteorologist

Technology & Space

Computer Laboratory

Cambridge Computer Labs
CyberCrime Centre

Prof Frank Stajano, Director

Antarctic Survey

Dr. Richard Horne, Director, Space Weather

Infrastructure Transitions
Research Consortium

University of Oxford Dr. Scott Thacker, *Infrastructure Systems*

Health & Humanity

Cambridge Infectious Disease Interdisciplinary Research Centre

Prof. James Wood, Chair, CID
Dr. Colin Russell, Royal Society Research Fellow

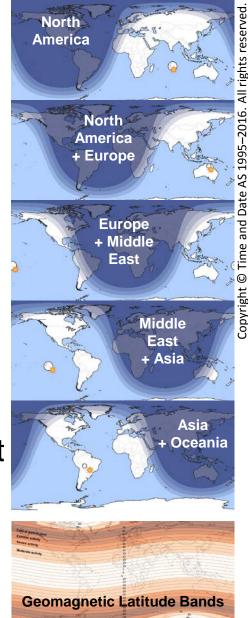
University of Cambridge Dept of Plant Sciences

Dr. Matt Castle Senior Research Fellow

AgRisk

Dr. Claire Souch, Product Manager

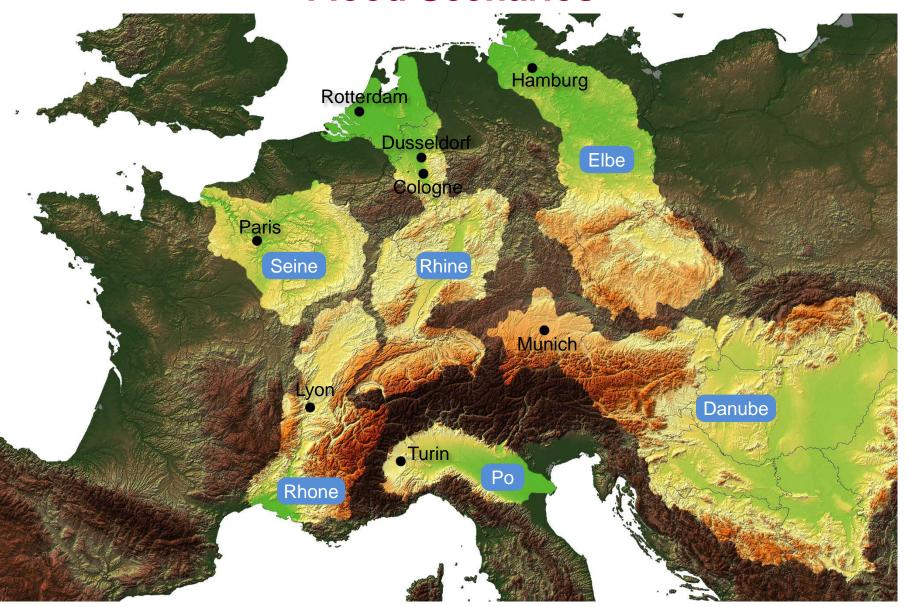
Centre for Risk Studies


How do we Devise the Scenarios?

		ID	Threat	Phase	Hazard Map	Severity Scale	Cause	Projection	Uncertainty
Nat	ural C	Catast	rophe & Climate						
	1.1	EQ	Earthquake	1	United States Geological Survey; GSHAP	Ms (Surface-wave Magnitude)	Natural	Constant	Low
	1.2	VE	Volcanic Eruption	1	Smithsonian Institute of Volcanology	VEI (Volcanic Explosiivity Index)	Natural	Constant	Medium
	1.3	HU	Tropical Windstorm	2	EM-DAT; Pacific Research Center; Munich Re	Saffir-Simpson CAT Hurricane Scale	Natural	CC Trend	Low
	1.4	WS	Temperate Windstorm	2	EM-DAT Windstorm Database	Beaufort Wind Scale	Natural	CC Trend	Low
	1.5	FL	Flood	1&2	UNEP/DEWA/GRID-Europe Flood Risk Rating	Depth and velocity of flood water	Natural	CC Trend	Low
	1.7	TS	Tsunami	2	NOAA NCDC Historical Tsunami Database	Run-up height	Natural	CC Trend	Medium
	1.8	DR	Drought	2	US National Center for Atmospheric Research	Palmer Drought Severity Scale	Natural	CC Trend	Medium
	1.10	FR	Freeze	2	Global Climate Zoning Map	Degree-Days below 0C	Natural	CC Trend	Medium
	1.11	HW	Heatwave	2	Global Climate Zoning Map	Degree-Days Above 32C	Natural	CC Trend	Medium
Fin	ancial	, Trac	le & Business						
	2.1	MC	Market Crash	1	IMF Banking Network Core-Periphery Designation	S&P500 Index reduction	Man-Made	Dynamic	High
	2.2	SD	Sovereign Crisis	1	S&P National Credit Ratings	% Devaluation of national currency	Man-Made	Dynamic	Medium
	2.3	OP	Commodity Prices	2	UN imported oil intensity of GDP output	% increase in oil price (Brent Crude)	Man-Made	Dynamic	Medium
Pol	itical,	Crime	e & Security						
	3.1	IW	Interstate Conflict	1	Cytora Interstate Conflict Scenario Set	War Magnitude Scale	Man-Made	Dynamic	High
	3.2	SP	Separatism Conflict	1	Encyclopedia of Modern Separatist Movements	Civil War Intensity (deaths)	Man-Made	Dynamic	Medium
	3.3	TR	Terrorism	1	IEP START Global Terrorism Index	Terrorism Severity Scale	Man-Made	Dynamic	Medium
	3.4		Social Unrest	2	Cytora Social Unrest Event Index	Social Unrest Severity Scale		Dynamic	Medium
Ted	chnolo	gy &	Space						
	4.1	РО	Power Outage	2	Nation Master Electrical Outage Report	City-Days of Outage	Man-Made	Constant	Medium
	4.2	CY	Cyber Attack	1	McAfee International Cyber Risk Report	Cyber Magnitude & Revenue@Risk	Man-Made	Dynamic	High
	4.3	SS	Solar Storm	2	US National Oceanic and Atmospheric Administration	US NOAA Space Weather Scale	Natural	Constant	High
	4.4	NP	Nuclear Accident	2	World Nuclear Association Information Library	Intntl Nuclear Events Scale (INES)	Man-Made	Constant	Low
Hea	alth &		onmental						
	5.1	HE	Human Pandemic	1	Emerging Infectious Diseases, Institute of Zoology	US CDC Pandemic Severity Index	Natural	Dynamic	Medium
	5.2	PΕ	Plant Epidemic	2	Wallingford Distribution Maps of Plant Diseases	Staple Crop (Wheat) Price Index	Natural	Dynamic	Medium

Solar Storm Scenarios

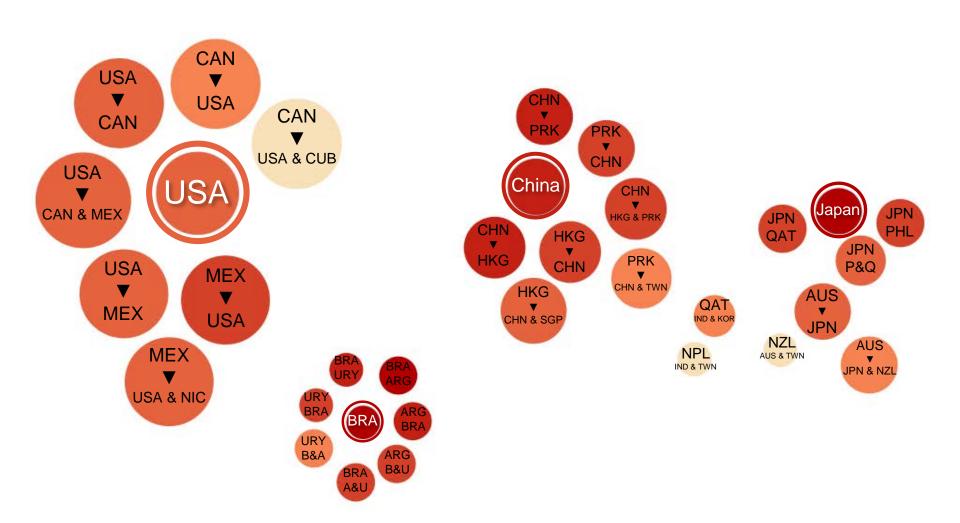
- Solar storms can hit different regions on the night side of Earth with different severity levels
 - Storms consist of charged particles from a Coronal Mass Ejection being accelerated towards Earth
 - Primary impacts are widespread blackouts caused by disruption to electricity network assets
- We consider five discrete 'night shadows' and six geomagnetic latitude bands
- Storm scenarios consider, for each of the night shadows, different severity levels at each geomagnetic latitude band
- We infer from historical events the likelihood of a storm impacting a geomagnetic latitude at a given severity level
 - Overall scenario probabilities are then estimated from bottom-up city-level probabilities



Flood Scenarios

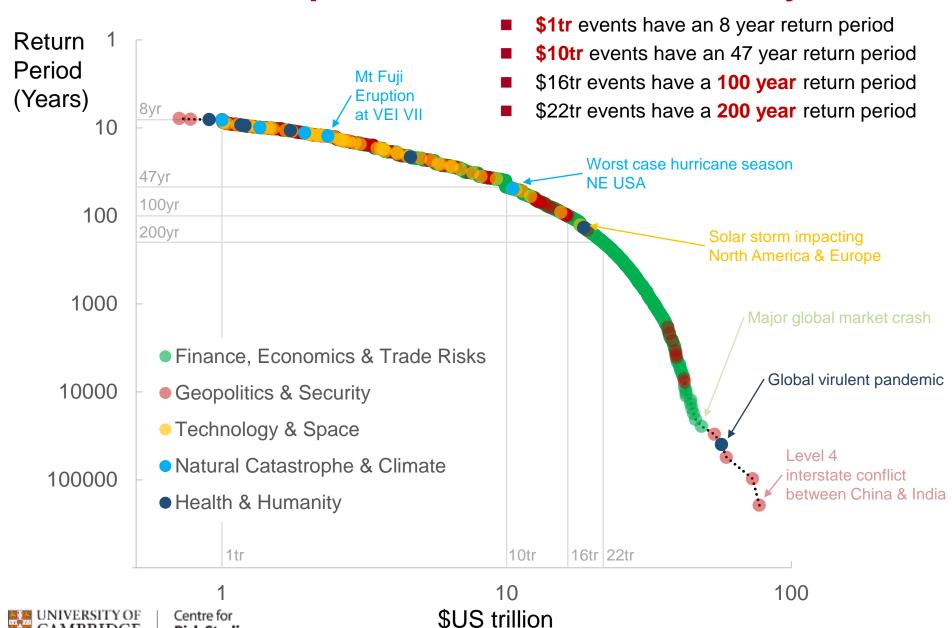
- Flood scenarios consider the potential for
 - Storm surge flooding
 - Riverine, pluvial and flash flooding related to extreme rainfall and snowmelt
 - And a combination of these causes
- Scenarios are defined either as single events or multiple geographically correlated events within a 12 month period
- Ten scenarios identified by exploration of correlation structures
 - Two single event scenarios
 - o Kanto Plain floods (Tokyo, Yokohama, Chiba, Kawasaki and Saitama)
 - North Sea floods (Amsterdam, the Hague, Rotterdam and London)
 - Eight multi event scenarios
 - Northeast USA floods (Boston, New York, Philadelphia, Baltimore and Washington DC)
 - California floods (San Diego, Los Angeles, San Jose and San Francisco)
 - West Europe floods (Paris, Rotterdam, the Hague, Lyon, Geneva, Turin, Milan, Dortmund, Cologne, Dusseldorf and Frankfurt)
 - o Pearl River Delta floods (Hong Kong, Shenzhen, Guangzhou and Dongguan)
 - Great Lakes floods (Toronto, Ottawa, Chicago and Detroit)
 - Lower Yangtze River floods (Shanghai, Changzhou, Hefei, Nanjing, Suzhou, Wuxi and Hangzhou)
 - Central Europe floods (Hamburg, Berlin, Prague, Munich, Vienna, Budapest, Bratislava, Ljubljana and Zagreb)
 - Bohai Economic Rim floods (Beijing, Dalian, Qingdao, Shenyang and Tianjin)

Flood Scenarios

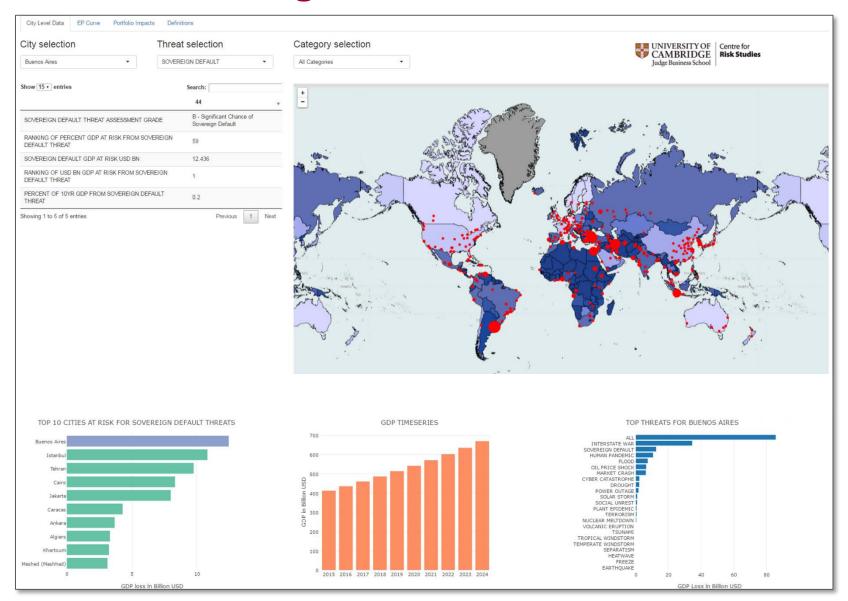


Sovereign Crisis Scenarios

- Scenarios are defined at a country-level
 - All cities within an affected country are assigned the same LIS severity level
- We first define a set of scenarios that consist of a single sovereign crisis
 - 5 year CDS spreads are used to estimate annual probability of crisis
 - E.g., Brazil is estimated to have a 3-4% annual chance of a sovereign crisis
- The UN Comtrade trade network is used to identify countries that could fall into crisis as a consequence of another country being in crisis
 - The probability of a cascading crisis is affected by the strength of bilateral trading relationships
 - E.g., a Brazilian crisis could trigger a crisis in Argentina
- Another set of scenarios then define double and triple sovereign crisis cascades



Sovereign Crisis Scenarios



Global Catastrophe Exceedance Probability Curve

Iudge Business School

Cambridge Global Risk Platform

Centre for **Risk Studies**

