
Optimization for Business and Economics

This set of notes will introduce the mathematical methods useful in analytics. As it is 
assumed the reader has at least some exposure to calculus, the nuts and bolts are kept brief.  
Some of the material here is based on Nicholson and Snyder’s Microeconomic Theory: 
Basic Principles and Extensions. This is a great reference book for those wishing to delve 
into the mathematics of economics.

1 Objective Functions

We typically approach problems in economics as optimization problems. Essentially, an eco-
nomic agent, be it a consumer, firm, or governmental entity, wishes to achieve the best 
outcome possible, that is, the optimal outcome. A consumer’s objective is usually to maxi-
mize utility. In this course, we will be focusing on firms, and for the most part, a firm’s goal is 
to maximize profit. Some variables within the problem are within the problem are within the 
agent’s control. We’ll call them choice variables. The agent’s problem is to choose values for 
the choice variables such that the optimal outcome is achieved.

We define the relationship between the choice variables and outcomes using objective func-
tions. In economics, models often give the firm the ability to choose either price or quantity 
and let the market determine the other. More complex models may have more than one choice 
variable, a concept we will explore in section 5. For now, we’ll stick with an abstract objective 
function f(x). Here, x is the choice variable.
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2 Derivatives

Before we go any further, we need to know what exactly a derivative is. The derivative of a
function is itself a function, one that describes how the function’s output changes as the input
changes. For a function f(x), we denote its derivative as either df

dx
or f ′(x). Sometimes we

will also use capital letters to denote the original function and lower-case for the derivative
(F (x) and its derivative f(x)).

2.1 Basic Derivative Rules

You should be aware of the basic rules of derivatives, which I will outline here. Let a be an
arbitrary constant and f(x), g(x) be arbitrary functions.

1. da
dx

= 0

2. d[af(x)]
dx

= adf(x)
dx

3. d(xa)
dx

= ax(a−1)

4. d[log(x)]
dx

= 1
x
, where log(x) is the natural logarithm of x

5. d[f(x)+g(x)]
dx

= f ′(x) + g′(x)

6. d[f(x)∗g(x)]
dx

= f(x) ∗ g′(x) + f ′(x) ∗ g(x) (Product rule)

7. d[f(x)/g(x)]
dx

= f ′(x)∗g(x)−f(x)∗g′(x)
[g(x)]2

(Quotient rule)

3 First-Order Conditions

We approach these types of problems using calculus. We find maxima and minima of the
objective function by taking the first derivative and setting this equal to zero. We call
this equation the first-order condition (FOC). For example, suppose we have an objective
function

f(x) = −x2 + 10x+ 5.

Taking the first derivative, we have

f ′(x) = −2x+ 10.
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Hence, the first-order condition is given by

−2x+ 10 = 0.

With a little algebra, we can see that x = 5 is the value we’re after.

4 Second-Order Conditions

First-order conditions don’t tell the whole story. A point satisfying the first-order condition
need not be a maximum. It can also be a minimum or an inflection point. To check this,
we need to verify concavity; this is done with the second-order condition. If the second
derivative is negative, we have a concave function, and if the function is concave, we have a
maximum. Continuing with our example from the last section, the second derivative of f(x)
is

f ′′(x) = −2

Note that this is a constant and that it is negative. From this, we know that f(x) is concave
for all values of x. If a function is concave, we know that the point really is a maximum.
Let’s look at a few more examples, where the first-order condition doesn’t necessarily give
us a maximum. Consider f(x) = x4. We have the FOC

f ′(x) = 4x3 = 0.

The only x that satisfies this condition is x = 0. But is this actually a maximum? Let’s take
the second derivative and find out:

f ′′(x) = 12x2.

Since x2 is nonnegative for all x, the function is not concave, but convex. This means that
x = 0 is a minimum.

Now consider f(x) = x3. This gives us the FOC

f ′(x) = 3x2 = 0.

This tells us our point of interest lies at x = 0. Now, let us examine the second derivative.

f ′′(x) = 6x.

Note that the sign of f ′′(x) depends on x. Specifically, f ′′(x) < 0 if x < 0 and f ′′(x) > 0 if
x > 0. Lastly, we also notice that f ′′(0) = 0. The function is concave to the left of 0 and
convex to the right of 0. In this case, x = 0 is an inflection point – neither a minimum or a
maximum.
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5 Partial Derivatives

In game theoretic models, agents are aware of the impact that the action of others can
have on their own outcomes. When these agents (firms, generally) make their decisions,
they have to take into account what others might do. Let’s look at an example objective
function. Suppose we have two agents who we’ll creatively call 1 and 2. Each makes a choice
of their own x but can’t affect what the other does. Suppose agent 1’s objective function is

f1(x1, x2) = 10x1 + x1x2 − x1
2

Although he might like to, agent 1 change x2, only x1. Thus, x1 is his only choice variable
and x2 can be treated as a constant in this decision. We now take the derivative of the
objective function with respect to x1. We call this a partial derivative. Partial derivatives
are denoted as ∂f

∂x1
. Note the “curly” ∂ that is used here.

Continuing with our example, let’s find the optimal x1. The FOC here is

10 + x2 − 2x1 = 0,

again noting that we treat x2 as we would any other constant, such as the 10. Solving for
x1, we have

10 + x2
2

= x1.

Note also that the second derivative (again, with respect to x1) is -2, so this is a maximum.
The above function gives us the optimal x1 for any possible value of x2. As such, we will
call this a best-response function. Now, suppose the second agent’s objective function is

f2(x1, x2) = 10x2 + x1x2 − x2
2.

Now, the first order condition is
10 + x1

2
= x2.

Solving these as a system of equations, we have

x1 = 10

x2 = 10.

5.1 Single Agent, Multiple Choices

We also need to use partial derivatives to solve decision problems with only one agent, but
more than one choice variable. There are many economic situations where this is relevant,
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including consumer choice problems (how much of good x and how much of good y to
consume?), labor-leisure choice problems, and cost minimization problems (how much labor
and capital is efficient for a target output?). In a microeconomic theory course, this kind
of problem is typically constrained, meaning there are certain off-limits values for the choice
variables. Typically, this includes nonnegativity constraints or budget constraints. We will
not be worrying about constraints in this course.

Consider the following objective function:

f(x1, x2) = x1x2 + x1 + x2 − x21 − x22.

Suppose we want to maximize the value of the objective function. We need to find the
optimal values for x1 and x2. To do this, take both first order conditions. First, with respect
to x1:

x2 − 2x1 + 1 = 0

and then with respect to x2:
x1 − 2x2 + 1 = 0.

To solve the problem, solve these two equations simultaneously. We get

x1 = 1

x2 = 1.

5.2 Application to OLS

When doing ordinary least squares (OLS), the objective function is the residual sum of
squares, which we seek to minimize.

RSS =
N∑
i=1

e2i =
N∑
i=1

(Yi − β̂0 − β̂1Xi)
2

The first order conditions will involve taking first derivatives with respect to all β̂ and setting
these equal to zero. Solving this system will yield the OLS estimators.
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