Cambridge Judge Business School

Centre for Risk Studies 7th Risk Summit Research Showcase

Developing Scenarios for Managing Cyber Catastrophe Risk

Éireann Leverett

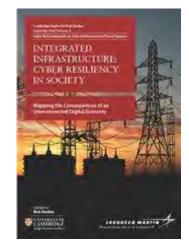
Senior Risk Researcher, Cambridge Centre for Risk Studies

20 June 2016 Cambridge, UK

Centre for **Risk Studies**

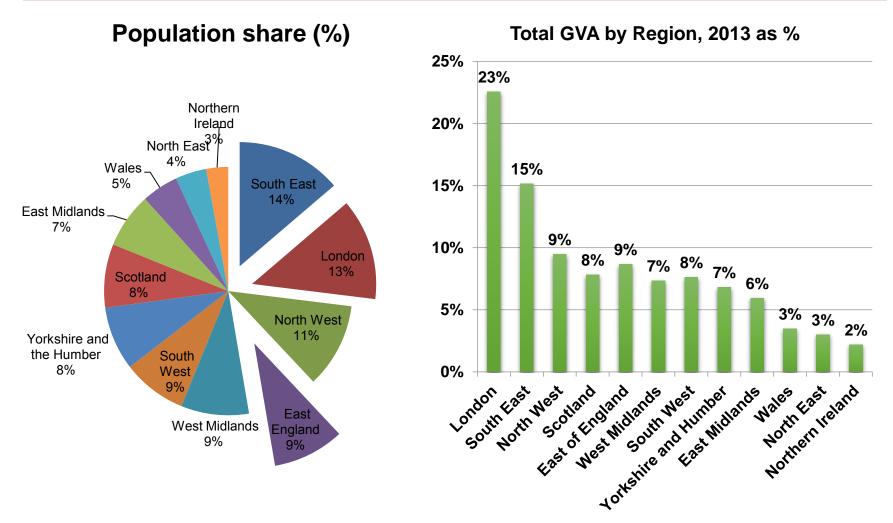
Business Blackout

- The Cambridge Centre for Risk Studies asked me what a catastrophic cyber attack would look like
- So we wrote one and then quantified the cost to the US economy of an extreme case
- We used the Lawton damage function to calculate direct costs
- We used Oxford Economics Model to calculate macroeonomic costs


Resilience in the UK

- What about a cyber attack on the distribution grid?
 - Our report is just out, and details the cost
 - We quantify the impact on GDP

Centre for Risk Studies

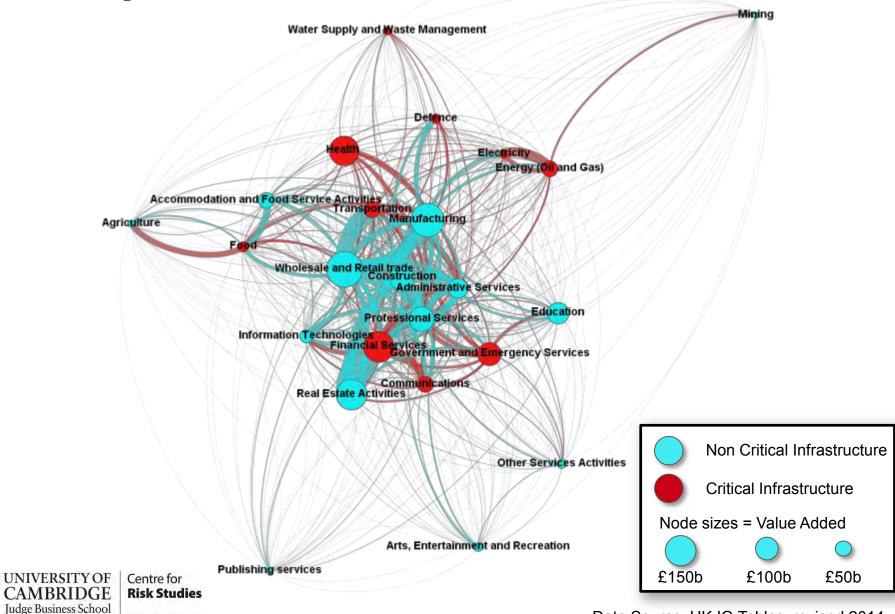

Judge Business School

- We estimate dependencies of other critical infrastructures
- We look at direct and indirect costs
- And the disruption of transport networks
 o Rail disrupted up into Scotland
- The effects of a power outage ripple into neighbouring areas, and over five years

Target Location

The South East, London and East of England selected as target locations

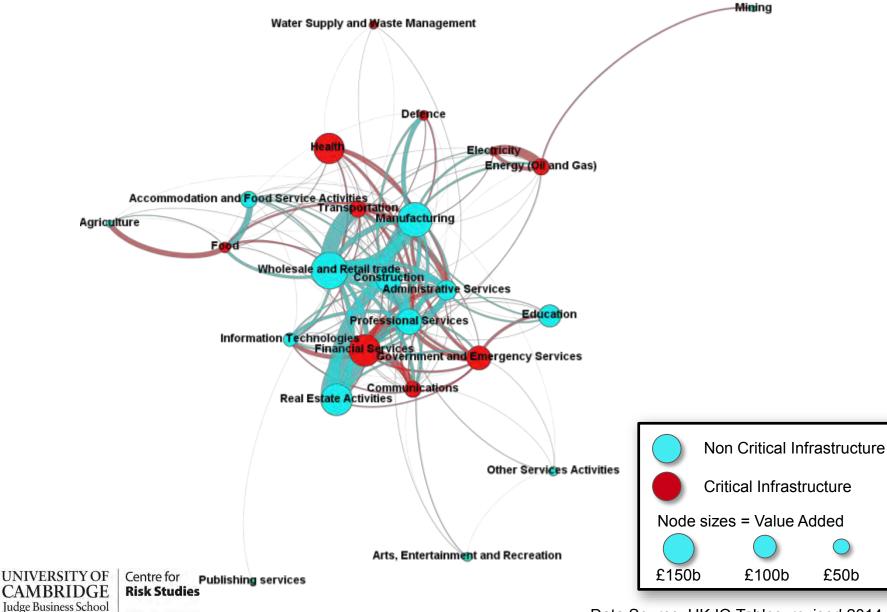
*GVA = gross value added, GVA is GDP excluding taxes and subsidies on production


es Source:

1. 2013 ONS population estimates. http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Population#tab-data-tables 2. Harari, Danei. Regional and Local Economic Growth Statistics. House of Commons Library. Dec 2014.

4

Network Linkages of UK Economic Sectors


All network edges

Data Source: UK IO Tables, revised 2014

Key Network Linkages of UK Economic Sectors

All edges > £1 billion

Data Source: UK IO Tables, revised 2014

Network Linkages of UK Critical Infrastructure Sectors

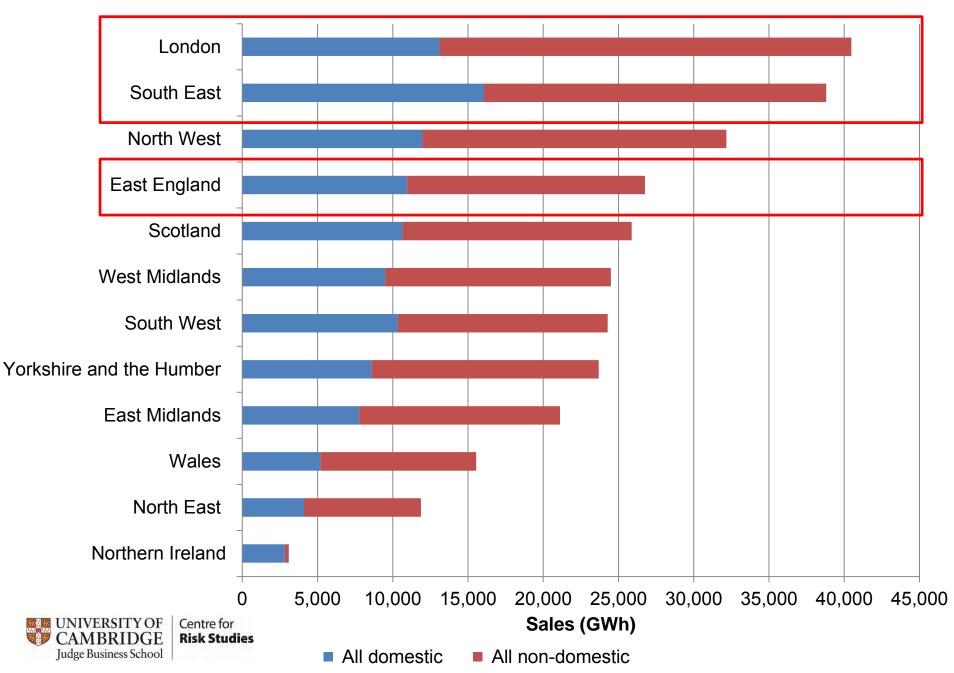
Only infrastructure to infrastructure edges

Water Supply and Waste Management Defence Electricity Energy (OII and Gas) Accommodation and Food Service Activities Manufacturing Agriculture Wholesale and Retail trade Construction Administrative Services Education **Professional Services** Information Technologie Financial Services Government and Emergency Services Communications Real Estate Activities Other Services Activities Mining

Non Critical Infrastructure Critical Infrastructure Node sizes = Value Added

£100b

£50b


Arts, Entertainment and Recreation

Data Source: UK IO Tables, revised 2014

£150b

Regional Electricity Consumption

Population Affected

Region	Population	Population share (%)	S1 coverage	S2 coverage	X1 coverage
South East	8,873,800	13.74%	2,519,228	3,323,551	3,949,286
London	8,538,700	13.22%	3,530,536	4,279,823	4,585,807
North West	7,133,000	11.04%	0	0	0
East England	6,018,400	9.32%	2,641,328	3,574,195	4,374,594
West Midlands	5,713,300	8.84%	0	0	0
South West	5,423,300	8.40%	0	0	0
Yorkshire and the Humber	5,360,000	8.30%	0	0	0
Scotland	5,347,600	8.28%	0	0	0
East Midlands	4,637,400	7.18%	0	0	0
Wales	3,092,000	4.79%	0	0	0
North East	2,618,700	4.05%	0	0	0
Northern Ireland	1,840,500	2.85%	0	0	0

	S1	S2	X1
Population affected (%)	13.45%	17.30%	19.99%
Rolling blackouts	6.73%	8.65%	9.99%

Making Your Own Stress Tests

- Choose a particular cyber attack
 - One that concerns you
 - Quantification is therapeutic
- Assume it happened
 - then work backwards to figure out how it could
- Assume things failed
 - Controls didn't work
 - That happens in reality
 - Identify why it might
- Now quantify the cost to your company
- Then quantify the cost to society
 - (if you dare)
 - Discuss what the company should pay
 - Discuss what gov't should pay
 - o Before for proactive
 - After for reactive

Much more could be shared across multiple companies than IS!

How to Choose a Disaster

Don't choose attacks that are common

- You already know what they cost
- Choose weird things that are plausible
 - Real world disasters ARE weird
- Guiding principles:
 - Destabilise the business
 - Lose 1/3 of a yearly revenue
 - Force multi-organisational collaboration and response
- This is not to be a scare monger, it serves to help you identify all the controls, existing and possible.
- It focuses hearts and minds to work on an existential threat.

Quantify the Losses

Think about:

- Lost revenues
- Incident Cost
- Forensic Cost
- Potential liability
- Legal Costs
- Regulatory Costs
- Hidden Costs

Get experts in your organisation to estimate

- When they don't agree
- · That's where you write scenario variants
- The variants contain the quantified disagreement
- This provides sensitivity testing:
 - Where uncertainty is greatest
 - Drives Expert engagement
 - Documents the debate

Discuss Mitigations

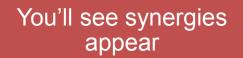
Now discuss what preventative measures would have helped. Don't forget to think about how much they cost.

Also think about post-incident measures. For example, it might be cheaper to quickly recover the grid than prevent all attacks.

UNIVERSITY OF CAMBRIDGE Judge Business School

Invent a Few More Disasters

Some mitigations have value in multiple scenarios


Come up with easy methods of estimating cost

So 'back of the envelope' a few other disasters

- Do a few 'cyber' because they get ignored
- Or conflated
- Do a few others too, flood, fire, terrorism
- The point is to do them quickly

See Which Mitigations Cross Disasters

For example IDS systems and traffic flows help against DDoS, but also against breach

Now use this for budgeting cost/benefit of security

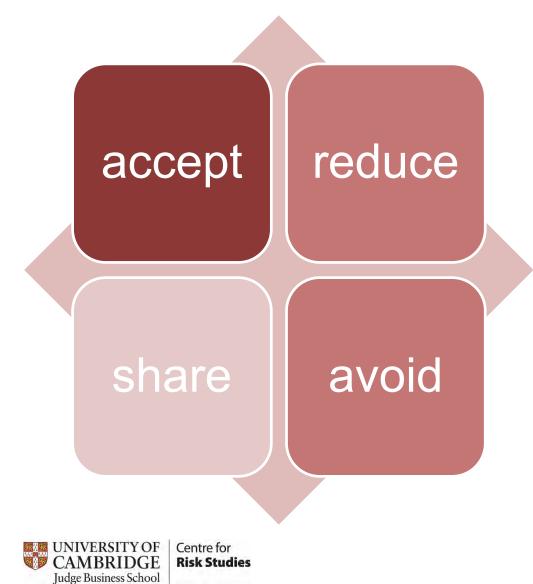
(Depending on where you deploy them)

Fund the Work that Helps All/Most Situations

Cost of impact matters

Without impact, you're only measuring effort to reduce risk, not risk reduction

However, with this rapid back of the envelope


You're now identifying mitigation synergies And estimating risk reductions

Better estimates will come the more you do this

But fast, quantified, comparable Is much better than yearly, accurate, and diverse Yes risks are different, but they have to be ranked to be managed.

Now We Can Manage Our Cyber Risks

Too much acceptance, a little reduction, a pinch of avoidance, and hardly any sharing.

53437	Time	Source	Destination	Proto
2213/	16:20:59.560037	192.168.1.4	192.168.1.33	SYN
53138	16:20:59.560572	192.168.1.33	192.168.1.4	TCP
53139	16:20:59.562015	192.168.1.33	192.168.1.4	SYNC
53154	16:20:59.635364	192.168.1.4	192.168.1.33	SYNC
53155	16:20:59.636056	192.168.1.33	192.168.1.4	TCP
53158	16:20:59.646714	192.168.1.33	192,168.1.4	SYNC
53163	16:20:59.671462	192.168.1.33	192.168.1.4	SYNC
*				(11)
B Fram	e 53139: 968 byte	es on wire (TT44	birs), 968 bytes ca	prur ed
Fr	nchronization wor amesize: 914 U/DC ID number: 2	d: Oxaa31	Configuration Frame	

OT Insurance

It is now possible to buy cyber insurance for OT

Expect:

- Lengthy questionnaires
- High cost (will come down as models improve)
- Limits of 100Million in damages
- Or 300 Million if you jump through every hoop
- You may have audits or tests required
- READ EXCLUSIONS
 - Preferably with a legal advisor

Conclusions

It is far better to quantify and roleplay through a cyber disaster, then to have to manage one.

ROI is meaningless, you are risk reduction professionals.

Quantify a loss, learn many, many, lessons for your time and effort.

Centre for **Risk Studies**

UNIVERSITY OF CAMBRIDGE Judge Business School