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LETTER FROM THE EDITOR-IN-CHIEF

Kimmo Soramäki
Financial Network Analytics Ltd.

The Journal of Network Theory in Finance is being launched at a time of ever-
increasing connectivity and complexity in financial markets and in the financial
system. This complexity and connectivity is currently being tackled by regulators,
who collect ever-more-detailed information on links between financial institutions for
macroprudential supervision, by asset managers, who need to understand the com-
plex time-varying dynamics of interdependencies in financial markets, and by risk
managers, who want to understand how emerging systemic risks can be identified as
they cascade through the financial markets.

In recent years, network theory has proven useful in applications ranging from can-
cer research to the social graph. Applications of network theory are quickly becoming
ever more present in finance, with network analysis providing answers to questions
where traditional analysis methods are weak, and leading to improved models across
wide types of financial risks. In fact, networks underlie virtually every type of risk,
including liquidity, operational, insurance and credit risk.

The Journal of Network Theory in Finance aims to bring together research currently
carried out in disparate areas at universities and by policymakers and industry prac-
titioners. This research has often been published in a wide variety of journals across
physics, finance, economics and other disciplines, or it remains unpublished due to
the avant garde nature of the field. The publisher and the editorial board therefore
see great value in launching this interdisciplinary journal for publishing academically
rigorous and practitioner-focused research on the application of network theory in
finance and related fields.

On September 23, 2014 a conference entitled “Network Theory and Financial Risk”
was held at the Centre for Risk Studies at Cambridge University to inaugurate the
journal, and submissions to that conference form the backbone of the journal’s first
issue. The papers reflect the scope of the journal well, ranging from applications
in asset management to the measuring of counterparty exposures between financial
institutions.

The first paper in the issue, “Eccentricity in asset management” by Hakan Kaya,
considers connectivity among financial assets and investigates whether a node’s posi-
tion in the network can predict the magnitude of the asset’s returns, and whether the
network structure can explain systemic events. The author finds that assets that are
located near the center of the network tend to have higher returns and shows that
an investment strategy based on this information has historically provided value.



Importantly, the paper shows how methodologies from network theory can help
reformulate long-standing questions in finance and provide new insights.

Understanding interbank exposures has been a focus of financial stability analysis
in recent years. The issue’s second paper, “Emergence of the EU Corporate Lending
Network” by Grzegorz Hałaj, Urszula Kochańska and Christoffer Kok, extends the
analysis to bank–firm relationships by developing a network formation algorithm
that estimates these relationships based on largely public data. The authors find that
contagion can be amplified when this transmission channel is taken into account. The
work will likely find direct applications in stress testing both by regulators and at
banks.

Our third paper, “Risk diversification: a study of persistence with a filtered
correlation-network approach” by Nicoló Musmeci, Tomaso Aste and T. Di Mat-
teo, addresses the problem of correlation structures observed in the past not always
persisting into the future. Finding persistent structures is important for risk diversifi-
cation and the authors develop a new clustering algorithm to identify such structures.
Clusters of assets identified from correlation structures are more economically mean-
ingful and can be more stable than, for example, industry-based classifications, and
they are therefore important for better investment and risk management decisions.

Much of the initial analysis on financial interlinkages has focused on particular
financial instruments for which data has been available. The issue’s fourth paper, “A
multiplex network analysis of the Mexican banking system: link persistence, overlap
and waiting times” by José-Luis Molina-Borboa, Serafin Martínez-Jaramillo, Fabrizio
López-Gallo and Marco van der Leij, overcomes this simplification and specifically
studies the interaction between several layers of interconnectivity across markets
(repos, uncollateralized loans, cross holdings, etc). The paper provides very rich
insight into the complex multiplex nature of the Mexican financial system and will
help other researchers understand and model how these networks interact in other
countries where data at such a detailed level is not available, or where the data is
confidential.

Last but not least, on behalf of the editorial board I welcome readers to the inaugu-
ral issue of The Journal of Network Theory in Finance. I hope the journal will foster
both weak and strong links among the community of researchers interested in finan-
cial networks, and that the techniques and findings presented therein find valuable
application among practitioners.
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Research Paper

Eccentricity in asset management

Hakan Kaya

Neuberger Berman, 605 Third Avenue, New York, NY 10158, USA; email: hakan.kaya@nb.com

(Received August 21, 2014; revised December 5, 2014; accepted December 17, 2014)

ABSTRACT

We describe how networks based on information theory can help measure and visu-
alize systemic risk, enhance diversification, and help price assets. To do this, we first
define a distance measure based on the mutual information between asset pairs and
use this measure in the construction of minimum spanning trees. The dynamics of the
shape and the descriptive statistics of these trees are analyzed in various investment
domains. The method provides evidence of regime changes in dependency structures
prior to market sell-offs and, as such, it is a potential candidate for monitoring sys-
temic risk. We also provide empirical evidence that the assets that are located toward
the center of the network tend to have higher returns. Finally, an investment strategy
that utilizes network centrality information is shown to add value historically.

Keywords: risk measurement; minimum spanning tree; systemic risk; entropy; mutual information;
eccentricity.

1 MOTIVATION

The worst is behind us.

Richard Fuld (final Chairman and CEO of Lehman Brothers)

Little did he know how interconnected the finance world had become and what this
connectedness meant for his company. Richard Fuld gave the above quote (see Fuld
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2 H. Kaya

2008) to the news media in the wake of the successive write-offs in Wall Street
investment banks in 2008. Since then, ever-increasing synchronization between assets,
asset classes and strategies has been one of the central themes for the post-2008 asset
management industry. This theme is now a part of our lives as it is a ubiquitous feature
in almost all domains of risk. It is in market returns, between corn and crude oil, in
default probabilities, in central bank policies, and therefore it is now in the business
cycles of allegedly independent countries.

Now that we have to live in this so-called new normal, in which tail risks not only
happen more frequently than before but also happen in many aspects of the investment
world at the same time, perhaps expectedly, we have seen an increasing amount of
research effort focusing on the domestication of synchronization.Yet it is puzzling to
see that when it comes to measuring this key concept of risk, we still do not have a
clear-cut, valid and broadly accepted definition.

A study of synchronization often includes three stages. First, we define a pair-
wise similarity measure between underlying constituents. Then a structural model
is assumed in order to summarize the potentially large amount of information in an
efficient and perhaps visual manner. Finally, time series properties of the outputs of
this model are used to test hypotheses, hopefully to show that synchronization defined
and modeled in the study can predict systemic events and/or warn of trouble ahead.
The outcome is an online monitor and a set of rules of thumb that policy makers, asset
managers and other interested persons can use to track the probability of contagious
and catastrophic events for enhanced risk taking.

On the definition of synchronization, financial literature provides us with a number
of perspectives. An extensive up-to-date review can be found in Bisias et al (2012).
The majority of these studies nest in the traditional setting where randomness is rep-
resented by bell-shaped (normal) distributions and similarities are modeled through
correlation coefficients measuring merely linear dependencies. For example, Engle
and Kelly (2012) takes the mean of all cross correlations, and Kritzman et al (2010)
work on the eigenvalues of a correlation matrix. The contribution to risk type frame-
works detailed in studies such as Adrian and Brunnermeier (2011) and Acharya et al
(2010) also build on linear relationships. Deviating from linearity, Diebold andYilmaz
(2009) introduced variance decompositions for measuring financial connectedness of
firms, however the dependence of their systemic index on the ordering of the variables
they used in vector autoregressions drew criticism (see Klößner and Wagner 2014).

The quick and dirty way, which is widespread in media and sell-side research (see
Kolanovic et al 2011) is imposing a summarizing structure by taking the average
of all measures of pairwise relationships. Although these studies are certainly of
interest, their value in the financial-market contexts is limited to stressing correlations
converging to unity and/or regression betas (for CAPM or related factor models)
becoming more important than before.

Journal of Network Theory in Finance www.risk.net/journal



Eccentricity in asset management 3

A richer context has started to emerge with Mantegna (1999) introducing network-
based hierarchical clustering in financial markets. While still mostly based on correla-
tion distances, these networks allowed a more intuitive understanding of the synchro-
nization, with visual aids making it possible to question the plausibility and robustness
of otherwise complex interrelationships. This line of research has since flourished so
much that we cannot list all of the important references. Nevertheless, interested read-
ers can consult Hiemstra and Jones (1994), Boginski et al (2005), Kenett et al (2010),
Billio et al (2012), Kenett et al (2012), Lautier and Raynaud (2013), Sandoval (2014),
Barigozzi and Brownlees (2013), and Majdandzic et al (2014) for early as well as
recent treatments and further examples.

The normative implications of these new tools have concentrated more on systemic
risk measurement as we listed above, and less on asset pricing and portfolio allocation.
Recently, Ozsoylev and Walden (2011) and Buraschi and Porchia (2012) have studied
the asset pricing aspect and the latter concluded that “central” firms have lower P/D
ratios and higher expected returns. A rare and tangible portfolio allocation rule has
been offered and backtested in Kritzman et al (2010), which recommended shifting
toward bonds from equities during stress that is screened through an increasing trend
in their systemic risk measure.

In a complementary way to the aforementioned research, in this paper our over-
arching goal will be to examine the dynamics of the synchronization between assets,
and further the understanding of what this means for their risks, returns and for asset
allocation in general. We aim to achieve this goal step by step.

First, we will introduce the mutual information distance as our dissimilarity mea-
sure. This information theory based concept is similar to the correlation coefficient,
but it does not suffer from parameterization and linearity. In its essence, estimating
mutual information is about measuring how independent a pair of time series are and
in most cases assumptions about the underlying distributions of time series are not
needed. In other words, mutual information is model free.

Second, this distance measure will be used to represent the pairwise similarity
information in a network framework. In studies with a large number of assets, these
networks themselves are not that helpful. What is needed is a robust and fast enough
information compression tool that can summarize the essence of the information
in networks in a unique way. For this purpose, we will utilize minimum spanning
trees (MSTs), which are subsets of the initially fully connected mutual information
networks. As their name suggests, MSTs span the asset universe connecting every
asset to every other asset without cycles and with minimum total network distance
between assets. To draw an analogy, we can imagine a hypothetical country trying
to decide how to optimally build roads (edges of a network) between all of its cities
(nodes of a network) with no cycles and with minimum cost of construction. In this
case, the governors of this country need to solve an MST problem. Note at this point

www.risk.net/journal Journal of Network Theory in Finance



4 H. Kaya

that MSTs are neither the only nor the most efficient network compression tools. A
wide variety of methods exist. See, for example, Tumminello et al (2010) for a set of
related techniques. We chose to work with MSTs due to their intuitive construction,
robustness and speed for handling large number of assets.

Third, having a network opens up many location-related questions. For example,
we need a coordinate system to describe the whereabouts of a node in the network.
This addressing issue requires the determination of a reference point; a center. There
are no easy and optimal answers for these choices and it is far beyond the scope of
this paper to find out what is the right answer. Instead, to describe the centrality of
assets we will rely on an easy to grasp concept called eccentricity (Hage and Harary
1995). Eccentricity of a node is simply the shortest path from the farthest out node. It
is calculated by measuring the distances from the originating node to all other nodes
and taking the maximum. The lower the eccentricity of a particular node, the closer it
is to every other node, that is, the more central it is.A node with the lowest eccentricity
score will be called the center of the network, and the eccentricity of this central node
will be given a special name: radius. Again, eccentricity is neither the only nor the
most important network centrality measure. Many others exist, and interested readers
can consult Koschützki and Schreiber (2004, 2008).

Finally, we will put these concepts into use and analyze the eccentricities of nodes
in mutual information networks through time. We will define our own systemic risk
index called the average eccentricity and test its efficacy in warning of crashes. Next,
we will carry out simple asset pricing tests to show whether eccentricity centrality can
cross-sectionally discriminate returns. We will provide this analysis in two domains:
first, in a global asset allocation setting, and second, in a sector/region equity allocation
setting. Backtests will be provided to assess the value added by the eccentricity based
information in both investment universes.

2 METHODOLOGY

The construction of a mutual-information–minimum-spanning-tree–eccentricity-
centrality measure requires us to define a set of objects. Although these concepts
can be found in elementary statistics, information theory and graph theory books, for
completeness we will provide the necessary descriptions in what follows. We will
start with mutual information, and move on to the definition of MSTs. Finally, we
will define the eccentricity of a node and the average network eccentricity of a fully
connected graph.

2.1 Mutual information distance

Nonlinearity in financial returns has been extensively studied and empirically well-
supported. See, for example, Rothman (1999) for the treatment of various sources of

Journal of Network Theory in Finance www.risk.net/journal



Eccentricity in asset management 5

FIGURE 1 Example of a nonlinear relationship with zero correlation.
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An example in which linear or rank correlation measures fail to capture the underlying nonlinear relationship. Pearson
(linear) correlation .x; y/: 0.00. Kendall (rank) correlation .x; y/: 0.00. Mutual information .x; y/: 0.91.

nonlinearity in returns from time-changing variance to asymmetric cycles, and from
higher-moment structures, to thresholds, breaks and regime switches.

Given these issues, what motivates us to use mutual information, an information-
theoretic construct, as a measure of dependence is its ability to capture both linear
and nonlinear dependencies without requiring any assumption of a specific model.
To demonstrate what this means, let us consider the simple dependence structure
exhibited in Figure 1. The relationship, which is created by adding noise to a cosine
wave, exhibits a clear nonlinear dependence. While this is true both by construction
and by visual inspection, the sample estimates of both the linear and the rank corre-
lation coefficients are zero implying a lack of relationship. Needless to say, had we
assumed a bivariate normal distribution, we would have mistakenly concluded that
the underlying random variables were indeed independent. In contrast, the mutual
information between these random variables is a relatively large nonzero number
implying a strong relationship is present.

Additionally, as opposed to the linear coefficient of correlation, the calculation
of mutual information does not require the computation of means, variances and
covariances. This is a key advantage as the computation of these moments is often
challenging when the underlying data is composed of financial time series. This and

www.risk.net/journal Journal of Network Theory in Finance



6 H. Kaya

various other desirable properties are also stressed in several studies which can be
found in Dionisio et al (2004). As a result, one would expect mutual information to
be more robust compared with the traditional measures of dependence.

As well as these advantages, mutual information has some drawbacks. Most impor-
tantly, to calculate this measure, we need information on the joint and marginal prob-
ability density functions of the underlying random variables. The approximation of
such distributions by histogram methods can create bias problems as studied in Moon
et al (1995), Kraskov et al (2004) and in Walters-Williams and Li (2009). Therefore, it
is important that we use an efficient estimator when studying dependence with mutual
information and carry out robustness checks with different estimation methods.

Cover and Thomas (2006) covers the basic definitions, axioms, and properties
required for the development of information theory which is built on the concept
of the entropy of a random variable. They describe entropy of a random variable as
the measure of the amount of information required on the average to describe the
random variable itself. On the one hand, a random variable that concentrates on a few
values requires less information to describe and therefore it is less uncertain with low
entropy. On the other hand, if a random variable assumes a large number of values, it
takes a long time to describe it, and therefore it is more uncertain with high entropy.

Let us denote by X the set of all possible values a random variable X can take.
Denoting by pX the probability density function of X , we can define the entropy of
X as H.X/:1

H.X/ D �

Z
pX .x/ log.px.x// dx: (2.1)

If we have another random variable Y with probability density pY , and joint density
pX;Y , the joint entropy of X and Y denoted by H.X; Y / is given by

H.X; Y / D �

“
pX;Y .x; y/ log.pX;Y .x; y// dx dy: (2.2)

Building on this, the conditional entropy of Y given X is defined by

H.Y j X/ D H.X; Y / �H.X/

D �

“
pX;Y .x; y/ log

�
pX;Y .x; y/

pX .x/

�
dx dy: (2.3)

1 The base of the logarithm is not important. However, different bases result in different units. For
example, log2 measures entropy in bits, log10 measures entropy in dits, and loge D ln measures
entropy in nats.

Journal of Network Theory in Finance www.risk.net/journal



Eccentricity in asset management 7

Finally, the mutual information between X and Y is calculated as follows:

I.X; Y / D H.X/ �H.X j Y /

D H.Y / �H.Y j X/

D H.X/CH.Y / �H.X; Y /

D

“
pX;Y .x; y/ log

�
pX;Y .x; y/

pX .x/pY .y/

�
dx dy: (2.4)

Mutual information constructed as above is always nonnegative and equals zero if and
only if X and Y are statistically independent in which case we have pX;Y .x; y/ D
pX .x/pY .y/. In order to obtain a distance statistic with certain desirable properties
as described in Dionisio et al (2004), we will use a standardized measure defined by

d.X; Y / D 1 �
p
1 � exp.�2I.X; Y //: (2.5)

The distance measure in (2.5) is always in between 0 and 1. If d.X; Y / D 1, this
implies that X contains no information on Y and vice versa. In this case the distance
measure takes the maximum value, signifying thatX andY are far apart. Ifd.X; Y / D
0, there exists a perfect relationship between X and Y , or in other words, X and Y
determine each other. Therefore, if there is a very close relationship between X and
Y the distance measure is expected to be close to 0.

A number of algorithms exist for the estimation of mutual information. Meyer
(2008) surveys the existing literature. We use the GNU R package “infotheo” by
Meyer (2012) to carry out the computations. In particular, we chose options such that
the mutual information is calculated from empirical probability distribution functions
after discretization of continuous random variables related to asset returns using equal
frequency bins.2

2.2 Minimum spanning trees

The mutual information distance (edge weights between nodes) between all assets
(nodes of the network) constitute a fully connected network. For a universe of cardi-
nality n 2 N, this network has n.n�1/=2. For example, when n D 50, we have 1225
pairs to think about. In order to reduce this complexity and reveal any potential clus-
ters or potential patterns, we will give up some information by pruning a big portion
of the network to come up with a tree. This will be a tree that connects every node
to every other node and it connects every node in such a way that the total mutual
information distance of the network is as small as possible with the condition that

2 We experimented with a number of different ways of estimating the mutual information between
assets to check the robustness of our findings. The outcomes did not differ significantly enough to
report each and every experiment.

www.risk.net/journal Journal of Network Theory in Finance



8 H. Kaya

no cycles exist in the final tree. That is, we are after a compact representation of the
initially complicated web of relationships with minimum possible information.

The mathematical representation of the MST is given as follows. Given a connected
graphG D .V;E/, with the set of nodes V , and the set of edgesE, and weights de for
all edges inE, we look for a spanning treeGT D .VT ; ET / of minimum total distance.
By “spanning” we mean VT D V . A possible integer programming representation
of the problem can be stated as follows. Let us represent by xe the binary decision
variable

xe D

(
1 if edge e 2 ET ;

0 otherwise:

Then

minimize
xe

X
e2E

dexe

subject to
X
e2E

xe D n � 1;

X
e2.S;S/

xe 6 jS j � 1; 8S � V; S ¤ ;; S ¤ V;

xe 2 f0; 1g; 8e 2 E; (2.6)

where .S; S/ denotes all edges that go from a node in the set S to another node in the
set S , and jS j means the cardinality of set S . The second constraint enforces that the
edges in ET cannot form cycles.

A desirable property of problem (2.6) is that if each edge weight is distinct then
there is one and only one solution. This is a plausible assumption in real life since
the probability of the exact equality between mutual information of pairs of assets
is almost zero with distinct assets. Still, the cost of this compression is the loss of
n.n� 1/=2� .n� 1/ D .n� 1/.n� 2/=2 edges, and the information accompanying
them.

There are efficient heuristic algorithms that solve (2.6). Among them are Prim’s
and Kruskal’s algorithms (see Cormen et al 2001). The most efficient designs of
Prim’s and Kruskal’s algorithm have time complexities O.n log.n//. The modern
specialized solutions are known to improve the execution time to O.log.n// through
parallel algorithms, as shown in Chong et al (2001).

2.3 Eccentricity

The eccentricity of a graph node v 2 V in a connected graph G is the maximum
graph distance between v and any other node u 2 V ofG. Intuitively, the eccentricity

Journal of Network Theory in Finance www.risk.net/journal



Eccentricity in asset management 9

FIGURE 2 Eccentricity examples.
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measures how far a particular node is from the most distant border of the network.
Therefore, nodes with low eccentricities are located toward the center of the network.
The node (or nodes) with the minimum possible eccentricities are called central nodes.
The eccentricity of a central node is called the radius of the network.

In Figure 2, nodes 1 and 2 both have eccentricities 2; therefore they are both central
points and the radius of the graph is also 2. The remaining nodes have eccentricities
equal to 3. In Figure 2, node 1 is the unique central point and its eccentricity is one.
All other nodes have eccentricities equal to 2.

Figure 2 hints at an important condition we will be analyzing when we study the
empirical properties of networks. Networks that are star-shaped, as in Figure 2, will
be of certain interest. This is because in these types of graphs, nodes cluster around a
single hub. When the nodes are assets, this so-called star topology corresponds to the
maximum synchronization possible. Speaking generally to aid clarity, the information
transfer between assets is bottle-necked through a single node, network is tight, and
any shock can propagate through the rest of the network very quickly. These types
of formations are potential harbingers of a catastrophe. On the contrary, a connected
network that has a chain-like formation is the one with the least mutual information
sharing. Information takes time to travel and a potential shock to one of the nodes
does not necessarily result in a network wide shock. These formations correspond to
calm or normal times.

www.risk.net/journal Journal of Network Theory in Finance
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The use of network centrality in determining systemic risk potential has lately
been a hot research topic. For example, Lenzu and Tedeschi (2012) used network
degree distribution, betweenness centrality and network diameter to characterize a
smooth transition from a random topology to a star topology. Their results showed
that during this transition only a few big financial institutions become central and
carry capacity to transfer liquidity. This connectedness therefore leads to massive
herding and consequently to more frequent insolvency-related bankruptcies. In a
similar context, Hautsch et al (2014) use PageRank centrality to monitor companies’
systemic importance by calculating the effect of the individual firm’s contribution
to systems’ value-at-risk. Finally, the utilization of these network-related measures
were the topic of the May 8–9, 2014 IMF conference “Interconnectedness: Building
Bridges Between Policy and Research”. As reported by Minoiu and Sharma (2014),
during this conference it was concluded by Joseph Stiglitz of Columbia University
that “the high degree of interconnectedness in the financial system facilitated the
breakdown and became part of the problem”.

In this paper, deviating from the liquidity-related bank borrowing/lending cases
above, we will focus on return-based similarity distances to measure how close we
are to a star-shaped formation. The reason behind our choice is twofold. First, while
the above studies are important in analyzing the root causes, the underlying data may
be lagged and hence may not be readily available to a practitioner such as a portfolio
manager. Second, the systemic risk is probably more about the potential imminent
contagion problem rather than who carries debt to whom. Even if two entities engage
through healthy channels of lending and borrowing, they may be temporarily faced
with defaults in the event of overreaction by market participants when everybody is
running for the exit. In these cases, it is potentially better to infer the connectedness
from return-based similarity measures. Therefore, we will attempt to understand the
systemic risk potential by assessing how close the average network eccentricity is to
1 or whether the average eccentricity is increasing or decreasing. If it is close to 1 and
is still decreasing, our hypothesis is that the network is transitioning to a star topology
and a potential systemic shock is more probable.

3 DESCRIPTION OF THE DATA

In order to show the insensitivity of conclusions to the data used, we will work on
two distinct sets of asset returns. The first set is a collection of asset classes including
stocks, bonds and commodities. The second is a set of international equity indexes
each representing a particular sector and industry pair.

Data is collected from Bloomberg and in each case we choose the periods in such
a way that all assets have pricing data. In the case of global asset classes the period

Journal of Network Theory in Finance www.risk.net/journal



Eccentricity in asset management 11

is from May 1990 to November 2013. In the case of sector/region pairs the period is
from January 1996 to the end of November 2013.

While we used simple daily price returns for noncommodity assets, commodity
returns are calculated from the most nearby futures contracts. A contract that has
either a first notice date or last trade date in the next month is rolled forward. Due to
possible time synchronization issues between the returns corresponding to different
geographies, we take a two-day rolling average of returns, thereby introducing poten-
tial serial correlation to the returns we analyze, which we believe is not an essential
drawback for the analysis we carry out. One-month local Libor rates are used to cal-
culate excess returns for noncommodity indexes, commodity returns calculated from
futures contract price changes are already excess returns. Table 1 on the next page and
Table 2 on page 14 include detailed information and the legend of the asset identifiers
used in the below study.

When calculating mutual information distances, we used a rolling one-year window
with 252 business days. We repeated this exercise every month end, and in each
iteration we used these distance matrixes to construct MSTs for that particular month.
Next, we computed the eccentricity of each asset and recorded them for their time
series analysis.

4 EMPIRICAL RESULTS

4.1 Compressing information by MSTs

Figure 3 on page 18 includes spanning trees as of November 2008 and November
2013. In part (a) of Figure 3 we can observe that during the financial crisis US stocks
were located in the middle of the tree in between a group of emerging market (EM)
countries and crude oil. One interpretation of this network formation is that US stocks,
emerging market stocks and crude oil pretty much carried all the information that was
needed during the crisis, perhaps related to the so-called global growth factor. The
same is not true today as can be seen in part (b) of Figure 3. This current network
looks more linear than the financial crisis network. Unlike before, commodities are
not central. As a matter of fact, from this network commodities appear to carry less
mutual information compared with stocks as commodities are located on the outer
layers of the network, perhaps pricing their own idiosyncratic risks.

The sector/region networks also tell an interesting story. As we can imagine, finan-
cial stocks were very central during the crisis (see part (c) of Figure 3 on page 19).
Today however, as can be seen from part (d), it is materials that are closer to the center
of the network.

From parts (c) and (d) of Figure 3 on page 19 we can observe that there does
not appear to be a sector-based clustering with some exceptions including materials

www.risk.net/journal Journal of Network Theory in Finance
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TABLE 1 Description of global assets. [Table continues on next page.]

Bloomberg
Class Asset Identifier ticker

DM Stocks MSCI USA Stock Index US MXUS Index

DM Stocks MSCI Canada Stock Index CA MXCA Index

DM Stocks MSCI Japan Stock Index JP MSDUJN Index

DM Stocks MSCI Hong Kong Stock Index HK MSDUHK Index

DM Stocks MSCI Australia Stock Index AU MSDUAS Index

DM Stocks MSCI United Kingdom Stock Index UK MSDUUK Index

DM Stocks MSCI Italy Stock Index IT MSDUIT Index

DM Stocks MSCI Spain Stock Index SP MSDUSP Index

DM Stocks MSCI Germany Stock Index GE MSDUGR Index

DM Stocks MSCI France Stock Index FR MSDUFR Index

EM Stocks MSCI Mexico Stock Index MX MXMX Index

EM Stocks MSCI Brazil Stock Index BR MXBR Index

EM Stocks MSCI Argentina Stock Index AR MXAR Index

EM Stocks MSCI Chile Stock Index CHL MXCL Index

EM Stocks MSCI Turkey Stock Index TR MSEUSTK Index

EM Stocks MSCI Korea Stock Index KO MSEUSKO Index

EM Stocks MSCI Philippines Stock Index PH MSEUSPHF Index

EM Stocks MSCI Taiwan Stock Index TA MSEUSTW Index

EM Stocks MSCI Thailand Stock Index TH MSEUSTHF Index

Bonds Citigroup US GBI 7–10 year USB SBUS70L Index
local currency

Bonds Citigroup Canada GBI 7–10 year CAB SBCD70L Index
local currency

Bonds Citigroup UK GBI 7–10 year UKB SBUK70L Index
local currency

Bonds Citigroup Germany GBI 7–10 year EUB SBDM70L Index
local currency

Bonds Citigroup Japan GBI 7–10 year JPB SBJY70L Index
local currency

Bonds Citigroup Australia GBI 7–10 year AUB SBAD70L Index
local currency

Energy WTI crude oil CL CL1 Comdty

Energy Brent crude oil CO CO1 Comdty

Energy Natural gas NG NG1 Comdty

Energy Heating oil HO HO1 Comdty

Energy Gasoline XB XB1 Comdty

Energy Gasoil QS QS1 Comdty

Journal of Network Theory in Finance www.risk.net/journal
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TABLE 1 Continued.

Bloomberg
Class Asset Identifier ticker

Metals Gold GC GC1 Comdty

Metals Silver SI SI1 Comdty

Metals Platinum PL PL1 Comdty

Metals Copper HG HG1 Comdty

Metals Nickel LN LN1 Comdty

Metals Zinc LX LX1 Comdty

Metals Aluminum LA LA1 Comdty

Metals Lead LL LL1 Comdty

Agriculture Corn C C 1 Comdty

Agriculture Soybean S S 1 Comdty

Agriculture Wheat W W 1 Comdty

Agriculture Kansas wheat KW KW1 Comdty

Agriculture Soymeal SM SM1 Comdty

Agriculture Bean oil BO BO1 Comdty

Agriculture Cotton CT CT1 Comdty

Agriculture Sugar SB SB1 Comdty

Agriculture Cocoa CC CC1 Comdty

Agriculture Coffee KC KC1 Comdty

Agriculture Lean hogs LH LH1 Comdty

Agriculture Feeder cattle FC FC1 Comdty

Agriculture Live cattle LC LC1 Comdty

Commodity returns are calculated from rolling nearby contracts as they expire. The commodity indexes tabulated
above cannot be used to calculate daily commodity returns.

and energy. Clustering seems to be more on the regional level. See, for instance, the
current EM cluster in part (d). This suggests that it is perhaps more plausible for risk
balanced global equity fund managers to do the risk budgeting on a regional level,
rather than on a sector level.

4.2 Dynamics of the centrality of assets over time

In this subsection we will analyze the historical evolution of the average eccentricity
of assets. In order to enhance the visual impact of the figures, we plot the deviation
of an asset category’s average eccentricity from the average eccentricity of all assets.
Therefore, asset categories with negative deviation levels will imply that those asset
categories are more central than positive deviation asset categories. The categorization

www.risk.net/journal Journal of Network Theory in Finance
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definitions of global asset classes and sector/region equity indexes can be read from
Table 1 on page 12 and Table 2 on page 14. In Figure 4 on page 20, we plotted these
eccentricity deviations both for global assets and for sector/region equity indexes. In
order to compare the centrality measures against the trends in the stock market, we
included a visual overview of the performance of the S&P 500 price index.

In part (a) of Figure 4 on page 20 we can see that, prior to the financial crisis,
developed market stocks and emerging market stocks were becoming more and more
central.After the crisis, the centrality eased somewhat but, today, in contrast to emerg-
ing market stocks, developed market stocks look more central than before. Another
interesting pattern on this figure is the recent central tendency of bonds. While still
away from the center of the network, bonds are not as independent as they were during
the period from late 2007 to late 2011. Perhaps this run toward the center has been
a signal for the bond sell-off of 2013 all along. Finally, we also need to note that
the energy and metals centralities tend to increase as they become less positive and
eventually negative prior to market tops.

In part (b) of Figure 4 on page 21 we can observe that the financial sector was
starting to become the center of the network prior to the 2008 crisis, and has remained
very central after the crisis. Similar notable deviations can be observed in information
technology and telecommunications stocks prior to the dotcom bubble. As of today,
materials tend to be in the center of the network. The utilities and health care sectors
have consistently found themselves on the outer layers of the network; perhaps proving
the widespread claim that they are the bond-like investments in the equity domain
pricing independent factors.

4.3 Dynamics of the topology of the network for market timing

In this section the goal is to see whether certain trends in average network eccentricity
precede market downturns. Our hypothesis is that networks that are star-shaped are
more likely to precede systemic events than chain-like graphs. This is because star-
shaped networks have maximum information interconnectedness.Any potential shock
to a particular node can simultaneously get translated into a system-wide catastrophic
event.

In order to measure the star-likeness of the network we will look at two indicators.
The first is the level of the average network eccentricity, which is simply the cross-
average eccentricity of the set of all nodes at a particular time. The second indicator is
the change in this level of average eccentricity indicator. To measure the change, we
will subtract the twelve-month moving average of level from its six-month moving
average. A positive change indicates that the network is becoming more chain-like,
whereas a negative change is an indication of star-likeness.
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FIGURE 3 Current and recession period MSTs. [Figure continues on next page.]
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(a) MST of global asset classes on October 31, 2008. (b) MST of global asset classes on October 31, 2013.
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FIGURE 3 Continued.
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(c) MST of MSCI sector/region indexes on October 31, 2008. (d) MST of MSCI sector/region indexes on October
31, 2013. Data from Bloomberg and calculations from Neuberger Berman Quantitative Investment Group.
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FIGURE 4 Deviation of asset eccentricity from average network eccentricity of MSCI
region/sector pairs over time. [Figure continues on next page.]
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(a) Centrality of global asset classes over time.

4.3.1 History of the network topology

Figure 5 on page 23 includes levels and changes in average network eccentricity both
in the case of global asset classes and in the case of sector/region indexes. To indicate
market tops and bottoms, S&P 500 price series is scaled to fit each figure part.

Of interest in the past two decades are the dotcom bubble and the global financial
crisis. Looking at parts (a) and (c) of Figure 5 on page 23 we see that, while both
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FIGURE 4 Continued.
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(b) Centrality of MSCI region/sector pairs over time. S&P 500 price series, not to be confused with S&P 500 cen-
trality series, is scaled to fit the figure. Data from Bloomberg and calculations from Neuberger Berman Quantitative
Investment Group.

exhibiting tightness with low eccentricity readings, the equity sector/region based
average network eccentricity level gave a clearer warning signal prior to the dotcom
bubble bursting. Perhaps this is because the dotcom bubble was more of a regional
bubble than a large scale global event. Second, prior to the 2008 sell-off we see that
both indicators started to decline. In this case the decline in the global asset classes
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network eccentricity level is starker than the equity counterpart. The decline goes until
2010 in the case of sector/region based eccentricity level and until early 2011 in the
case of global assets. These observations show that the average network eccentricity
level does a better job in timing the peaks than troughs.

Parts (b) and (d) of Figure 5 on the facing page tell a similar story. The market highs
in both sell-offs were preceded by a negative regime in average eccentricity trends.
These figures also show a drawback of the market timing function of eccentricity
measures. There are a number of false indications. For example, the false negative
in late 1997 due to the Asian crisis did not result in an imminent market sell-off in
the US. Again the false negative in the late 2003/early 2004 global asset eccentricity
change indicator did not lead to a bear market. This negative signal that appears to be
mostly driven by stocks and bonds (as can be seen in part (a) Figure 4 on page 20) also
coincided with the period when Federal Reserve ended its expansionary program by
increasing rates in June 2004. Perhaps it is the Federal Reserve action in this period
that prevented a potential sell-off.

4.3.2 Network topology and subsequent market returns

To tie up the loose ends in the previous section we calculated the average network
eccentricity behavior prior to market crashes. Without loss of generality, we define
a crash month to be a month in which S&P 500 returned less than its historical
5th percentile. For each of these months we recorded the level of average network
eccentricity prior to, during and after the crash. We record from six months before to
six months after. Next, we take the average of network eccentricities in each of these
before and after months across all the crash months.

Parts (a) and (c) of Figure 6 on page 24 show the average level of network eccentric-
ity around crashes first in global asset classes and the second in sector/region indexes.
Both figures indicate that the average level of eccentricity tends to decline prior to a
crash. Keeping an eye on the level may therefore be useful. After the crash the level
rebounds in global asset classes but there is no significant change in sector/region
pair.

The systemic event timing value can perhaps be better observed in conditional
return densities. To this end, we classified next month’s returns into two categories.
Category “decreasing” includes those months which were preceded by a negative
trend in the level of eccentricity as measured by the difference between six-month and
twelve-month moving averages of level. Similarly, the category “increasing” includes
those months that were preceded by a positive trend in the level of eccentricity. In
other words, the “increasing” class represents those periods that were preceded by
a network that is more chain-like and the “decreasing” periods were preceded by
networks that were more star-like.
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FIGURE 5 History of the level and the change in the level of network eccentricities in
global asset classes and in MSCI region/sector indexes.
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Parts (b) and (d) of Figure 6 on the next page both show that there is a clear
distinction between the densities of returns when they are conditioned on the network
eccentricity level change. In both cases the “decreasing” density is more left skewed
and significantly more leptokurtic (with fatter left tails). Of course we should not take
this as a home run because positive returns are also likely in “decreasing” eccentricity
regimes. It is probably safer to claim that while a “decreasing” network eccentricity
is a necessary condition for a sell-off it is definitely not a sufficient condition.
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FIGURE 6 (a), (c) Average network eccentricity behavior before and after crashes; (b), (d)
density plot of S&P 500 price returns conditional on the state of the network eccentricity
trends.

(a) (b)

(c) (d)

11.8

11.6

11.4

11.2

–6 –3 0 3 6

7.5

5.0

2.5

0
–20 –10 0 10

8

6

2

4

0

14.5

14.0

13.5

13.0

–6 –3 0 3 6 –20 –10 0 10

Distance relative to the crash period (months)

A
ve

ra
ge

 (
ne

tw
or

k 
ec

ce
nt

ric
ity

)

D
en

si
ty

S&P500 monthly return

Distance relative to the crash period (months)

A
ve

ra
ge

 (
ne

tw
or

k 
ec

ce
nt

ric
ity

)

D
en

si
ty

S&P 500 monthly return

Decreasing Increasing

Decreasing

Increasing
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4.4 Centrality versus return

While in this introductory paper our aim is not to fish for a yet another asset pricing
factor and an accompanying theory to support it, it is natural to make a link between
CAPM and asset centrality. In CAPM assets that are more exposed to the market, as
measured by their beta, in equilibrium, need to earn higher expected risk premiums.
The key concept here is exposure to the market, which is the center of gravity of the
capitalization weighted investment universe. In a similar manner, can assets that are
more exposed to the center of an asset network earn higher expected premiums?
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FIGURE 7 Regression of returns on asset centrality in different periods.
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more central. Data from Bloomberg and calculations from Neuberger Berman Quantitative Investment Group.
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To answer this question, we compute the historical eccentricity of each asset by
averaging the historical eccentricities in each period and using them as independent
variables in regressions against historical average returns. To check robustness, we
carried out these regressions in whole sample, and in two half subsample periods.
We also repeated this exercise in both global asset classes and in sector/region equity
indexes.

Parts (a) and (b) of Figure 7 on the preceding page empirically support the claim
that central assets tend to earn higher returns. In both cases, in each subsample, and
in each whole sample, the regression lines are negatively sloping. It is also clear
from the fitted error bounds that the variation tends to be explained better in average
eccentricity levels than in extreme centrality cases. This is due to the lack of bulk data
in the extremal parts of the network. In other words, while there are many noncentral
and nonboundary assets, there are fewer central and boundary assets.

This analysis is by no means a conclusion that asset centrality is an economic risk
factor. This is despite the fact that recent research has started to tend in this direction.
See, for example, Ozsoylev and Walden (2011) and Buraschi and Porchia (2012)
for similar empirical findings. Further research is necessary to link the centrality to
a stochastic discount factor. Without such a link, we can at most call centrality a
statistical factor similar to principle components of a covariance matrix.

4.5 Asset allocation with eccentricity

In this final section, we would like to carry out backtests to assess the historical
economic value added by eccentricity as a conditioning variable.To do that we devised
three benchmarks. The first one is the equal weighted portfolio of all assets. The
second is the volatility parity, which weights assets according to the inverse of their
historical rolling one-year volatilities. The third one is what we call the eccentricity
budgeting, which budgets risks proportional to the eccentricity of assets. In other
words, if volatility parity weights an asset i 2 f1; 2; : : : ; ng in a universe with n 2 N

assets proportional to the inverse of the volatility wi � 1=�i , then the eccentricity
budgeting weights the same asset inversely proportional to its eccentricity "i bywi �
1="i � 1=�i . All portfolios are scaled to have sum of weights equal to 1 to restrict
leverage.

Figure 8 on the facing page includes the backtest performance of each portfolio
construction method. Parts (a) and (b) include the cumulative returns, monthly returns,
and drawdowns and Table 3 on page 28 includes average performance statistics. In
each domain, we see that volatility parity improves on equal weighting, and eccen-
tricity budgeting improves on volatility parity. The improvements are based on return
to risk ratios including Sharpe ratio, mean over value-at-risk, mean over conditional
value-at-risk, and Calmar ratio (mean/maximum drawdown).
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FIGURE 8 Historical performance of eccentricity budgeting compared to volatility parity
and equal weighted portfolios.
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TABLE 3 Data for Figure 8.

(a) Performance of eccentricity budgeting in global asset classes

Eccentricity Volatility Equal
budgeting parity weighted

Return (cumulative, excess) 116.63 83.97 63.61
Return (annualized, excess) 3.50 2.75 2.21
Volatility (annualized) 8.04 7.65 12.27
Sharpe ratio (annualized) 0.43 0.36 0.18
VaR (95%) (monthly) 3.89 3.95 6.43
CVaR (95%) (monthly) 6.60 9.17 14.20
Maximum drawdown 34.21 33.06 49.31
Annual return/monthly CVaR (95%) 0.53 0.30 0.16
Calmar ratio 0.10 0.08 0.04

(b) Performance of eccentricity budgeting in MSCI region/sector pairs

Eccentricity Volatility Equal
budgeting parity weighted

Return (cumulative, excess) 68.68 52.75 40.11
Return (annualized, excess) 2.98 2.40 1.91
Volatility (annualized) 13.77 14.90 15.94
Sharpe ratio (annualized) 0.22 0.16 0.12
VaR (95%) (monthly) 7.05 7.76 8.29
CVaR (95%) (monthly) 10.43 12.00 12.90
Maximum drawdown 46.84 51.20 54.29
Annual return/monthly CVaR (95%) 0.29 0.20 0.15
Calmar ratio 0.06 0.05 0.04

Although we did not include transaction costs in these backtests, we still believe
eccentricity budgeting may be beneficial as the returns to risk ratios are different
enough from their naive counterparts. Especially allowing for leverage, eccentricity
budgeting may perhaps be an input for risk-balanced investment frameworks.

5 CONCLUSION

In this paper we studied the elusive concept of synchronization in asset returns. To
avoid any ambiguity about its definition, we started with an assumption that syn-
chronization meant increasing mutual information between assets. We measured the
closeness of assets according to their mutual information distance. This distance led
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to a fully connected graph of mutual information relationships. To reduce the clutter
in these graphs, we utilized MSTs. On these trees, we defined a centrality measure
called eccentricity which was defined as the shortest distance of a node from the
farthest out node in the graph.

We carried out empirical studies on two distinct domains. First, in a set of global
assets including stocks, bonds and commodities and second in a set of sector/region
equity indexes. The combined time period of these studies was from the early 1990s
to late 2013.

We analyzed the centrality of assets over time and observed that developed mar-
ket stocks and emerging market stocks were mostly central with low eccentricities.
However, during the crisis energy and metal commodities became central as well. In
the sector/region domain, we saw how the financial sector trended toward centrality
prior to the 2008 meltdown. Similar patterns were observed in IT and telecom sectors
prior to the dotcom bubble burst.

We looked at the market timing ability of the average network eccentricity level.
We saw that the network eccentricity tended to decline prior to market crashes and
densities of returns can be statistically distinguished based on prior months’ average
network eccentricity trend. This is especially so in the left tails. However, we also
noted that the eccentricity based market timing indicators can give false alarms.

The asset pricing implications of eccentricity were also studied. Historical regres-
sions showed that assets with central eccentricity earned higher returns on average.
Analysis in different subperiods supported the robustness of this empirical finding.
However, due to the lack of theoretical background, we deduced that at this stage
eccentricity can only be classed as a statistical risk factor.

Finally, we carried out backtests to assess the potential economic value added
by eccentricity information. We saw that in each of the domains we consid-
ered, eccentricity-based risk budgeting portfolios improved the return to risk ratios
compared to volatility parity and equally weighted portfolios.

It may be advisable to keep an eye on the centrality of certain assets and the average
centrality of the network by comparing them to their historical episodes. We can then
look at what subsequent events followed these similar periods. In the portfolio context,
we can monitor the portfolio weighted average of the eccentricities of all assets. If
the portfolio eccentricity is too low, perhaps it is advisable to shift some of the central
weights to the outer layers of the network for diversification purposes.

In sum, while still in its infancy, information-theoretic networks can be a useful
instrument in a portfolio manager’s toolbox. As more data becomes available, and
is cheaper in higher frequencies, the applicability and precision of the predictions of
this framework may well increase. Perhaps until then alpha may continue to grow on
trees.
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1 INTRODUCTION

This paper uses network formation techniques based on the theoretical framework
of Hałaj and Kok (2014) to construct networks of lending relationships between a
large sample of banks and nonbanking corporations in the EU.1 Networks of bank–
firm lending relationships provide an alternative approach to studying real–financial
linkages, which takes into account the heterogeneous characteristics of individual
banks and firms on the propagation of shocks between the financial sector and the real
economy. One particular strength of the model is related to the fact that the proposed
framework provides an assessment not only of how banks are directly related to each
other in the interbank market but also how they may be indirectly related (due to
common exposures) via their corporate lending relationships. The model can be used
to conduct counterfactual simulations of the contagion effects arising when individual
– or groups of – banks and firms are hit by shocks. This could allow policy makers
to gauge specific vulnerabilities in the financial system evolving around the lending
relationships between banks and their (corporate) borrowers. Furthermore, we show
that the modeling framework can be used by micro- and macroprudential authorities
to analyze the impact of varying banks’ large exposure limits as a way to mitigate
contagious effects within and beyond the financial system.

The monitoring and assessment of vulnerabilities related to bank–firm lending
relationships are important for several reasons.

It is well-known that banks play a key role in intermediating savings into productive
uses, especially via the financing of the nonfinancial corporate sector. The lending
relationships between banks and firms that are created in this intermediation process
thus contribute to the smooth functioning of the economy be reallocating savings
(typically from households) to entities with a financing need (such as, nonfinancial
corporations). This is especially the case in bank-based financial systems, such as
the euro area and Japan, where nonfinancial corporations are largely dependent on
bank financing whereas more market-based sources of financing are less prevalent.
However, even in more market-based financial systems, such as the US and UK, bank
lending plays a nonnegligible role in the economy; not least for the financing of small
and medium-sized enterprises.

The bank–firm lending relationships furthermore play an important role in the
monetary policy transmission mechanism; especially via the so-called bank lending
channel where the transmission of monetary policy impulses depends on the condi-
tions of the banking sector (see, for example, European Central Bank 2008). In the
euro area, the importance of the bank lending channel has been particularly obvious
during the financial crisis and the euro area sovereign debt crisis where the channels

1 The sample also includes Norway, but all other banks and firms are from the EU.
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of transmissions became clogged due to serious impairment of banks’ balance sheets
as well as (in some instances) country-specific problems related to the weak fiscal
position of the sovereign (see, for example, European Central Bank 2012).

It is also important from a prudential perspective to monitor bank–firm lending
relationships.

First, microprudential supervisors have a keen interest in surveying the bank’s
direct credit exposures to the nonfinancial corporate sector, as shocks hitting the
latter are likely to have negative repercussions on the balance sheet of the bank.
Such considerations may lead to prudential requirements to the bank’s loan loss
provisioning amounts and to reassessments of the appropriateness of their credit risk
management models.

Second, however, banks (and their supervisors) may often overlook the macropru-
dential implications arising due to the fact that balance sheet impairments to individ-
ual banks can also occur due to indirect contagion effects resulting from interbank
linkages that could potentially amplify shocks to individual banks’ corporate credit
portfolios. For example, shocks to the creditworthiness of nonfinancial corporations
that may impair a firm (or a group of firms) to repay the debt owed to a bank could have
broader implications as other banks may also have exposures to those firms (“com-
mon exposures”). Moreover, if the resulting impairments to its credit portfolio are
large enough, it could also directly hamper the bank’s ability to meet its obligations
in the interbank market or at least induce it to withdraw funding to other banks, which
could therefore trigger contagion effects within the interbank market that ultimately
may lead other banks to reduce lending to their corporate borrowers.

Taking a macroprudential perspective, this paper presents a framework that allows
for capturing the contagion effects that may arise not only due to the interbank link-
ages but also taking into account the many linkages that exist between banks and
the nonbanking corporate sector. Importantly, for the formation of the networks we
assume that banks (and firms) dynamically optimize their lending and funding deci-
sions subject to regulatory and economic constraints and nonbank firms try to optimize
structures of their financing received in the form of bank loans.

For this purpose, we present an agent-based network model of the banking sector
extended with a network of bank–firm relationships. The modeling framework is
based on Hałaj and Kok (2014). It is based on aggregate data on banks’ corporate
loan portfolios, interest rates of corporate loans and some proxy for potential lending
relationship for different segments of the market. The model is based on a constrained
optimization framework whereby firms’ demand for loans from individual banks is
driven by optimizing decisions related to their external financing needs, a constrained
number of desired bank lending relationships (based on micro-level credit register
data), geographical proximity to banks in the system and the perceived default risk of
those banks. Banks are similarly assumed to be allocating their provision of loans to
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the corporate sector and on the interbank market subject to constrained optimization.
On the one hand, banks’ decisions to provide loans to corporates are determined
by risk–return considerations related to individual corporate borrowers and subject to
regulatory (capital) constraints. The interbank market activity (lending and borrowing)
is assumed to be driven mainly by liquidity management considerations, partly in
response to fluctuations in excess liquidity as corporate lending evolves over time.
The banks’ interbank funding decisions are assumed to be a function of perceived
counterparty credit risk to minimize potential rollover risk as well as geographical
proximity. In contrast to the corporate sector’s bank financing decision, the number
of potential interbank funding counterparts is assumed to be substantially larger.

The paper aims to improve our understanding of the linkages between banks and the
real economy while accounting for the heterogeneous behavior of individual agents
and how the dynamic interactions with other agents may affect the overall propagation
of shocks to the economy. The network formation approach presented in the paper
thus allows us to assess the risks stemming from interconnectedness between banks
and between banks and the corporate sector. The modeling framework can also be
used to assess how different macroprudential policy choices (such as as changing
bank capital requirements or amending banks’ large exposure limits or changing
bank capital requirements) can affect the contagion risks inherent in the bank–firm
network.

The applicability of the model for policy analysis is illustrated using a number of
counterfactual simulations. The main findings of the paper are the following.

� A similar-sized shock to creditworthiness across all nonbank financial sec-
tors can imply markedly different effects in terms of the contagion losses that
individual sectors inflict upon the banking sector, and also differences across
countries are notable. The size of contagion losses is likely to depend on eco-
nomic and financial structures and on the concentration and riskiness of specific
sectors in banks’ portfolios.

� Shocks to the creditworthiness of one domestic nonbank corporate sector, in
addition to the impact on the domestic banking sector, may create material
cross-border contagion effects on banking sectors in other European countries.
Specific sectors’ ability to create substantial cross-border contagion effects
hinges on their international activities and on the cross-border links of the
domestic banking sector.

� Contagion effects from nonbank corporations to the banking sector can also
feed back to the real economy via banks’ reactions to the initial shock which
may induce them to cut back on funds provided to the corporate sector. This
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points to the importance of macro feedback loops when considering the close
interlinkages between banks and the real economy.

� Shocks to the banking sector (eg, as typically analyzed in stress tests) can have
important second-round effects on the nonbank corporate sector via the bank–
firm lending relationships generated by the model. We also show that such con-
tagion risk can be at least partly stemmed by using micro- and macroprudential
policy tools, such as large exposure limits and changes in risk weights.

The paper contributes to the literature by extending the standard interbank network
to also encompass the real economy by adding a network layer consisting of nonfinan-
cial corporations. To our knowledge, this is one of the first examples of a firm-level
financial network model incorporating links to the real economy in a “network fash-
ion”. A few other recent studies also explore bank–firm relationships using network
techniques, such as de Castro Miranda and Tabak (2013) using Brazilian data, Masi
and Gallegati (2012) using Italian data and Aoyama et al (2009) and Gallegati et al
(2010) using Japanese data.

Furthermore, our model builds on agent-based approaches whereby the financial-to-
real networks are formed via banks’ (and firms’) optimizing behavior. Our approach
thus goes beyond the standard financial network literature, which has traditionally
focused in particular on the interbank market/payment system as a source of contagion
but which has not focused on explaining how the interbank networks emerge or how
they may be affected by changing financial conditions (see, for example, Allen and
Babus 2009; Allen and Gale 2000; Iori et al 2008; Nier et al 2007). For empirical
interbank network studies using overnight interbank transactions data at national
level, see, for example, Furfine (2003), Upper and Worms (2004), Boss et al (2004),
van Lelyveld and Liedorp (2006) and Soramaki et al (2007). Instead, our paper is
more closely related to a more recent strand of the financial network literature that
uses portfolio optimization (see, for example, Georg 2013), game theory (see, for
example, Acemoglu et al 2013; Aldasaro et al 2014; Blasques et al 2014; Bluhm
et al 2013; Cohen-Cole et al 2011), stochastic games and matching problems (see,
for example, Chen and Song 2013; Duffie and Sun 2012; Eisenschmidt and Tapking
2009; Jackson and Watts 2010) and agent-based approaches to address overly complex
equilibria (see, for example, Grasselli 2013; Hałaj 2012; Hałaj and Kok 2014; Markose
2012; Montagna and Kok 2013). Castiglionesi and Lavarro (2011) develop a network
formation model with micro-founded bank behavior that is related to our study (see
also Babus 2011; Castiglionesi and Wagner 2013). Our modeling approach is also
related to studies such as t’Veld et al (2014), who model interbank network formation
via core–periphery structures as a function of the banks’ intermediation activity (see
also Manea 2014).
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The model presented in this paper is set up in a way that it can easily be linked
to traditional bank stress testing analysis to study the effects of adverse scenario
shocks affecting the banks or the nonbank firms, respectively. It is thus also related
to interbank network models used to augment stress testing frameworks, such as, for
example, Canedo and Martínez-Jaramillo (2009), Lopez-Castañon et al (2012) and
Hałaj and Kok (2013).

Finally, our paper is also related to the extensive empirical literature on bank–firm
lending relationships, which points to the importance of relationships in overcoming
asymmetric information problems but also highlights potential borrower capture and
the effects it may have on access to bank finance.2 Of particular relevance to our paper
is the finding in this strand of the literature that most firms tend to operate with only
a small number of bank lending relationships. This finding is corroborated by data
from euro area credit registers data that we employ to help generate the bank–firm
lending relationships in our model.

The paper is structured as follows. Section 2 presents the data used to generate the
interbank and bank–firm networks. Section 3 describes the network formation model,
while in Section 4 we exploit the model to run various simulations that illustrate how
different contagion effects can be captured. It is also illustrated how prudential policy
tools can be employed to potentially mitigate the contagion effects inherent in the
interconnected bank–firm networks. Section 5 concludes.

2 DATA

Our bank–firm network model is meant to mirror the bank-to-bank and bank-to-firm
interlinkages between corporations in the EU countries. The country coverage is
determined by the bank sample which corresponds to the EU countries with banking
groups participating in the EBA 2011 stress test exercise. These banks have been
subject to regular EBA disclosures that provide a level of granular bank data suitable
for generating interbank networks (as shown in Hałaj and Kok (2013)). The input data
for the model consists of largely public data on banks and firms other than banks, while
also taking recourse to some confidential credit register-based information about the
number of firms’ bank relationships. Table 1 on page 40 provides an overview of
the data dimensions, while Table 2 on page 42 and Table 3 on page 46 provide key
descriptive statistics.

2.1 Firms other than banks

Data on individual firms is based on official statistics and market data. The sample of
nonbank firms is derived from the members of the benchmark equity indexes in the EU

2 For a few seminal studies see, for example, Petersen and Rajan (1994), Berger and Udell (1995),
Boot (2000), Boot and Thakor (2000) and Angelini et al (1998).
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countries listed in the footnote to Table 1 on the next page. In total, market price and
balance sheet data for around 900 firms from the blue chip indexes of the major stock
exchanges in the EU have been collected from Bloomberg. Figure 1 on page 49 shows
the aggregate total assets at year-end 2012 for the firms in the sample broken down
by country and by industry sector classification. The in-sample companies constitute
more than 75% of the total listed nonbank firms in the analyzed countries in terms
of total assets. Table 2 on page 42 and Table 3 on page 46 present the dispersion of
some key parameters of the firms in the sample. It can be observed that the sample is
quite heterogenous in term of the firms’ total assets (median size company has €1.7
billion total assets whereas the standard deviation of the total assets of firms amounts
to €70.6 billion) and the volume of borrowing from banks. In addition to the total
asset figures, country and NACE sector codes, information on the companies’ total
liabilities, total equity and measures of credit risks were collected. As regards credit
risk measures, the CDS spreads on senior debt with five years’maturity and long-term
issuer ratings by Moody’s, Fitch and S&P were collected. Where CDS information
was not available, the average expected default frequencies (from Moody’s KMV)
within one year for a corresponding country and NACE code of the company were
assigned to a company.

2.2 Banks

Our sample of banks consists of two groups. First, group-1 banks are selected from
banks included in the 2011 EBA disclosures. The EBA disclosures are suitable
for constructing sufficiently granular balance sheet structures. Furthermore, Bureau
van Dijk’s (BvD) Bankscope data on individual banks’ balance sheet aggregates of
total assets (TAi ), interbank borrowing and lending, customer loans, capital position
and risk-weighted assets were used as a supplementary source to retrieve the main
risk/return characteristics of the group-1 banks.

While the EBA disclosures encompass the largest EU banking groups, they cover
only a fraction of the total EU banking sector. To improve coverage we apply a
simulation approach to generate the second group of banks (group-2 banks). For
that purpose, BvD Bankscope data on total assets of 500 banks in the countries
covered by the group-1 banks was used. Table 2 on page 42 shows even bigger
heterogeneity of banks’ sizes compared to that of nonbank firms (in particular in
France and UK).As the Bankscope data is less granular than the EBA disclosures used
for the group-1 banks, we applied proportionality rules to assign missing balance sheet
items for the group-2 banks. Specifically, for each group-2 bank j we approximated
its interbank placements, interbank deposits, corporate lending and capital by taking
the average corresponding category for banks covered by the 2011 EBA disclosures
in a country of bank j and scaled this figure to the ratio of total assets of bank j
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TABLE 1 Description of the data inputs. [Table continues on next page.]

(a) Coverage

Item Description Sources

Banks Group 1: as identified in 2011 European
Banking Authority (EBA) Disclosures; 80
banks from 21 EU countries1; group 2: BvD
universe of 500 banks (beyond group 1)

EBA, Hałaj and Kok
(2014), BvD
Bankscope

Nonbank
corporations

Members of the benchmark equity indices
in the countries covered by EBA
disclosures and Hałaj and Kok (2014); total
900 firms

Bloomberg and own
calculations

(b) Individual company level attributes

Item Description Sources

Banks Total assets, interbank assets, securities,
securities marked to market, equity, core
tier 1 capital, interbank liabilities, country of
incorporation

EBA, BvD and own
calculations

Banks Loans to nonfinancial corporations:
calculated by applying the average country
ratio of such loans to total assets based on
the ECB Monetary Financial Institutions
(MFI) balance sheet data set

ECB and own
calculations

Banks CDS spreads of senior debt with 5-year
maturity, and long-term issuer ratings by
Moody’s, Fitch and S&P

Bloomberg

Nonbank
corporations

Total assets, total equity, total liabilities,
NACE code, CDS spreads of senior debt
with 5-year maturity, and long-term issuer
ratings by Moody’s, Fitch and S&P

Bloomberg

Nonbank
corporations

Loans from banks: calculated by applying
the average country ratio of loans to total
assets of NFCs based on the ECB Euro
Area Accounts data set

ECB and own
calculations

1 AT, BE, CY, DE, DK, ES, FI, FR, GB, GR, HU, IE, IT, LU, MT, NL, NO, PL, PT, SE and SI.

and average total assets of group-1 banks in the same country as group-2 bank j .
Obviously, there are caveats to this approach. First and foremost, while the group-1
banks generally cover the largest and most predominant banks in their resident country
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TABLE 1 Continued.

(c) Lending relations and other supportive variables

Item Description Sources

Lending
relationship

Defined as the number of loans with
different banks; average figures by country
and NACE sector were applied based on
the data provided through the National
Central Banks

ECB calculations

Interest rates
on loans by
size and
country

Average interest rates on loans by size of
loan and by country based on the ESCB
MIR data; categories of loans as follow:
small (below 0.25 EUR mn), medium
(equal or above 0.25-1 EUR mn), and
large (over 1 EUR mn)

ECB and own
calculations

Expected
default
frequencies

Average of expected default frequencies
within 1 year by country and NACE

Moody’s KMV and
own calculations

Source: own compilation.

they are not necessarily representative of the smaller (group-2) banks, especially
in some of the larger EU countries with less concentrated banking sectors, such
as Germany and Italy. This caveat notwithstanding, the proposed extension of the
sample is important for better coverage of corporate lending portfolios, implying
in turn a broader bank–firm lending network derived via the algorithm presented in
Section 3.2.

In addition to the balance sheet information, the network formation algorithm
described in more detail below also requires some market-based indicators to gauge
counterparty risk. For this purpose, we apply bank-level CDS spreads and long-term
issuer ratings. For those banks/firms where CDS spreads and issuer ratings were not
available, we used sector peer group averages within countries. If no relevant peer
group existed within the country, the EU average of the sectoral peer group was
applied.

2.3 Lending relations

In the model, banks and nonbank companies are linked via their lending relationship.
We consider two types of links, treated separately: (i) bank-to-nonbank and (ii) bank-
to-bank. The likelihood of the interbank linkages is modeled using the approach of
Hałaj and Kok (2013) who define a probability map of linkages based on the 2011 EBA
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FIGURE 1 Total assets of companies selected to the model (2012; € millions).
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Source: Bloomberg and own calculations.

disclosures of country and product breakdowns of banks’exposures. For the bank–firm
interlinkages, in the absence of concrete data of individual bank and firm lending
relationships, we necessarily have to make a number of assumptions. To estimate
volumes of banks’ corporate lending portfolios we use the country-specific ratios
derived from the ESCB Monetary Financial Institutions (MFI) consolidated balance
sheet data set. For the non-EU countries we use congruent, national banking statistics.
Based on the MFI data, the country-specific ratios of the loans to the nonfinancial
sector to the total balance sheet of the MFIs are calculated and applied to the individual
banks’balance sheet figures in order to obtain the proxy for the bank-specific corporate
loan portfolio.

On the nonbank firm side of the lending relationship, an approximation of the
share of firms’ external financing that derives from bank borrowing can be made
using country-specific indicators based on Euro Area Accounts (EAA), or flow of
funds, statistics comprising the full set of financial assets and liabilities of all resident
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FIGURE 2 Loans from banks (2012).
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institutional sectors including the nonfinancial and financial corporations. Based on
these statistics, country aggregate ratios of the nonfinancial corporations’ bank bor-
rowing to total assets within a given country are calculated and then applied uniformly
to the total assets of individual firms in our sample. The outcomes of these approxi-
mations are presented in Figure 2 and Figure 3 on the facing page. The charts show
the individual banks’ corporate loan portfolio and the individual firms’ loans from
banks.

Information on the loans was enriched with data on lending rates, which is another
measure of the credit risk of individual firms. The average interest rates on loans by
size of loan and by country were obtained from the MFI interest rate statistics of the
European Central Bank (ECB), including breakdowns of the interest on small loans
(below €0.25 million), medium-sized loans (equal or above €0.25–1.00 million) and
large-sized loans (above €1 million).

The mechanism to reconstruct the connection between banks and firms is
described in Section 3. National credit register data, which includes anonymous (and
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FIGURE 3 Banks’ corporate loan portfolios (2012).
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confidential) individual loans data with geographical and NACE sector code break-
downs covering most euro area countries, was a key additional source of information
for the construction of the bank–firm network of lending relationships. This allows
for estimating the average number of loans that individual firms have with different
banks. This was a crucial component in determining the probability that firms and
banks are linked to each other, as the average number of bank–firm interlinkages
gleaned from the credit register data helps inform the range of banks that each firm
is likely to borrow from (via the bank–firm probability map). Table 2 on page 42 and
Table 3 on page 46 show an average number of three linkages of nonbank firms with
banks, a number which is steady across countries and sectors.

3 MODEL

In this section, we describe the assumptions behind the corporate network formation
process followed by a specification of an algorithm used to generate the network
of loans that banks extend to other banks and nonbank firms. Finally, we adopt the
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traditional cascade approach to study potential contagion effects of corporate defaults
transmitted via the generated networks of loan exposures.

3.1 Corporate network formation

The model corporate network formation describes how a system of banks and nonbank
firms linked by exposures related to lending activity of banks emerges.3

The simulation of bank–firm networks follows an extension of Hałaj and Kok
(2014) whereby the linkages of exposures are assigned sequentially between nodes
in a given predefined set. However, the introduction of nonbank firm nodes requires
some important modifications and extensions to capture the complexity of the bank–
firm network. First, the interbank linkages and links between banks and nonbank
firms are created independently. When choosing a set of counterparties to optimize
the structure of the lending portfolio, banks pick counterparties first for banks and
later for nonbank corporates. Second, nonbank firms restrict the preferred number of
banks that provide financing to them. In reality, the lending relationships are likely
to be formed by nonbank firms first deciding whether they need external financing
and from which banks they want to apply for loans. Only in the second step will
banks then decide who to lend to and on what terms. Finally, primarily reflecting
liquidity management purposes once the bank–firm relationships are formed, banks
will decide on interbank lending and borrowing. Technically, however, the outcomes
of the algorithm presented below are invariant to the order in which interbank or
nonfinancial corporate portfolios are optimized.

The investment choice of banks is assumed to be derived from an optimization
of the return from loans (expected return), the risk of interest payments and default
(volatility of returns) and diversification (correlation of returns from loans to extended
to different counterparties). The contractual loan rate is proxied using official ECB
statistics; namely, data on MFI interest rates (MIR) by country and by loan size. The
country-specific lending rates are in turn combined with the firms’ credit ratings to
derive firm-specific rates. Specifically, the ratings are translated into the credit risk
spreads and for each bank the deviation of its spread from the average in the sample
is attached to the country-specific rate yielding the lending rate on loans to that firm.
The risk of return on a loan extended to a company i is measured as

�i D
q
.1 � pi C .1 � �/2pi /. Nr

2
i C �

2
r;i / � .1 � pi C .1 � �/pi /

2 Nr2i ; (3.1)

3 Notation: NK D f1; 2; : : : ; Kg for each natural numberK; Mm�n is the set of real values matrixes
with m rows and n columns; Mn is a square matrix of size n; A � B – for N -dimensional vectors
A and B producing a vector ŒA1B1; A2B2; : : : ; ANBN �. For z 2 R, dze is the smallest number in
Z which is higher than or equal to z.
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where

� Nri is the lending rate to a company i ,

� �r;i is the volatility of the lending rate to i ,

� pi is default probability of i , equivalent to the estimated credit risk spread
(pi WD fspreadgi=flgdg, for lgd D 0:5),

� � is the loss given default parameter.

In fact, .�i /2 is the variance of a random variableXi combining the interest rate risk
(assumed to be a normally distributed random variable ri with mean Nri and standard
deviation �r;i ) and the default risk (assuming the firm defaults on its interest payments
with probability pi ):

Xi D

(
ri with probability 1 � pi ;

.1 � �/ri with probability pi :

The correlation structure of returns from corporate portfolios can be either estimated
or set via some rules of thumb. In the absence of a reliable proxy the currently applied
rule of thumb assumes zero correlation.

Individual, optimization-based decisions of banks and nonbank firms to invest and
finance their activities contribute to an aggregate network of exposures between agents
but within an assumed structure of lending relationship in the market. The lending
relationship structure is derived from a probability map defining the likelihood that
a given bank extends a loan to another firm – a bank or a nonbank company. For
interbank lending, the probability map from Hałaj and Kok (2013) is used for the
likelihood of linkages between banks in the EBA disclosure sample. The estimates
of probabilities are based on the banks’ balance sheet data and in particular on geo-
graphical breakdowns of loans provided in the EBA institution-specific disclosures of
EU banks. For the links between the banks from the EBA sample and their non-EBA
sample domestic counterparties, since we do not have any data for the estimations, we
assign a stylized probability of 1%. Finally, we conservatively assume 0% probabil-
ity of linkages between banks outside the EBA disclosures sample. The endogenous
interbank relationships that are formed using our optimization algorithm will thus
be a subset of the preselected group of banks that individual banks, according to the
probability map, are likely to be related to. For the nonfinancial companies in the
sample we use Credit Register data covering most euro area countries, and which
contains a geographical breakdown of loans. We calculate the average geographical
structure of loans for broad NACE sectors in a country. For those corporate agents
in the model where no geographical structure is available, we assume some stylized
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probabilities of linkages (domestic is 90% and foreign is 1%).4 The combined inter-
bank and nonfinancial corporate map would create a large map that is used to draw
pairs of agents potentially entering a lending contract.

A network of interbank exposures and corporate lending is generated under the
assumption of optimizing the behavior of banks and nonfinancial firms. Moreover,
for what concerns the banks’ portfolio optimization we assume that the interbank and
corporate loan portfolios are optimized separately. This assumption tries to reflect the
different risk management treatment of these two types of portfolios, whereas inter-
bank lending is closer to liquidity management practices and corporate lending is part
of the investment portfolio. These important differences do not exclude the expected
returns and related risks as important drivers of the allocation of investments in each
of the two portfolios. We take the volumes of the liquidity and investment portfolios
as results of an asset and liability management (ALM) process. Banks specify the
amount of liquidity that they need to acquire from the interbank market and the pool
that they can offer to lend to other banks. The separation of the two investment subport-
folios (lending to customers and interbank lending) can stem from a strategic ALM
allocation which may be expected to remain relatively stable over time (Adam 2008).
Therefore, we expect that banks first choose the target for volumes of nonfinancial
corporate and interbank portfolios, respectively, and then optimize within these two
subportfolios. On the asset side, their preferred structure of investment maximizes the
risk-adjusted return. On the liability side, the preferred funding structure is selected to
minimize the funding risk. Funding risk is associated with the stability of the funding
relationship. It is measured by a matrix D 2 MN which is a covariance matrix of
random variables Zi , i 2 f1; : : : ; N g, corresponding to banks, taking a value 1 � �
with probability pi and a value 1 with probability 1 � pi . Both the adjustment of
returns by their risk, which is taken into account in the choice of the asset structure,
and the funding risk for the selection of the funding structure introduce quadratic
terms to the optimization programme and reflect the risk averseness of all the agents
in the model.

At this stage of the algorithm we make an important deviation from Hałaj and Kok
(2014) concerning funding relationships of nonbank corporations. In their financ-
ing decisions, most nonbank companies usually operate with only a very limited
number of banks from which they borrow money to finance their projects (see, for
example, Petersen and Rajan 1994). The Central Credit Registers data provides us
with information about the number of banks that each company in the sample has
in its funding portfolio. We use the estimated mean (�c;n) and variance (�2c;n) of

4 This approach is similar to, for example, the BIS report on OTC derivatives which also use some
stylized probabilities where no information is available for the estimation of linkages (Bank for
International Settlements 2013).
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the numbers per country (c) and broad NACE sector .n/ combined with the proba-
bility map to draw subsamples of bank lenders for each company. More precisely,
for each nonfinancial corporation i we first use the probability map to preselect the
group of banks Gi which may establish a lending relationship with that company.
Second, from a lognormal distribution with mean exp.�c;n C �2c;n=2/ and variance
exp.2�c;n C �2c;n/=.exp.�2c;n/ � 1/ we draw the ultimate number of banks Ni and
randomly pick dNie banks from Gi .5 Conversely, it is assumed for banks that the
degree constraint in their interbank funding sources is very lax meaning that banks
may form relatively large number of lending relationships on the interbank market.
Subsequently, after these two steps the optimization of funding sources is performed,
as in Hałaj and Kok (2014).

The network formation algorithm is ultimately run to match in an iterative way
the corporate lending portfolios of banks to the funding preferences of other banks
and the external financing needs of nonbank firms. The algorithm is analogous to the
one proposed by Hałaj and Kok (2014). In each iteration, or “step” of the algorithm,
banks and firms choose their preferred counterparties and volume of loans that they are
most willing to grant or accept. The inherent mismatch between supply side (related
to extended loans) and demand side of the market (related to funding sought by banks
and nonbank firms) is assumed to be leveled out by a bargaining game played by pairs
of agents.6 The aggregate outcomes of the game may still leave a mismatch. In such a
(likely) case the next iteration (step) is activated to allow agents to enlarge their sets of
potential counterparties and to reoptimize the preferred structure of loans. The steps
are repeated until convergence. We present the procedure in a rigorous, algorithmic
way in Section 3.2. A snapshot of the outcome of the network formation process is
presented in Figure 4 on page 64.

3.2 Algorithm

The algorithm consists of a sequence of the three rounds preceded by an initialization
phase (points (1)–(9) of the algorithm specified in this section). The rounds reflect
the three main building blocks of the process describing the emergence of the lending
network among banks and nonbank firms. The first round (point (10) of the algorithm)
implements the optimization of banks’ loan portfolios. The second round describes

5 The lognormal distribution is generated by a normally distributed variable with mean �c;n and
variance �2c;n. Ni is obtained by drawing a number from the lognormal distribution and taking its
integer part.
6 The bilateral games are myopic in the sense that they partly ignore the links already established
with other agents. It is only a partial omission since each agent defines the set of their potential
counterparties at the beginning of the formation process and then at each iteration they randomly
enlarge it. It is a different approach than the one taken by Manea (2014) where the number of already
established connections matter for the choice of the new linkages.
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the optimization of the funding sources, both of banks and nonbank firms (point (11)).
The third round covers the bargaining game (points (12)–(13)). The three rounds are
repeated sequentially to allocate loans in banks’ interbank and corporate portfolios
to interbank and corporate funding portfolios of other banks and nonbank firms. The
accruing of loans in the emerging network is performed in point (14) of the algorithm.

(1) Define the nodes, ie, the two sets of tuples representing banks (bŒi �) and nonbank
firms (cŒi �):

� Set B:

bŒi � D .i; aT
i ; a

B
i ; a

C
i ; l

B
i ; ei ; e

B
i ; e

C
i ; ri ; �

B
i WD Œ�1; : : : ; �N �/

and #B D N

� Set C:

cŒi � D .N C i; aT
NCi ; l

C
i ; eNCi ; rNCi ; �

C
i WD Œ�NC1; : : : ; �NCM �/

and #C DM

where

� aT – total assets

� aB – interbank assets of banks

� aC – volume of corporate (nonbank related) lending portfolio of banks

� lB – interbank liabilities of banks

� lC – liabilities of nonbank firms related to borrowing from banks

� e – (for banks) total regulatory capital; (for nonbank firms) total capital

� eB – banks’ capital allocated to interbank lending

� eC – banks’ capital allocated to corporate lending to nonbank firms

� r – interest rate on loans, specific to a country and (NACE) sector of a
borrower

� !B – risk weights of the interbank exposures

� !C – risk weights of the nonbank corporate loans

� �B; �C – volatility of lending rates computed based on reference interest
rates and spreads (or PDs) related to country/sector specific credit risk
(see formula (3.1))

(2) Define probability maps describing the likelihood that a pair of nodes is
connected by a lending exposure. This consists of:
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� a square matrix P geo;B 2 MN describing the likelihood that banks
connect to each other;

� a matrix P geo;C 2 MM�N describing the likelihood that banks connect
to nonbank firms; the shape of the matrix reflects an assumption that
nonbank firms do not lend to banks.

(3) Define a correlation structure of returns from loans QB 2 MN to banks and
QC 2MM – to the nonbank corporate sector; D 2MN is the funding diver-
sification matrix (common for banks and nonbank firms since funding in the
model is only provided by the N banks).

(4) Initialize the exposure matrixes:

LB;0 2MN ; 8.i; j / 2 NN � NNL
B;0
ij WD 0;

LB;C;0 2MM�N ; 8.i; j / 2 NM � NNL
B;C;0
ij D 0:

(5) Initialize vectors of unallocated assets aB;1 W D aB, aC;1 W D aC and liabilities
lB;1 W D lB and lC;1 W D lC. Initialize the vectors of unallocated capital
eB;1 D eB and eC;1 D eC. The entries of the vectors are gradually reduced
in each step of the algorithm as banks’ assets are matched with the assets and
liabilities of banks and nonbank firms creating a network of direct exposures.

(6) Initialize the counterparty sets for all banks and firms:

� NB
B;A;0
i D ; is a set of preferred interbank debtors of bank i (ie, i is willing

to place deposits in banks from NB
B;A;0
i );

� NB
B;F;0
i D ; is a preferred set of interbank creditors of bank i ;

� NB
C;0
i D ; is the set of nonbank corporate firms to which i is willing to

grant loans;

� NC
B;0
j D ; is the set of banks from which a given nonbank firm is willing

to borrow money to finance its activities.

(7) Define an out-degree distribution of all nonbank corporate nodes: let c be a set
of countries covering all nonbank firms in the sample and n be a set of NACE
sectors. Let c be a mapping from nonbank indexesN C 1;N C 2; : : : ; N CM
to c and let n be a mapping from nonbank indexesN C 1;N C 2; : : : ; N CM
to n. Then, Qmj be drawn from lognormal distribution created by exponential
transformation of a normal distribution with mean �c.j /;n.j / and �c.j /;n.j /.
Ultimately, the maximal numbermj of links incoming to cŒj � 2 C is given by
d Qmj e.
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(8) Set a precision � > 0 for the allocation of loan portfolios to the funding needs
of the nonbank firms.

(9) Define bank-specific risk aversion parameters: �i for investment portfolio
choice and �Fi for funding diversification decisions.

(10) [round 1, step k] For each bŒi � 2 B draw N numbers .xk1 ; x
k
2 ; : : : ; x

k
N / from

a uniform distribution on Œ0; 1�

Let BB;k
i D fj j xKj 6 P

geo;B
ji g be the set of potential new accepted interbank

counterparties at step k. Then

NB
B;A;k
i D NB

B;A;k�1
i [ B

B;A;k
i

is the new set of counterparties on the interbank market

For NBC;k
i the recursive procedure is similar. Let BC;k

i D fj j xkj 6 P
geo;B
ji g be

the set of potential new accepted nonbank corporate counterparties of bank i
at step k. Then

NB
C;k
i D NB

C;k�1
i [ B

C;k
i

is the new set of counterparties on the corporate lending market.

On the interbank market, banks solve the optimization problem, whereby for
i 2 NN :

they find a vector ŒLk1i ; : : : ; L
k
Ni � 2 R

N that maximizes a functional

J.Lk1i ; : : : ; L
k
Ni / D

X
j2 NB

B;k
i

rkj L
k
ji � �i .�

BLk�;i /
TQB.�BLk�;i /; (3.2)

such that

8j 2 NN Lkji > 0
NX
jD1

Lkji 6 a
B;k
i

NX
jD1

!B
j L

k
ji 6 e

B;k
i

whereby j 62 NBB;k
i ) Lkji D 0.
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On the nonbank corporate loan market, banks solve the following optimization
problem, whereby for j 2 f1; 2; : : : ;M g:

they find a vector ŒLk1j ; : : : ; L
k
Mj � 2 R

M that maximizes a functional

J.Lk1j ; : : : ; L
k
Mj / D

X
i2 NB

C;k
j

rkNCiL
k
ij � �j .�

CLk�;j /
TQC.�CLk�;j /; (3.3)

such that

8i 2 NM Lkij > 0
MX
iD1

Lkij 6 a
C;k
j

MX
iD1

!C
i L

k
ij 6 e

C;k
j

whereby i 62 NBC;k
j ) Lkij D 0.

Let LB;A;k be a vector of some preferred allocation of placements on the inter-
bank market (maximizing (3.2)) and letLB;C;A;k be a vector of preferred invest-
ment on the nonbank corporate lending market (maximizing (3.3)) after round
1 of step k.

(11) [round 2, step k] Banks and nonbank corporate firms decide about their pre-
ferred structure of funding from banks. They minimize the risk of obtaining
funding/financing from banks that have the highest default risk which may
break the established lending relationship. Moreover, firms take into account
the number of banks that provide funding to individual firms (out-degree
distribution).

For what concerns banks’ funding for each bŒi � 2 B we draw N numbers xkj
from a uniform distribution on Œ0; 1�. Then

B
B;F;k
i D fj j xkj 6 P

geo;B
ij g

is a set of new potential interbank creditors of i and NBB;F;k
i D NB

B;F;k�1
i [

B
B;L;k
i is a set of potential counterparties of i in step k.

With respect to nonbank firms’optimized borrowing from banks for each cŒi � 2
C we draw N numbers xkj from a uniform distribution on Œ0; 1�. Let QC B;k

i D

fj j xkj 6 P
geo;C
ij g and letC B;k

j be a random subset of QC B;k
i , having at mostmi

elements, which is the set of potential new accepted interbank counterparties
at step k. The random sampling of the subsets C B;k

j is the following:
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� if # QC B;k
i 6 mi then C B;k

i WD QC
B;k
i ,

� if # QC B;k
i > mi then we define a probability space on a family of mi -

element subsets of QC B;k
i assigning to each element an equal probability

.# QC B;k
i �mi /Š.mi /Š

.# QC B;k
i /Š

and one subset C B;k
i is drawn with this probability.

Then
NC

B;k
i D NC

B;k�1
i [ C

B;k
i

is a new set of counterparties on the nonbank corporate loan market.

In terms of optimization the following is assumed:

For i 2 1; 2; : : : ; N find a vector ŒLki1; : : : ; L
k
iN � 2 R

N that minimizes

F B.Lki1; : : : ; L
k
iN / D �

F
i ŒL

k
i1 : : : L

k
iN �DŒL

k
i1 : : : L

k
iN �

T (3.4)

such that j 62 NBB;F;k
i ) Lkij D 0 and

PN
jD1L

k
ij 6 l

B;k
i .

For j 2 1; 2; : : : ; N find a vector ŒLkj1; : : : ; L
k
jN � 2 R

N that minimizes

F C.Lkj1; : : : ; L
k
jN / D �

F
j ŒL

k
j1 : : : L

k
jN �DŒL

k
j1; : : : ; L

k
jN �

T (3.5)

such that i 62 NC B;k
j ) Lkji D 0 and

PN
iD1L

k
ji 6 l

C;k
j .

Let us denote a vector of the optimal structure of the preferred funding sources
of bank i as LB;F;k

i (maximizer of the functional (3.4)) and let LC;F;k
i be a

vector of the optimal structure of the preferred funding sources of a nonbank
(maximizer of the functional (3.5)) after round 2 of step k.

(12) [round 3, step k] The negotiation round of the game is designed to reduce
the results of divergence between preferences on the asset and liability side
of agents’ balance sheets. The outcome of the bargaining game is an agreed
tentative volume of a loan granted by bank j to bank i (if i 6 N ) or a nonbank
(if i > N ). “Tentative” means that it may be subject to adjustment if the
aggregate volume of loans exceeds the predefined one.

Four different outcomes are conceivable:

Case LB;A;k
ij > L

B;F;k
ij :

maximize

Gkij .x/ D ŒU
l;k�
ij � s

l;k
ij .x � L

B;F;k
ij /�ŒU

a;k�
ij � s

a;k
ij .L

B;A;k
ij � x/� (3.6)

Journal of Network Theory in Finance www.risk.net/journal



Emergence of the EU corporate lending network 61

over x 2 ŒLB;F;k
ij ; L

B;A;k
ij �, where U l;k�ij and U a;k�ij are utilities of the lending

volumes optimal from borrower and lender perspective respectively, and sa;kij
and sl;kij are measures of how much bank i and j are willing to deviate from
their optimal investment and funding strategy, respectively. The sensitivity is
inverse proportionate to the asset size, ie, sl;kij D 1=a

t
i and sa;kij D 1=a

t
j .

Case LB;A;k
ij < L

B;F;k
ij : analogously

The maximizer of the formula (3.6) is denoted NLB;k
ij , which for all is and j s

creates a matrix of exposures NLB;k .

Case LB;C;A;k
ij > L

C;F;k
ij :

maximize

Gkij .x/ D ŒU
l;k�
ij � s

l;k
ij .x � L

C;F;k
ij /�ŒU

a;k�
ij � s

a;k
ij .L

B;C;A;k
ij � x/� (3.7)

over x 2 ŒLC;F;k
ij ; L

B;C;A;k
ij �.

Case LB;C;A;k
ij < L

C;F;k
ij : analogously

The maximizer of (3.7) is denoted NLB;C;k
ij , which for all is and j s creates a

matrix of exposures NLB;C;k .

(13) [round 3, correction of excessive supply/demand, step k]

(a) [for lending] if
P
i
NL

B;k
ij > a

B;k
j then

NL
B;k
ij WD

NL
B;k
ij

a
B;k
jP
i
NL

B;k
ij

if
P
i
NL

B;C;k
ij > a

C;k
j then

NL
B;C
ij WD

NL
B;C
ij

a
C;k
jP
i
NL

B;C
ij

(b) [for borrowing] if
P
j
NLB
ij > l

B;k
i then

NLB
ij WD

NLB
ij

l
B;k
iP
i
NLB
ij

if
P
j
NL

B;C
ij > l

C;k
i then

NL
B;C
ij WD

NL
B;C
ij

l
C;k
iP
i
NL

B;C
ij
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(14) [update of the network] The networks of interbank (LB;k) and nonbank corpo-
rate lending (LB;C;k) are incrementally updated by the outcomes of the three
rounds in step k:

LB;k WD LB;k C NLB;k

LB;C;k WD LB;C;k C NLB;C;k

The unallocated assets, liabilities and capital are also updated:

a
B;kC1
i D a

B;k
i �

NX
jD1

NL
B;k
j i

a
C;kC1
i D a

C;k
i �

MX
jD1

NL
B;C;k
j i

l
B;kC1
j D l

B;k
j �

NX
iD1

NL
B;k
j i

l
C;kC1
j D l

C;k
j �

NX
iD1

NL
B;C;k
j i

e
B;kC1
i D e

B;k
i �

NX
jD1

!B
j
NL

B;k
j i �

MX
jD1

!C
j
NL

B;C;k
j i

(15) Repeat (10)–(13) until

kLB;kC1 �LB;kk < �
X
i

ai and kLB;C;kC1 �LB;C;kk < �
X
i

aNCi

3.3 Cascade contagion

To assess contagion risk stemming from the interconnectedness on the lending market
and a structure of external shocks affecting agents’ ability to pay back their debts,
we employ a cascade procedure. Let S be a vector of real numbers representing a
shock structure to credit quality of exposures to individual banks and nonbanks. It is
assumed to affect the PDs and is translated to losses reducing banks’ capital buffers.
Let � be a vector of loss-given-default (LGD) parameters where its first N entries
correspond to the interbank exposures and the following M to the exposures toward
the nonbank corporate sector. Let D0 be a set of defaulted banks; that is, those banks
for which the capital ratio falls below a certain threshold � . The initial shock to banks’
lending portfolios is calculated as:

	
e;0
i D �

NX
jD1

Sj�jL
B
j i �

MX
jD1

SNCj�NCjL
B;C
j i
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and capital is reduced respectively:

e0i D ei C	
e;0
i : (3.8)

The new capital ratio for the risk-weighted assets Ri is calculated as

CR0i D e
0
i =.Ri C	

e;0
i /:

For the banks where the capital ratio fall below � we assume that they default on their
interbank obligations, implying that the set of defaulted banks is updated as follows

D1 D D0 [ fi 2 NN j CR0i < �g:

Consequently, the cascade is initiated in a sequential way.

Step 1. Let us suppose that a set Dk , capital position vector ek and risk-weighted
assets vector Rk are known in a certain round k of the cascade.

Step 2. Let a set of new defaults be defined as Dnew;kC1 D fi 2 NN j CRki < �g=D
k .

� If Dnew;kC1 D ; then cascade stops.

� If Dnew;kC1 ¤ ; then DkC1 D Dk [Dnew;kC1 and for all i 2 NN

	
e;kC1
i D �

X
j2Dnew;kC1

�jL
B
j i

and

ekC1i D ekC1i C	
e;kC1
i ; CR0i D e

kC1
i

��
Ri C

kC1X
mD1

	
e;m
i

�

and the cascade returns to the beginning of Step 2 for the next round of default
calculations (k W D k C 1).

Ultimately, the contagion effects are measured by differences between the terminal
capital ratio CR1i (after the cascade is unwound) and the starting capital ratio CR0i ,
ie,

	CRi D CR0i � CR1i :

4 SIMULATIONS

In terms of applied uses the model can be employed for various macroprudential policy
analysis purposes to study how contagion can spread within the formed networks
and how its effects can be mitigated (by policy actions). Specifically, the generated
networks allow for conducting sensitivity analysis of the network structure and the
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FIGURE 4 An example of the estimated network of nonfinancial corporate lending.

 

 

 
   

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Source: own calculations, graphs generated using NetworkX in Python. The shades of colors of the edges are
proportional to the log-exposures.The inner circles represent the banks; the outer circles represent the nonfinancial
corporations. The strings attached to the nodes are the short names of the nonfinancial companies; the three-digit
codes on the inner circle nodes are the three digits of the EBA bank codes. For clarity, we only keep arrows indicating
loans from banks to nonbank agents removing bank-to-bank lending exposures; otherwise numerous bank-to-bank
linkages would make the structure of the network invisible.

contagion risk embedded in this structure to changes in corporate credit risk or in
banking sector conditions, including bank regulatory parameters and macroprudential
policy instruments (such as capital buffers and large exposure limits).

Different configurations of the network of lending exposures can emerge from
the interactions of banks and nonbank corporate firms described by our algorithm.
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Randomness of network structures is driven by the probability map and reflects
uncertainty about links to be established for a particular pair of firms in the sam-
ple of EU banks and borrowers in the EU corporate sector. One particular realization
of the distribution of networks generated by the algorithm specified in Section 3.2
is presented in Figure 4 on the facing page. Banks and firms in one country are
represented as points on two concentric circles: the inner corresponding to banks
and the outer to the nonbank corporate sector. Notably, substantially more links are
formed between agents from the same country. However, many larger banks also
extend loans to the corporate sector of other countries which can lead to spillovers of
shocks originated from corporate subsectors in a country to other counties’ banking
systems.

To illustrate how the model can be used for policy analysis, we conduct a number of
counterfactual simulations of how shocks to different agents may spread to other parts
of the system of banks and nonbank firms. For the time being, the simulations mainly
focus on how shocks initiated in different parts of the corporate sector propagate to the
banking sector via the firms’ lending relationships with the banks and are amplified
by interbank linkages to a potential cascade of defaults on the interbank market and
back again to the real sector (see Section 3.3).

Concretely, we introduce shocks to the creditworthiness of different groups of non-
financial corporations by increasing their probabilities of default (PDs). An increase
in the PD of a specific firm will affect the expected loss (ie, defined as PD times
loss-given-default times exposure size) of the credit portfolio of banks holding loans
to the firm.

In the first set of counterfactual simulations, we shock the creditworthiness (ie, the
PD) of different industry sectors simultaneously across all countries and then use the
model to derive the impact of contagion losses of the banks in the network (measured
in terms of capital loss of the banks).

Results of this simulation are reported in Figure 5 on the next page. It is observed
that there are material differences across sectors in terms of the contagion effects they
may inflict on the banking sector (the darker red the columns representing banks in the
spectral chart indicate higher contagion-induced losses to bank capital). For example,
whereas a shock to the manufacturing sector appears to have a widespread contagion
effect on banks throughout the EU, similar shocks to the construction and real estate
sectors mainly have material negative implications for banks in Spain, Denmark,
Greece and Ireland; countries where banks in recent years (especially pre-crisis) have
built up notable exposures to the property developers and construction firms. Shocks
to the energy sector are in turn found to produce considerable contagion effects on
banks in the Southern European countries, such as Cyprus, Spain, Greece, Italy and
Portugal as well as France.
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FIGURE 5 Contagion impact on banks: shock to industry sector uniform across all
countries.
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Alternatively, the model can be used to carry out country-specific analysis. For
example, what would be the impact of one or more sectors in one country being hit
by an adverse shock. This could be analyzed both in terms of the implications for
the domestic banking sector and on the cross-border contagion effects to banks in
other countries with links to either the industry or to the domestic banks located in
the country where the shocks occur.

A first illustration of such simulations is presented in Figure 6 on the facing page
which shows the contagion effects on the banking sector when shocking consecutively
the PDs of the Spanish industry sectors by ten percentage points. In this particular case,
while the domestic banking sector in Spain is affected (especially for shocks affecting
the manufacturing, energy and communication sectors) only very limited cross-border
contagion is observed. Whereas this may reflect largely nonmaterial cross-border
linkages between the Spanish corporate sector and the non-Spanish European banks,
the negligible cross-border effects may also be due to the size of the shocks imposed.

To illustrate the latter point, we conducted another set of simulations in which the
credit worthiness of the assumedly internationally exposed German manufacturing
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FIGURE 6 Contagion impact on banks: ten percentage point shock to PDs of industry
sectors in one country, Spain.
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sector was shocked to varying degrees. Figure 7 on the next page thus shows the
contagion impact on European banks for different sizes of shocks to the PDs of
German manufacturing firms. Similar to the Spanish case, for small shocks to PDs
the deteriorating credit quality of German manufacturers is found to entail a relatively
limited cross-border impact in terms of contagion effects on the banks. However, when
gradually increasing the PD shocks it is observed that while the contagion effects
within the German sector become more pronounced, also a number of non-German
banks start being affected by the shocks to German manufacturing with increasing
intensity as the PD shocks become larger. In this example, it is observed that some
non-German banks (eg, Spanish, French and Swedish) are affected already for small
PD shocks to the German manufacturing sector, whereas broader contagion effects
on the European (non-German) banking sector are generated for PD shocks above
60–65%.

The impact of the shocks stemming from the corporate sector may not be limited
only to the interbank market but the financial problems of banks may be further
transmitted back to the nonbank corporate sector. Such a feedback effect can be related
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FIGURE 7 Contagion impact on banks: shock to the PDs of manufacturing sector in one
country, Germany.
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to a reduced provision of financing to the real economy in the case of a defaulting
bank or a bank experiencing a substantial decline of the capital has to discontinue
extending loans to some sectors of the economy.We illustrate the feedback mechanism
referring back to the example of a shock originating in the manufacturing sector in
Germany. Hence, Figure 8 on the facing page shows some results of an experiment
in which we assumed that banks losing 30% or more of their initial (before the
shock) capital cease granting loans to the corporate sector. For a given sector in a
country, the feedback effect is quantified by the ratio of loans from failing banks
to the total funding needs of the firms in the sector. Figure 8 on the facing page
shows that significant feedback effects to the nonbank corporate sector, also with
spillovers to corporations in other EU countries, are only found for rather high default
probabilities (above 80%). Only in Germany itself can some material disruption to
nonbank corporate funding be observed for PD shocks of lower magnitudes as well,
eg, around 50%.

While in the above simulations the imposed shocks to the network are all assumed
to emerge within the nonbank financial sector, our network model could likewise
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FIGURE 8 Reduced provision of credit to the economy by banks affected by a shock to
the PDs of manufacturing sector in one country, Germany.
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be employed to study the reverse causality whereby shocks would occur within the
banking sector and spread to other banks and potentially impair corporate lending
relationships. Whereas the model is based on micro-level relationships, it could thus
also bring insights into macro implications of stress emerging in the banking sector and
potentially impairing the banks financial intermediation function. In this context, one
way of using the model presented in this paper could be to link it with a macro stress
testing framework (see, for example, Bank of England 2013; Henry and Kok 2013)
which could be used to derive the initial shocks to banks’ capital positions subject to
specific macro scenarios. These shocks would then be input into our network model
to assess contagion effects to within the banking sector and to the wider economy via
the effects on corporate lending relationships.

From a policy perspective, the model-based simulations described in this section
and exploiting the fact that the banks in our model are subject to various forms of
regulatory constraints (that is, capital constraint, large exposure limits, adjustment
of sectoral risk weights, CVA capital charges on counterparty risk) could be useful
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FIGURE 9 Contagion spreading under various regimes of the LE limits.

3

5

7

9

11

13

15

17

19

21

23

A
T

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
K

D
K

E
S

E
S F
I

F
R

G
B

G
B

G
B

G
R IT IT IT N
L

N
O P
L S
I

25

%

 

Values of�CRi for each bank presented; y axis, LE limits; The shock scenario assumes default of 60% of volumes
of loans to manufacturing corporate sector in Germany (LGDD 50%). Source: own calculations, Matplotlib used for
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for assessing the effectiveness of various macroprudential policy actions (see also
Hałaj and Kok 2014; Hałaj et al 2013). For example, by adjusting minimum capital
requirements or large exposure limits imposed on banks in one country or in the whole
European Union the model could be used to gauge the effectiveness of these macro-
prudential policy adjustments by comparing the network-based contagion effects with
the contagion in the setting without these adjustments.

We illustrate the application of our framework in the context of large exposure (LE)
limit regulations and sector-specific risk weights. Limits are usually set relative to the
capital buffers of banks. The commonly used limit in banking regulation, embedded
into Basel III regulation framework and its CRDIV legal implementation, assumes
that banks are not allowed to keep exposures to one counterparty exceeding 25% of
their regulatory capital. Such limits are supposed to increase resilience of banks to
defaults of single counterparties but may not be effective in case of multiple defaults
within one sector of the economy. The simulations designed to test the sensitivity of
contagion losses to various levels of LE limits are presented in Figure 9. In general, as
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FIGURE 10 Secondary contagion defaults under different regimes of large exposure
limits.
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Each red (small banks) or blue (large bank) bar indicates a secondary default, ie, banks belonging to the set
S WD D1=D1; y axis, LE limits. Source: own calculations, Matplotlib used for chart generation.

illustrated by the simulation, the higher the limit is set (in other words, the less stringent
regulation is imposed) the higher potential contagion impact of losses originated to the
corporate portfolios on banks’ capital can be expected. Interestingly, Figure 10 shows
that there is a qualitative transition in how the contagion defaults for LE limits above
14% look like. The figure depicts those banks that experience second-round defaults,
understood as a default resulting from other banks’ defaults and not directly from
losses incurred in the corporate loan portfolios that were shocked in the first instance.
Formally, the set of banks affected by the secondary defaults (or second-round effects)
can be defined in terms of mathematical objects introduced in Section 3.3, ie, as
S WD D1=D1. For rather restrictive values of LE below 14% no single bank defaults
in the simulation as a consequence of any other bank’s default. For LE D 15% the
number of defaulting banks increases for higher LE limits, particularly visibly for LE
limits above 20%. Notably, only smaller banks in the sample are subject to a second
round effect except for the case of LE D 25% that creates conditions for a default of
one large bank in Germany. Nevertheless, no cross-border default can be observed as
an outcome of this particular simulation.
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FIGURE 11 Effect of the increased sectoral risk weights on the magnitude of contagion
triggered by banks affected by a shock to the PDs of manufacturing sector in one country,
Germany.
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The policy of setting sector-specific risk weights aims to make banks more resilient
to risks related to exposures to a certain sector by requiring banks to hold more capital
against these exposures. Simulations performed in our framework confirm that this
macroprudential policy instrument can be effective in limiting the potential size of
the contagion defaults of banks. For illustrative purposes, we assume that the policy
maker plans to increase weights for exposures toward the manufacturing sector in
Germany. In the next step, it is assumed that an exogenous shock affects the credit
quality of banks’ loan portfolios exposed to that corporate sector implying credit
losses and consequently triggering cascades of interbank defaults. The impact on
capital ratios of banks is then compared under two regimes: (a) base case of the
estimated risk weight in our model and (b) risk weights to the exposures against
the manufacturing sector in Germany increase 1.5 times (eg, from 60% to 90%).
Figure 11 shows for different magnitudes of the initial shock to PDs that higher
weights result in lower losses. This finding is especially pronounced for very strong
shocks of PD > 80%.
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5 CONCLUSIONS

In this paper, we extend the interbank network analysis that is standard in the litera-
ture to also encompass firm-specific networks. This allows us to study risks stemming
from interconnectedness not only within the financial system but also those arising
due to interlinkages between the financial and real sectors of the economy. In another
extension to the standard literature, we furthermore apply agent-based network for-
mation methods. This inter alia allows us to examine how changes in key prudential
parameters, such as minimum capital requirements and large exposure limits, can
influence the contagion risks embedded in the network structures as a function of the
(constrained) optimizing behavior of the agents in the network.

The simulations presented in the paper clearly demonstrate that also adding network
structures capturing bank–firm lending relationships is a relevant layer of intercon-
nectedness that can amplify the contagion risks that in the literature have typically
been confined to within-financial sector networks.

Furthermore, the model can also be a useful analytical tool to study second-round
effects in relation to bank stress tests whereby the “first round” stress imposed on
the banking sector within the framework can propagate beyond the banks via their
lending relationships with the corporate sector.

Future extensions of the model should focus on bringing into the network further
economic sectors, such as households, governments and other financial intermedi-
aries. Especially, embedding a network of households will require a different type of
data set than the one we have employed in this study and we will leave this for future
research.
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ABSTRACT

In this paper, we study the evolution over time of the correlation structure of equity
returns by means of a filtered-network approach and use this to investigate persis-
tency and recurrences and their implications for risk-diversification strategies. We
build dynamically planar maximally filtered graphs from the correlation structure
over a rolling window and study the persistence of the associated directed bubble
hierarchical tree (DBHT) clustering structure. We observe that the DBHT clustering
structure is quite stable during the early 2000s, becoming gradually less persistent
before the unfolding of the 2007–8 crisis. The correlation structure eventually recov-
ers persistence in the aftermath of the crisis, setting up a new phase, distinct from the
precrisis structure, in which the market structure is less related to industrial sector
activity. We observe that the correlation structure is again losing persistence, which
indicates the building up of another, different phase. Such dynamical changes in per-
sistency and its occurrence at the unfolding of financial crises raise concerns about the
effectiveness of correlation-based portfolio management tools for risk diversification.
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1 INTRODUCTION

One way to reduce financial risk is by diversifying investments. This involves taking
positions in assets that are historically anticorrelated or uncorrelated and in this way
reducing the probability that all assets lose value at the same time. This is, for instance,
the basis of the capital asset pricing model (Fama and French 2004). However, the
applicability of these approaches relies on the implicit assumption that the relevant
features of the correlation structure observed in the past have persistent significance
into the future. This is not always the case.

In order to characterize the correlation structure and quantify its persistence, we use
a network-filtering approach in which the correlation matrix is mapped into a sparse
graph that retains only the relevant elements. To this purpose, we use the correlation-
filtered networks known as planar maximally filtered graphs (PMFGs) (Tumminello
et al 2005) and their associated clustering structure, the directed bubble hierarchical
tree (DBHT) (Song et al 2012). A PMFG is a maximal planar graph that retains only
the largest correlations. The DBHT is a hierarchical clustering that is constructed
by making use of the separating properties of 3-cliques in planar graphs (Song et al
2011).

Since the seminal work of Mantegna (1999), network analysis on asset correlation
has provided interesting insights into risk management and portfolio optimization. It
has been observed that the structure of such networks not only is significantly related
to the industrial sectors’classifications, but also conveys important independent infor-
mation (Mantegna 1999; Musmeci et al 2014). It was shown in Borghesi et al (2007)
that this network structure can be very robust against changes in the time horizon at
which the asset returns are sampled (when the market mode dynamics is removed
from the original correlations). This has been interpreted as an indication that “corre-
lations on short time scales might be used as a proxy for correlations on longer time
horizons” (Borghesi et al 2007). This, however, requires some degree of stationarity
in the correlation structure.

Network-filtering procedures have been found to sensibly improve the performance
of portfolio optimization methods. For instance, it was shown in Tola et al (2008) that
Markowitz optimization gives better results on network-filtered correlation matrixes
than on unfiltered ones. In Pozzi et al (2013), it was reported that the peripheral
position of nodes in PMFGs can be a criterion for selecting a well-diversified portfolio.
This finding is consistent with that for the minimum spanning tree (MST) in Onnela
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et al (2003b): the stocks selected using the Markowitz method tend to be the “leaves”
of the MST.

Network-filtered correlations carry both local and global information in their struc-
tures and the analysis of their temporal evolution may allow us to better understand
financial market evolution. For instance, Di Matteo et al (2010) observed that stocks
belonging to the same industrial sector tend to have similar values of centrality in the
network topology, and that this differentiation is persistent over time. In particular,
they observed that finance, basic materials and capital goods industrial sectors (Forbes
classification) tend to be located mostly in the central region of the network, whereas
energy, utilities and health care are located more in the peripheral region. The preem-
inent role of the financial sector is even stronger when correlation networks based on
partial correlations are analyzed (Kenett et al 2010). Despite this overall robustness,
a certain degree of nonstationarity has also been observed. For instance, the financial
sector appears to have lost centrality over the first decade of the 2000s (Aste et al
2010). Buccheri et al (2013) found both a slow and a fast dynamics in correlation net-
works topology: while the slow dynamics shows persistence over periods of at least
five years, the time scale of the fast dynamics is a few months and linked to special
exogenous and endogenous events, such as financial crises. For instance, Onnela et al
(2003a) showed that sharp structural changes occurred in the graph topology during
Black Monday 1987. Similar phenomena have been observed for correlations on for-
eign exchange (FX) data (Jang et al 2010). McDonald et al (2008) demonstrated that
structural changes on FX correlation data display different features depending on the
type of event affecting the market. News that concerns economic matters can trigger
a prompt destabilizing reaction, whereas there are periods of “collective discovery”
in which dynamics appears to synchronize (McDonald et al 2008).

In this paper, we investigate the nonstationarity of correlation, quantifying how
much, and in what way, the correlation structure changes over time. This is a partic-
ularly relevant topic because most portfolio optimization tools rely on some station-
arity, or at least persistence, in the joint distribution of asset returns. It is generally
accepted in the literature that financial correlations are nonstationary. For instance,
in Livan et al (2012) it was shown, by means of a local Kolmogorov–Smirnov test
on correlation pairs, how nonstationarity can sensitively affect the effectiveness of
portfolio optimization tools. In this paper, we discuss the degree of nonstationarity
in the correlations at a nonlocal level by using PMFG networks and the associated
DBHT clustering and looking at changes in the hierarchical and clustering structures.
In this context, persistence translates into a measure of similarity among communities
in a network, for which network-theoretic tools should be used. The PMFG–DBHT
method has recently been applied to the study of financial data (Musmeci et al 2014),
showing that it is a powerful clustering tool that can outperform other traditional clus-
tering methods, such as linkage and k-medoids, in retrieving economic information.
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Moreover, the dynamical analyses have shown that the clustering structure reveals
peculiar patterns over the financial crisis, for instance, the increasingly dominant role
of the market mode over the period 1997–2012. This implies an increase in nondi-
versifiable risk in the market. In this paper, we take these analyses a step further by
looking at the dynamics of this clustering and its persistence.

The rest of the paper is organized as follows. In Section 2, we summarize the
main theoretical concepts underlying the correlation network tools. In Section 3, we
describe the analyses we have performed and discuss the results. In Section 4, we
draw our conclusions and discuss future perspectives.

2 CORRELATION-BASED NETWORKS: AN OVERVIEW

Over the last fifteen years, correlation-based networks have been used extensively in
the econophysics literature as tools to filter and analyze financial market data (Aste
et al 2005; Bartolozzi et al 2007; Di Matteo and Aste 2002; Di Matteo et al 2004,
2005; Mantegna 1999; Onnela et al 2003c; Tumminello et al 2005).

The seminal work of Mantegna (1999) exploited for the first time a tool from
network theory, the MST (see, for example, West 1996), to analyze and filter from
noise the correlation structure of a set of financial assets. Mantegna’s idea was to look
at a correlation matrix as the adjacency matrix of a network and generate an MST
on this network in order to retain the most significant links/entries. Moreover, after
mapping the correlation into a suitable metric distance, the MST algorithm provides
a hierarchical classification of the stocks.

In the following years, other correlation-based networks were studied in the litera-
ture. Onnela et al (2003c) introduced the dynamic asset graph. Unlike the MST, which
filters the correlation matrix according to a topological constraint (the tree-like struc-
ture of the MST), the dynamic asset graph retains all the links, such that the associated
correlation (distance) is above (below) a given threshold. In this way, it is less affected
by the insignificant, low correlations that are often kept by the MST. As a result, the
dynamic asset graph is more robust against time (Onnela et al 2003c). On the other
hand, the MST, by retaining both high and low correlations, is better equipped to
uncover global, multiscale structures of interaction. Indeed, in financial and complex
systems in general, several length scales coexist, and thresholding at a given value
artificially introduces a characteristic size that might hide effects occurring at other
scales.

The tree structure exploited in the MST tool is not the only topological constraint
that can be used to filter information. In particular, if we replace the request of absence
of loops with the planarity condition, we obtain the PMFG (Aste et al 2005). The
PMFG can be seen as a generalization of the MST that is able to retain a greater
amount of information (Aste 2012; Tumminello et al 2005), as it has a less strict
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topology constraint that allows it to keep a larger number of links. It can be shown
that the hierarchical properties of the MST are preserved in the PMFG.

We can take this concept a step further and generalize the PMFG to a broader class
of networks by means of the concept of “genus” (Aste et al 2005). The genus, g, of a
surface is the largest number of nonintersecting simple closed cuts that can be made
on the surface without disconnecting a portion (equal to the number of handles in the
surface). Requiring a network to be planar, as for the PMFG, is equivalent to requiring
that the network be embedded on a surface with g D 0 (ie, no handles, a topological
sphere). The natural generalization of the PMFG is therefore a network embedded on
surfaces with genus greater than zero. The greater the genus, the more handles are
in the surface and the more links we can retain from the original correlation matrix.
More links retained means more information and network complexity, but it also
means more noise. When g D d.N � 3/.N � 4/=12e (where N is the number of
nodes and dxe is the ceiling function that returns the smallest integer greater than
or equal to x), the original, fully connected, complete graph associated with the
correlation matrix can be recovered. The concept of embedding on surfaces therefore
provides a quantitative way of tuning the degree of information filtering by means of
a single parameter, g, linking correlation-based networks to algebraic geometry (Aste
et al 2012).

Correlation-filtered networks are associated with clustering methods. Indeed, the
MST is strictly related (Tumminello et al 2010) to a hierarchical clustering algorithm,
namely the single linkage (SL) (Anderberg 1973). MST can indeed be seen as a
network representation of the hierarchy generated by the SL. Recently, it has been
shown that a hierarchical clustering can be derived from the PMFG as well (Aste 2014;
Song et al 2012). This new method is the DBHT. However, the approach is different
from the agglomerative one adopted in the linkage methods: the idea of the DBHT
is to use the hierarchy hidden in the topology of a PMFG, due to its being made of
3-cliques (Song et al 2011, 2012). The DBHT hierarchical clustering was applied to
synthetic and biological data in Song et al (2012) and financial data in Musmeci et al
(2014), showing that it can outperform several other clustering methods, including
k-means++ (Arthur and Vassilvitskii 2007), k-medoids (Kaufman and Rousseeuw
1987), linkage, spectral clustering via normalized cuts on k-nearest neighbor graphs
(kNN-spectral) (Shi and Malik 2000), the self-organizing map (SOM) (Kohonen et al
2001) and the Qcut (Ruan et al 2010).

Since the DBHT exploits the topology of the correlation network, it can be viewed
as an example of community-detection algorithms in graphs (Fortunato 2010). The
implicit assumption underlying these algorithms is that a community is somehow
related to the density of edges inside and outside the community itself, unlike strict
data-clustering methods (such as the aforementioned linkage algorithms), which only
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use the information contained in the similarity/distance matrix. Several different com-
munity detection algorithms in graphs have been suggested in the literature; many of
them search for the community partition that maximizes modularity, a function that
compares the density of links in each community with the one expected in a (null)
random graph model (Guimerà et al 2004; Newman 2004; Newman and Girvan
2004). Other approaches include spectral analysis on the adjacency matrix or related
matrixes, eg, Laplacian (Donetti and Muñoz 2004; Mitrović and Tadić 2009), ran-
dom walks on networks (Hu et al 2008; Zhou 2003) and methods based on statistical
inference (Reichardt and White 2007; Rosvall and Bergstrom 2007).

However, in this paper we focus on the DBHT, as it is tailored to planar graphs and
is therefore the natural tool to use with PMFGs.

3 PERSISTENCE AND TRANSITIONS: DYNAMICAL ANALYSIS OF
THE DIRECTED BUBBLE HIERARCHICAL TREE

We studied the dynamical evolution of DBHT clustering on a system of N D 342

US stocks during the time period January 1997–December 2012. We selected a set of
n D 100 overlapping time windows, Tk , with k D 1; : : : ; n (each one of length L D
1000 trading days with a shift of 30 trading days between adjacent time windows),
and computed the distance matrix

Dij .Tk/ D

q
2.1 � �ij .Tk//;

where �ij is the Pearson correlation coefficient

�ij .Tk/ D
hci .t/cj .t/iTkq

Œhc2i .t/iTk � hci .t/i
2
Tk
�Œhc2j .t/iTk � hcj .t/i

2
Tk
�
; (3.1)

where h�iTk represents the average over the time window Tk , and ci .t/, cj .t/ are the
daily log returns of stocks i and j detrended of the average market return factor.
Following Borghesi et al (2007), we computed ci .t/ for each stock i , assuming the
following one-factor model for the stock log return ri .t/:

ri .t/ D ˛i C ˇiI.t/C ci .t/; (3.2)

where the common market factor I.t/ is the market average return,

I.t/ D

NX
�D1

r� .t/:

The coefficients ˛i , ˇi are computed by means of a linear regression and ci .t/ is
the residual. In agreement with Borghesi et al (2007), we verified that correlations
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FIGURE 1 Dynamical evolution of the DBHT clustering.

2000 2004 2008 2012
12

14

16

18

20

22

24

26

28

Ncl

(a)

2000 2004 2008 2012
0

0.1

0.2

0.3

0.4

0.5

0.6  
(b)

Industries
Supersectors
Subsectors

R
ad

j(T
k )

2000 2004 2008 2012
0

0.2

0.4

0.6

0.8

1.0
(c)

R
ad

j  
   

  (
T

k 
)

T
 –

 1
, T

t t

t

Each plot refers to 100 moving time windows (Tk ) of length 1000 trading days and shift 30 days. (a) Number of DBHT
clusters,Ncl, with the dashed horizontal line representing theNcl value obtained by taking the entire time window of
4026 trading days (covering years 1997–2012). Overall, we can observe a drop in correspondence with the 2007–
2008 financial crisis. (b) Clustering similarity with industrial classification benchmark (ICB) classifications.This graph
shows the amount of economic information retrieved by DBHT clustering in terms of similarity between clustering
and ICB partitioning, calculated using the adjusted Rand index, Radj. Again, a drop at the outbreak of the crisis
appears. Over the postcrisis years, there is less economic information than in the precrisis period, and differences
among different ICB levels are less evident. (c) Similarity between consecutive clustering, showing the persistence
of the DBHT clustering over time, measured as the adjusted Rand index between two adjacent clusterings. The
financial crisis is characterized by very low levels of persistence.

on detrended log returns provide a richer and more robust clustering that can carry
information not evident in the original correlation matrix (Borghesi et al 2007). We
also used a weighted version of the Pearson estimator (Pozzi et al 2012) in order to
mitigate (exponentially) excessive sensitiveness to outliers in remote observations.
The DBHT clustering is calculated on each distance matrix D.Tk/.

In part (a) of Figure 1, we show the number of DBHT clusters obtained for each time
window. The number of clusters ranges from 14 to 26. The dashed line is the value
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(23) corresponding to the clustering obtained using the entire period 1997–2012 as
our time window. As we can observe, the lowest values are associated with the period
around the 2007–8 financial crisis.

In order to analyze the amount of economic information expressed by the clustering
(Coronnello et al 2011; Mantegna 1999), we measured the adjusted Rand index, Radj

(Hubert and Arabie 1985), between the DBHT clustering at time window Tk and the
community partition generated by the industrial sector classification of stocks. Radj

is an index that measures the similarity between two different partitions on the same
set of objects (stocks in this case) and ranges from 0 (no similarity) to 1 (complete
identity). We provide a formal definition of this index in Appendix A. Radj therefore
provides a measure of the industrial information contained in the correlation-based
clustering. We use the industrial classification benchmark (ICB), which is a catego-
rization that divides the stocks into four hierarchical levels: namely, 114 subsectors,
41 sectors and 19 different supersectors (which, in turn, are gathered in ten different
industries). In order to take all of these levels into account, we measured Radj.Tk/

between each of the hierarchical levels and DBHT clustering. In part (b) of Figure 1
on the preceding page, we plot the evolution over time of Radj.Tk/ between the
DBHT clusters and ICB industries, supersectors and subsectors (for simplicity, we
do not plot sector data that is very close to supersectors’ values). We can see how the
ICB information shows a remarkable drop during the 2007–8 financial crisis, which
partially recovers from 2010 onward. Interestingly, before the crisis, the industry,
supersector and subsector lines were distinct (with ICB supersectors showing the
highest similarity with the DBHT, followed by industries and subsectors), whereas in
the crisis and postcrisis periods they display much closer values. Therefore, from the
crisis onward correlation clustering is no longer able to distinguish between different
levels of ICB. This might indicate that this industrial classification is becoming a less
reliable benchmark to diversify risk. These results are confirmed by other industrial
partitions, including the Yahoo classification.

The adjusted Rand index can also be used as a tool for analyzing the persistence of
the DBHT clustering by measuring the index between two clusterings at two adjacent
time windows (we denote by RT�1;T

adj .Tk/ such a quantity). This gives a measure of
local persistence: a drop in the index value indicates decreasing similarity between
adjacent clusterings, and therefore less persistence. In part (c) of Figure 1 on the
preceding page, we plot RT�1;T

adj .Tk/ against time. We observe that the clustering
persistence changes remarkably over time, dropping in particular with the outbreak
of the financial crisis and recovering in 2010. Note that the drop during the crisis starts
earlier than the actual outbreak of it (August 2007, the dashed vertical line). This could
highlight a possible use of clustering persistence as a tool to forecast systemic risk.
Notably, in 2010–12 we again observe a steadily decreasing trend. Interestingly, the
pattern of persistence appears to be related to the similarity between clustering and
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ICB, with periods of higher persistence characterized by higher amounts of economic
information.

However, the drawback of RT�1;T
adj .Tk/ as a measure of persistence is that, at any

one time, it only provides information on the persistence with respect to the previous,
adjacent time window. It tells us nothing about the long-term robustness of each
clustering. To investigate this aspect, in Section 3.1 we discuss a set of analyses that
evaluate the persistence of each clustering at each time, therefore providing a more
complete picture.

3.1 A map of structural changes

To investigate the long-term persistence of each clustering, we calculated the adjusted
Rand index for each time window between the corresponding clustering and the
clustering at any other time. The result is summarized in the (symmetric) similarity
matrix s:

s.Ta; Tb/ D Radj.Xa; Xb/; (3.3)

whereXa andXb are the DBHT clusterings at time windows Ta and Tb respectively.
The matrix s for our data set is shown in part (a) of Figure 2 on the next page. We
observe two main blocks, the first precrisis and the other postcrisis, within which high
similarity among clusterings may be found. The two blocks show very low mutual
similarity (upper right corner/lower left corner of the matrix). The first block begins
losing its compactness in 2007, and the second block quite quickly does the same at
the beginning of 2011. Between these two times, the outbreak of the financial crisis
displays a series of extremely changeable clusterings that do not show similarity with
any other time window.

To better highlight these changes of regime, we plot in parts (b)–(e) of Figure 2 on
the next page four time rows from matrix s, taken as examples of persistence behavior
during the precrisis (part (b) September–October 2003), crisis (part (c) July–August
2007, the outbreak of the crisis, and part (d) November–December 2008, the aftermath
of Lehman Brothers’ default) and postcrisis periods (part (e) April–May 2010). The
vertical dashed lines show the end position of the time window whose clustering is
taken as a reference. Each point in the plot is the adjusted Rand index between that
clustering and all the other clusterings at each other time window, in both the past
and the future. In the precrisis period (b), the similarity displays a quite slow decay
both forward and backward in time; the original clustering still has a 60% similarity
with the seventeenth time window forward/backward in time. The decreasing trend is,
however, evident and becomes steeper during the crisis. Taking time windows during
the financial crisis, (c) and (d), the pattern changes drastically: the similarity drops by
70–80% in a few months both backward and forward in time. The two stages of crisis
also reveal some differences. While in the early crisis period (c) the similarity with
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FIGURE 2 Persistence analysis based on clustering.
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(a) Similarity matrix s showing the temporal evolution of the correlation-based DBHT clustering.Each entry s.Ta; Tb/
is the adjusted Rand index between clustering Xa and Xb at time windows Ta and Tb respectively (3.3). Higher
values indicate greater similarity. The matrix displays two main blocks of high intrasimilarity: one precrisis and the
other postcrisis. The years 2007–2008 fall between these two blocks and display very low similarity with any other
time window, revealing an extremely changeable structure. Parts (b)–(e) show the patterns of similarity for four
sample time windows (ie, four sample rows of the similarity matrix): (b) September–October 2003, (c) July–August
2007, (d) November–December 2008 and (e) April–May 2010. During the crisis, similarity decays much faster than
in the precrisis and postcrisis periods.
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FIGURE 3 Persistence analysis based on metacorrelation.
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(a) Similarity matrix z showing the temporal evolution of correlation matrixes. Each entry z.Ta; Tb/ is calculated as
a correlation among correlation matrixes at time windows Ta and Tb (3.4). Higher values indicate higher similarity.
Parts (b)–(e) show the patterns of similarity for four sample time windows: (b) September–October 2003, (c) July–
August 2007, (d) November–December 2008 and (e) April–May 2010. The decay during the crisis years is much
less steep than in the corresponding plot in Figure 2 on the facing page.
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precrisis clusterings is higher than with postcrisis ones, in the post-Lehman Brothers
period (d) the situation is reversed. Finally, the postcrisis period (e) shows a partially
recovered persistence, although not at the same levels as the 2003 pattern.

We may wonder whether the structural changes highlighted by the clustering analy-
ses can be detected directly by studying the original, unfiltered correlation matrixes.
To check this, we introduce an alternative measure of similarity among different time
windows that does not make any use of clustering: namely, the correlation between
the coefficients of two correlation matrixes (metacorrelation). This measure is

z.Ta; Tb/ D
h�ij .Ta/�ij .Tb/iijq

Œh�2ij .Ta/iij � h�ij .Ta/i
2
ij �Œh�

2
ij .Tb/iij � h�ij .Tb/i

2
ij �
; (3.4)

where �ij .Ta/ is the correlation between stocks i and j at time window Ta and h�iij
is the average over all couples of stocks i; j . Munnix et al (2012) introduced an
alternative measure to identify the possible states of a financial market. In Figure 3 on
the preceding page, we report the matrix z.Ta; Tb/ and four representative time rows,
which correspond to the same four time windows chosen in Figure 2 on page 86. We
observe that metacorrelation is indeed able to identify the two precrisis and postcrisis
time blocks. However, it also shows a smaller, intermediate block during the 2007–
8 crisis with a relatively high intrasimilarity. This is different than what we have
observed in the clustering-based matrix s, where the time windows during the crisis
were quite dissimilar. Moreover, the precrisis and postcrisis blocks in z display higher
intrasimilarity than s, especially over the postcrisis years. All these differences can
be appreciated when looking at the four z time rows in parts (b)–(e) of Figure 3. Even
if in the crisis time windows (c) and (d) we observe a faster decay of similarity, it is
much less steep than the corresponding clustering plot (parts (c) and (d) of Figure 2).
Moreover, the postcrisis window in part (e) of Figure 3 recovers completely the high
precrisis level of persistence, unlike the clustering case in part (e) of Figure 2.

Therefore, it seems that metacorrelation and clustering analyses depict different
dynamics of market correlation structure. In particular, the clustering-based matrix s
reveals higher nonstationarity during the crisis and postcrisis periods. The instability
of correlation during crises has recently been observed by Chetalova et al (2014);
however, their result relies on a specific choice for the multivariate distribution of
returns, whereas our analyses are model independent.

3.2 Clusters composition evolution

So far, we have described the persistence of clusters from a global perspective, looking
at the clustering as a whole. Let us here focus on the evolution of each cluster, fol-
lowing how their composition changes over time. It is not straightforward to analyze
such an evolution, with the main problem being the changeable nature of dynamical
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clusters, which makes it difficult to identify the successor for each cluster. Many dif-
ferent approaches can be adopted to address this community tracking problem (Fenn
et al 2012). Here, we use hypothesis statistical tests based on the hypergeometric
distribution (Feller 2008; Tumminello et al 2011a) to assess similarity between clus-
ters at different times. In particular, if the number of stocks in common between two
clusters is high enough to reject the null hypothesis of the test, we label the two clus-
ters as “similar”. Moreover, we take the DBHT clustering calculated over the entire
time window (1997–2012) as a benchmark clustering through which we can track the
evolution of the dynamical clusters obtained with the moving time windows. Let us
here describe this idea in more detail.

Let us call X the clustering obtained on the entire time window and Yi a cluster
belonging to X , with i D 1; : : : ; Ncl. For each cluster Yi , and for each time window
Tk (k D 1; : : : ; n), we have taken the clustering at time Tk , XTk , and identified
the cluster belonging to XTk that is “similar” to Yi (if any). We label a cluster as
“similar” to Yi if the number of stocks in common with Yi is high enough to reject
the null hypothesis of the hypergeometric test (Musmeci et al 2014; Tumminello et al
2011b). This test considers a random overlapping between the two clusters (a detailed
description of the test can be found in Appendix B). If more than one cluster turns out
to be similar, we take the largest cluster. Eventually, we end up with one cluster for
each Yi for each time window Tk . All of them have a high degree of similarity with Yi
in common. We can therefore follow their evolution in terms of the number of stocks
and corresponding ICB industrial sectors. The threshold for the tests was chosen equal
to 0.01, together with the conservative Bonferroni correction (Feller 2008).

In part (a) of Figure 4 on the next page, the composition of the DBHT clustering
computed over the time window 1997–2012 is shown. For each cluster, the y-axis
displays its cardinality S (ie, the number of stocks belonging to the cluster), with
different shades showing stocks belonging to different ICB industries. For the eleven
biggest clusters inX , we plot in parts (b)–(f) of Figure 4 and parts (a)–(f) of Figure 5
on page 91 the number of stocks S for their similar clusters in time, together with
their composition in terms of ICB industries. When no similar clusters can be found
for a time window, we have just left the correspondent window empty. The clusters
analyzed are the numbers 18, 4, 8, 7, 17, 1, 6, 20, 14, 22 and 15. We summarize the
main findings below.

� Overall, all the clusters in X have a high persistence over time, showing a
corresponding “similar” cluster at almost every time window. This result is
remarkable, as the persistence has been assessed in quite a conservative way,
ie, using the hypergeometric test with a Bonferroni correction. A few clusters
display a limited number of gaps in their evolution (eg, clusters 14, 15, 20 and
22), mostly in correspondence with the financial crisis.
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FIGURE 4 Clusters: dynamical composition (part 1).
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(a) Clusters composition of the DBHT clusters obtained by calculating detrended log returns over the entire time
window 1997–2012. The number of stocks in each cluster is shown on the y-axis, with different shades for different
ICB industries. (b) For cluster 18 in (a), we have detected at each time window the corresponding “similar” (accord-
ing to the hypergeometric test) cluster and plotted the composition in time. Zero size corresponds to no “similar”
cluster having been found. When more than one “similar” cluster is found, only data for the largest cluster is plotted.
Parts (c)–(f) show the same plots as in part (b), but for persistence clusters 4, 8, 7 and 17 respectively.
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FIGURE 5 Clusters: dynamical composition (part 2).
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(a) For cluster 1 in part (a) of Figure 4 on the facing page, we detected at each time window the corresponding
“similar” (according to the hypergeometric test) cluster and plotted the composition in time. Zero size corresponds to
no “similar” cluster having been found. When more than one “similar” cluster is found, only data of the largest cluster
is plotted. Parts (b)–(f) show the same plots as in part (a), but for clusters 6, 20, 14, 22 and 15 respectively. Colors
refer to the legend in Figure 4 on the facing page.

� A few clusters show a persistence in terms of industrial composition as well
(this is the case with clusters 4 and, to a lesser extent, 8), but most show a clear
evolution. In particular, we can quite clearly distinguish a precrisis state and
a postcrisis state; the latter is characterized by a higher degree of mixing of
different industries. If, over the precrisis period, we find clusters dominated by
one or two industries (technology and industrials in cluster 18, oil and gas in 4
and 15, utilities in 17, consumer services and goods in 14 and 20, financials in 6,
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health care in 22), in the crisis and postcrisis years the industries tend to mix
together much more, forming combinations that were not present earlier (oil
and gas with basic materials and industrials in clusters 1 and 7, utilities with
telecommunications and consumer services in 17, financials with consumer
goods and services in 6, health care with utilities and consumer goods in 20).
This again shows that the years since the crisis have seen a drop in the reliability
of industries as benchmarks to diversify risk.

� Apart from the precrisis and postcrisis dichotomy, in some cases the 2007–8
crisis years show their own features as well. As stated above, some clusters
“disappear” during the peak of the crisis (clusters 14, 20 and 22). Many others
instead show several peaks in their sizes, together with a sudden increase in the
number of industries. This is probably related to the merging of many clusters
into fewer, larger clusters during the crisis.

� The cluster containing financial stocks (cluster 6) is worth analyzing further,
since it seems to play a role in the outbreak of the financial crisis. Indeed,
it shows a clear change in 2007, becoming larger and including an increasing
number of different industries (especially health care, technology and consumer
services). This pattern is probably connected to the rising importance of the
financial industry as a driving factor over the outbreak of the crisis. Interestingly,
at the end of 2008, when Lehman Brothers went bankrupt, this cluster suddenly
drops to a much lower size (although still higher than precrisis values) and a less
mixed composition. This suggests that the financial industry ends up playing a
major role in the correlation structure from 2009 onward.

4 DISCUSSION

In this paper, we have investigated the dynamical evolution and nonstationarity of
market-correlation structure by means of filtered-correlation networks. In particular,
we have focused on PMFGs and the clustering that its topology naturally provides
by means of the DBHT method. We have measured the persistence of correlation
structure by calculating similarity among clusterings in different time windows, using
the adjusted Rand index to quantify the similarity.

Our analyses reveal that the outbreak of the 2007–8 financial crisis marked a transi-
tion from relatively high levels of persistence to a much more unstable and changeable
structure. The minimum persistence was reached at the end of 2008 when the crisis
had fully unfolded. But the decay in persistence had already started in late 2006, well
before other warning signs were detectable. Correlation structure persistence even-
tually recovered in the second half of 2009 with relatively high values until the end
of 2011. However, such a persistent structure had distinct features from the precrisis
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structure, including lower relations with the industrial sector’s activities. Notably,
since the end of 2011 we have been observing a new decay in persistence, which
is signalling another unfolding change in the market structure. This also points out
that since 2007 correlation matrixes from historical data, both filtered and unfiltered,
have become more unstable and therefore less reliable instruments for risk diversifi-
cation. Moreover, the decrease in the similarity between correlation-based clustering
and the industrial sector implies that portfolio-diversification strategies based on eco-
nomic activity considerations are expected to become less effective. Furthermore, the
analysis of the evolving industrial sector composition of each single cluster reveals
that most of them display a clear change with the crisis, which makes them more
heterogeneous overall in terms of industrial sectors. In particular, we observed that
one cluster, mainly made of financial stocks, experienced a sharp rise in its size and
heterogeneity that likely reflected the breakdown of the late-2007 financial crisis.
This could give interesting insights in terms of early warning signals that we plan to
investigate further in future work.

We also plan to carry out the analyses discussed in this work by using alterna-
tive community detection methods on graphs (Fortunato 2010). The comparison of
different algorithms is a hot topic in network theory (Aldecoa and Marín 2013; Lan-
cichinetti and Fortunato 2009), and these analyses could give other insights into this
issue from the perspective of financial data.

APPENDIX A. ADJUSTED RAND INDEX

Following the notation of Wagner and Wagner (2007), let us call X the set of N
objects. Y is a partition into communities of X or simply a clustering: that is, “a set
Y D fY1; : : : ; Ykg of nonempty disjoint subsets ofX such that their union equalsX”
(Wagner and Wagner 2007). Let us also say we have another clustering Y 0. We call
the matrix M D fmij g the “contingency table”, where

mij � jYi \ Y
0
j j; (A.1)

ie, the number of objects in the intersection of clusters Yi and Y 0j . Let a be the
number of pairs of objects that are in the same cluster in both Y and Y 0, and let b
be the number of pairs that are in two different clusters in both Y and Y 0. Then, the
Rand index is defined as the sum of a and b, normalized by the total number of pairs
in X :

R.Y; Y 0/ �
2.aC b/

N.N � 1/
D

kX
iD1

lX
jD1

 
mij

2

!
: (A.2)

We can assume a generalized hypergeometric distribution to be the null hypothesis
associated with two independent clusterings; we describe this in detail inAppendix B.
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The adjusted Rand index is defined as the difference between the measured Rand index
and its mean value under the null hypothesis, normalized by the maximum that this
difference can reach:

Radj.Y; Y
0/ �

Pk
iD1

Pl
jD1

�
mij
2

�
� t3

1
2
.t1 C t2/ � t3

; (A.3)

where

t1 D

kX
i

 
jYi j

2

!
; t2 D

lX
j

 
jY 0j j

2

!
; t3 D

2t1t2

N.N � 1/
: (A.4)

It turns out that Radj 2 Œ�1; 1�, with 1 corresponding to the case of identical cluster-
ings and 0 to two completely uncorrelated clusterings. Negative values instead show
anticorrelation between Y and Y 0 (that is, the number of pairs classified in the same
way by Y and Y 0 is even less than was expected assuming a random overlapping
between the two clusterings).

APPENDIX B. HYPERGEOMETRIC TEST

Following the notation used in Section 3.2, let us call Yi a generic cluster belonging
to the clustering calculated over the entire time window. Let Y 0j be the cluster from
clusteringXTk in time window Tk with which we want to compare Yi in order to find
if the number of stocks belonging to both Yi and Y 0j is sensitively higher than was
expected by a random overlapping. This can be translated into a statistical one-tail
hypothesis test, in which the null hypothesis is the hypergeometric distribution. Say
k is the number of stocks Yi and Y 0j have in common, whereas jYi j, jY 0j j are the
cardinalities of the two clusters; then, the hypergeometric distribution reads (Feller
2008)

P.X D k/ D

�jY 0
j
j

k

��N�jY 0
j
j

jYi j�k

�
�
N
jYi j

� : (B.1)

This distribution is consistent with a scenario in which the overlapping between the
two clusters is due purely to chance. For this reason, it is a suitable null hypothesis
for testing the similarity between clusters. If P.X D k/ so-calculated is less than
the significance level, then the test is rejected, and we conclude that the cluster Yi
overexpresses the cluster Y 0j , and they are therefore similar. The significance level of
each test performed is 1%, together with the Bonferroni correction for multiple tests
(Feller 2008).
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ABSTRACT

This paper analyzes the persistence and overlap of relationships between banks in
a multiplex decomposition of the exposures network. Our analysis may be useful
for researchers designing stress tests or models in which the behavior of banks is
modeled explicitly. This has not been looked at previously, considering the time
period involved and the different types of exposures and interactions used. We show
that trading relationships overlap for some pairs of banks, and link persistence is
higher in the secured than the unsecured market. Moreover, link persistence in the
securities cross-holding network is much higher than in other funding networks, and
overlap with the other segments of activity is low, despite being persistent over time.
Additionally, unsecured loans received by large banks have the shortest waiting times
(that is, for a given borrower and a given lender, the number of days elapsed before a
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new loan is observed) regardless of counterparty size, which suggests quicker access
to liquidity. Large banks lend (unsecured) with shorter waiting times to medium-sized
banks than to small banks; this is not the case when they lend in the secured layer
of the network. Small banks have quicker access to liquidity in the secured lending
layer when borrowing from medium-sized banks.

Keywords: financial networks; multiplex networks; link persistence; link overlap; waiting times.

1 INTRODUCTION

The study of financial systems, which are inherently complex, by means of network
models has increased recently, benefiting from a large toolbox of quantitative, algo-
rithmic and theoretical results from the well-established fields of social and complex
networks. Moreover, recent financial crises have shown how interconnected the global
financial system is. Additionally, financial institutions interact in different markets,
which can be thought of as different layers of networks. This gives rise to a rich set of
complex interactions among these layers, each with different topological properties.

Unfortunately, in financial networks it is common to aggregate all of the available
data (for example, all of the different types of exposures among financial institutions)
into a static weighted directed graph and study only the resulting single structure.
Despite its attractiveness, this approach is far too simplistic, and some types of analysis
cannot be made if the different dynamics of each interaction layer are ignored. While
modeling contagion using each layer independently can lead to an underestimation
of systemic risk, as shown in Poledna et al (2014), insightful information regarding
interactions is lost when the multiplex structure is neglected.

In our research, we build networks based on the daily interactions between banks
across different markets in order to investigate the persistence and the overlap of
trading relationships. The usefulness of network similarity measures in finding per-
sistences over time is also studied in this paper. By analyzing different layers, we can
identify important relationships between banks and discover their tendency to prevail
even in times of stress, which may not be evident when only one network at a time
is analyzed. The method sheds light on interactions between different layers in the
multiplex structure of financial networks. The aims of this paper are several. First,
given that much of the empirical evidence on the structure of financial and banking
networks has been done at the aggregated level of the exposures (or by considering
only the unsecured lending layer), we want to provide empirical evidence on the
differences of the emerging structures of interactions between banks.1 Second, we

1 This is very important when modeling decisions regarding bank behavior in stress testing and
systemic risk studies are being faced.
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want to quantify the degree of overlap between layers as well as the level of per-
sistence of the relationships in different markets in order to determine the degree of
homogeneity/heterogeneity in these two aspects of interbank trading relationships.
Studying the waiting times between loans contributes to this paper’s goals.2

Another important research question arises: can persistence and overlap be
explained by the involved banks’ characteristics (financial or topological)? In the
last part of the paper, we approach this question and obtain the following answers.

� First, unsecured loans received by large banks have the shortest waiting times,
regardless of the size of the lending bank. This suggests that they have the
quickest access to the system’s liquidity.Also, when large banks lend repeatedly
in the unsecured market, they do so most often to large banks. The waiting time
increases as the receiving bank’s size decreases (lending with shorter waiting
times to medium-sized banks than to small banks): this is no longer observed
when the banks lend in the secured lending layer. This may be related to the fact
that big banks sometimes have larger liquidity needs than small banks. Another
possible explanation is that the collateral involved seems to account for the risk
associated with lending to smaller banks. The only case in which small banks
have quicker access to new loans is in repurchase agreements (repos) made by
medium-sized banks, which is where they seem to turn when they are in need
of more liquidity.

� Second, in the unsecured market, smaller banks tend to lend to larger banks
more than the other way around. However, this does not appear to happen in
the secured market. It seems that the collateral involved in the loan makes it
easier for larger banks to lend to smaller ones. This can be seen more clearly
when a five-day time window is used because more relations become stable
in this case (meaning that they are present at least once every five days, rather
than daily). Something that can be appreciated when a daily window is used is
that the most stable links in both markets come from loans made by banks of
smaller sizes.

Through the investigation of whether relationships are persistent, more suitable
models for bank reactions under stress can be built. For example, in Fourel et al
(2013) the authors design a mechanism to decide which links banks will sever (and
in which segment of the market) following a shock. This could be based on empirical
evidence instead of a rule of thumb; the overlap across layers can be used to determine
the possible reactions by banks under stressful circumstances. To illustrate this point,
and considering that the overlap and persistence in the cross-holding securities layer

2 For a given borrower and a given lender, the waiting times of a loan are obtained by counting the
number of days that have elapsed between new loans (this is further explained in Section 4).
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are very high, we assume banks are more likely to sever links in the unsecured lending
market (especially those links that show weak persistence) than sell the securities of
other banks.

One of our most important long-term goals along this line of research is to be able
to calibrate link prediction models in the context of financial networks. Developing
reliable link prediction models will allow us to derive the most likely network under
different economic conditions by considering the rich database of interactions among
banks. This is of particular importance in stress testing.

This paper contributes to the literature by analyzing the persistence and stability
of links as well as their overlap across different layers. We also show that the study
of multiplex network structures can unveil structures and relationships that cannot be
seen with aggregated data. Likewise, we compare the dynamics and structures of the
different layers and determine whether the interconnectedness between some banks
is present in more than one layer. Our research aids in understanding the dynamics
and motives behind banks’ interactions.

In addition, we investigate whether the most interconnected banks in one market
are the same in the other markets. The possibility of identifying relevant (highly
interconnected) players in different markets beyond simple aggregated measures is
an important task for financial authorities, given the recent evidence that the financial
system is highly interconnected. Nevertheless, not much work has been done on
assessing the role of the multiplex structure in the interconnectedness of a system.
We do so by studying the evolution and composition of the core in different layers of
the banking system.

Our research benefits from the availability of daily interbank matrixes of exposures
and transactions. Nevertheless, an important aspect we deal with is the time dimension
when measuring link persistence and overlap; it would be unfair, for example, to
judge link persistence to be weak for a given pair of banks if they interact three
out of five days simply because the dates were not consecutive. For this reason, we
resort to a time-aggregation process, aggregating the different layers of the networks
with a five-day time window, and investigate the impact on the measurement of link
persistence and overlap. This is also investigated by Finger et al (2013), who state that
aggregating networks in time allows us to discover the representative characteristics
of the underlying “latent” network. We rely on their work to highlight the importance
of the time aggregation process.

The use of a “sensible” aggregation period should ensure that we extract stable
features (if they exist) of the banking network rather than noisy trading patterns at
different points in time. In this regard, it is important to investigate the stability of
the link structure in order to assess whether subsequent occurrences of the network
share many common links.

Finger et al (2013)
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Multiplex networks are systems in which the nodes interact, sometimes repeatedly,
under different layers. The most important characteristic of these networks, in contrast
with the simple collection of individual layers, is that relevant aspects might be ignored
if each individual network is treated in an isolated way.

Many of the world’s natural and man-made networks possess a multiplex structure,
as stated in Wasserman and Faust (1994), Cardillo et al (2013) and Menichetti et al
(2014).The multiplex approach to studying different types of networks was introduced
in sociology (Coleman 1988; Verbrugge 1979) and engineering (Chang et al 1996;
Little 2002). More recently, this paradigm has benefited from specific theoretical
treatment (De Domenico et al 2013b; Leicht and D’Souza 2009) and been employed in
many different contexts, such as social networks (Szell et al 2010), epidemic processes
(Granell et al 2014), random networks (Domenico et al 2013c) and evolutionary game
theory (Gómez-Gardeñes et al 2012).

Financial networks, in the context of financial contagion and systemic risk, have
also benefited from the use of the multiplex approach (see Bargigli et al 2013; Iori et al
2014; Kok and Montagna 2013; León et al 2014; Miranda and Tabak 2013; Poledna
and Thurner 2014; Poledna et al 2014; Squartini and Garlaschelli 2014; Thurner and
Poledna 2013).

A look at different networks can provide us with a wider interpretation of inter-
connectedness, and many concepts in networks can be reformulated in the multiplex
context. This has been done with the clustering coefficient in Cozzo et al (2013), with
the concept of centrality in Solá et al (2013) and with other structural measures in Bat-
tiston et al (2014). Reciprocity can also be reformulated under a multiplex framework,
which allows institutions to interact reciprocally across different markets, depending
on their own profiles and strategies. Reciprocity plays an important role in identifying
the persistence of relationships in a banking system.3

The rest of this paper is organized as follows. Section 2 describes the data used in
the study, while Section 3 presents the evolution and compares the different layers
studied in this paper. Section 4 explains the concept of waiting times and includes
interesting results. Section 5 introduces the concepts used to measure the persistence
and stability of relationships, while Section 6 presents the tools used to measure
overlap. Section 7 discusses the need for an aggregation process from the daily data.
Finally, Section 8 closes the paper with the most important results and Section 9
concludes.

3 Reciprocity is calculated as the ratio of bidirectional links to the total number of linked pairs of
nodes.
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2 DATA

Through regulatory reports, the Mexican Central Bank can compile complete infor-
mation on interbank loans, both secured and unsecured, on a daily basis. Further,
given the many different transactions reported by banks, it is possible to compute the
daily cross-holding of securities between banks.

Our period of study covers January 2007 to September 2013, unless otherwise
indicated. The only financial institutions included in this study are banks, due to the
broad nature of available information and the fact that the banking system is still the
most important part of the Mexican financial system. In all, forty-three institutions are
considered. There were thirty active institutions at the beginning of the time period.
This number grew to thirty-seven by the end of the first year, and over forty banks
have been present sinceApril 2008. Several institutions joined the network, two banks
left the system and two banks merged toward the end of the time period. All banks
established in Mexico are covered in this study.4

The following layers of the network are analyzed.

� Repos: collateralized loans between banks (total amount).

� NDL (new deposits and loans): uncollateralized transactions agreed on the
current day (total amount).

� Securities: exposures arising from cross-holdings of other banks’ securities.

� ODL (outstanding deposits and loans): just like NDL but including all deposits
and loans outstanding on the current day.

� Derivatives: exposures arising from derivatives contracts between banks.

The following pairs of network layers are analyzed due to practical interpretation
whenever there is an overlap.

� NDL and securities: a link in both these layers occurs when a lending bank,
which already owns securities of the borrowing bank, lends new money to the
borrowing bank through an uncollateralized loan.

� NDL and repos: this is perhaps the most important combination, indicating
that a bank lent money to another through both a collateralized loan and an
uncollateralized loan.

4 In Mexico, subsidiaries of foreign banks (which, in fact, account for the majority of the system’s
assets) exist, rather than branches.
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� Securities and ODL: if one bank has a link to another in these two layers, this
indicates that the bank is exposed to the other bank in two ways: by acquiring
(or rolling over) debt from the borrowing bank and granting an outstanding (or
new) uncollateralized loan.

� Securities and repos: a link in both these layers occurs when a lending bank,
which already owns securities of the borrowing bank, lends new money to the
borrowing bank through a collateralized loan.

� ODL and repos: this indicates that a bank lent money to another through a col-
lateralized loan while maintaining an outstanding exposure with the borrower
through an uncollateralized loan.

The unsecured interbank market is the ultimate market for liquidity. In Mexico, this
market plays an important role in leveling out liquidity between banks at the end of the
business day. However, the repo market is the most important source of funding for
banks; it should be noted that the interbank repo market represents only a fraction of
the total funding (most of which comes from legal entities and individuals). However,
trading relationships are more important in the unsecured interbank market, since
there is no collateral involved in this type of loan.

The cross-holding of securities is an interesting layer of the interbank network
because, unlike the other layers mentioned, this network does not involve bilateral
transactions. However, this layer represents an important funding source for many
banks. Persistence in this layer implies a rollover of the securities, meaning that the
lending bank “trusts” the borrowing bank.

3 EVOLUTION AND COMPARISON BETWEEN LAYERS

As previously noted, it is extremely important to consider the complete network of
interbank exposures in order to accurately measure systemic risk and the way mon-
etary losses could propagate between institutions in a financial system. Attempting
to model contagion risk by assessing each of the layers independently can lead to a
substantial underestimation of the outcome of an external shock (Poledna et al 2014).
However, insight and information regarding the way banks interact in a financial
system can be lost when this multilayer structure is neglected.

When considering the growth or evolution of the interbank network, studying each
layer separately allows us to understand whether changes are due to the common
evolution of all layers or the marginal changes present in a subset of the layers.

We observed an increase in the density of the aggregated network. In Figure 1 on
the next page, it can be seen that the derivatives network shows the highest volatility
among all the layers, while the securities network has grown more than the others: it
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FIGURE 1 For each date, the evolution of the density and the total volume are shown for
each of the layers.
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has more than doubled its density during the complete time period. The total volume
has also increased significantly for the interbank repurchase agreements.5

Consider now the reciprocity of interactions between institutions (Figure 2 on the
facing page), which can potentially explain the stability of links in a network.6 As
before, it is clear that different layers do not exhibit the same behavior.

Accordingly, after unveiling the differences between the layers, we can reveal inter-
actions between banks that are persistent through time and may overlap across dif-
ferent markets; thus, it is vital to consider the multiplex structure of the interbank
network. In this way, a better understanding of how banks interact can be achieved.

3.1 Resemblance of core–periphery structures across layers

In addition to analyzing the evolution of the different layers of the network, we seek to
determine whether the more central banks are the same in the aggregated network than
in each of the layers. The cores of the networks were obtained using the methodology
introduced in Craig and von Peter (2010) and largely explored in van Lelyveld and

5 The density of a network is calculated as the number of links observed divided by the total number
of possible links (that is,L=n.n�1/, whereL is the number of links observed in a directed network
with n nodes).
6 Reciprocity is calculated as the ratio of bidirectional links to the total number of linked pairs of
nodes.
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FIGURE 2 Evolution of the fraction of reciprocal links in each layer.
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in ’t Veld (2012), Martínez-Jaramillo et al (2014a) and Langfield et al (2014).7 We
borrow an intuitive definition provided in Craig and von Peter (2010) for the core and
the periphery. The core is a subset of intermediaries, excluding those that do not play
an essential role in holding the interbank market together. The nodes excluded from
the core are in the periphery. For a more precise algorithmic description, we refer the
reader to Craig and von Peter (2010).

As with the evolution of the densities, it can be seen in Figure 3 on the next page
that a couple of layers behave differently to the rest in the evolution of the sizes of
their cores.

Moreover, the banks that belong to the cores of the different layers are not always the
same. In Figure 4 on page 109, while there seems to be a couple of banks consistently
belonging to most of the cores, the number of banks belonging to one and/or two cores
is not stable and varies through time, suggesting that banks that are not important in
one layer could be considered as such in another. This information is lost when only
the complete network is considered.

In Figure 5 on page 110, it can be observed that only a few banks belong to the
core in two layers on the same day. In NDL versus repos (part (ii)), it is interesting
to note that only two banks consistently belong to the cores of the networks of new
loans, both unsecured and secured; a third bank has, though, become more important
recently.

7 We would like to thank Ben Craig and Goetz von Peter for providing us with the code to fit the
core–periphery model to the Mexican interbank networks.
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FIGURE 3 Evolution of the core sizes of the different layers.
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4 WAITING TIMES BETWEEN NEW LOANS: SECURED VERSUS
UNSECURED

In Cocco et al (2009), an approach is introduced to estimate the probability that a
lender who has lent to a borrower on day td will do so again on the next k days,
tdC1; : : : ; tdCk . Cocco et al also compute these probabilities separately for loans
going to and from banks of different sizes.

In this section, we adopt the same idea but instead estimate the waiting times for a
new loan in the repos and NDL layers (the layers that represent daily new loans) in an
attempt to find differences between the collateralized and uncollateralized markets.

For each pair of banks (and each of the mentioned layers), we compute the following
vector, which contains the days in which a loan was made from bank i to bank j :

Y Gij D fm j a
G
ij .tm/ D 1;m D 1; 2; : : : ; T g; (4.1)

where aGij .tm/ denotes the .i; j / entry of the adjacency matrix A on day tm for the
network corresponding to the marketG. Also,m D 1; 2; : : : ; T , andG is either NDL
or repos. Afterwards, we compute the differences between the consecutive elements
of each Yij to obtain the waiting times between loans from i to j in the layer G. We
now analyze the distribution of these waiting times.

First, it can be observed in Figure 6 on page 111 that the waiting times for repo
transactions (red line) are lower than for new deposits and loans (blue line).8 We

8 A highly significant (p-value � 0) one-sided Kolmogorov–Smirnov difference between the two
empirical distributions.
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FIGURE 4 Number of banks in different cores.
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separated the banks into three groups, small, medium and large, according to their
assets. For each day, the banks were ordered according to their assets’ sizes. The ten
largest banks were categorized as “big”. The remaining banks were split into two
groups: the first group was categorized as “medium” and the second one as “small”.9

Figure 7 on page 112 shows the different behaviors that can be perceived when this
distinction is made.

The loans received by large banks are the ones that have the shortest waiting times
for NDL, regardless of the size of the lending bank, which means they have the

9 The decision to split the system this way was supported by the fact that ten banks consistently
represented a significant part of the system, while fifteen banks were consistently much smaller. This
way, it was clear which banks were big and which were small, so the remaining were categorized
as medium.
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FIGURE 5 Intersection of members between cores.
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(a) NDL versus securities. (b) NDL versus repos. (c) Securities versus ODL. (d) Securities versus repos. (e) ODL
versus repos.

quickest access to the system’s liquidity.10 From this, it can also be seen that when
large banks lend repeatedly in NDL, they do so more often to large banks, and the
waiting time increases as the receiving bank’s size decreases. It is interesting to note
that large banks in NDL lend with shorter waiting times to medium banks than to

10 A highly significant one-sided Kolmogorov–Smirnov distance for all cases, except for the case
of medium banks lending to small banks.
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FIGURE 6 Empirical cumulative distribution functions for the times between loans for NDL
(blue, below) and repos (red, above).
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small banks.11 This is no longer observed when they lend in the repos layer, where
the collateral involved seems to account for the apparent lack of desire from large
banks to lend to smaller banks in the uncollateralized market.12 The only case in
which small banks have quicker access to new loans is in repos made by medium
banks, which is where they seem to turn when in need of more liquidity.13

It is worth reiterating that the goal of this exercise is to study relationships between
banks of different sizes and determine whether the frequency of loans is different
depending on the size of the banks. Studying the waiting times between loans is useful
in understanding the persistence of relationships in the interbank market. It should be
noted, however, that the individual liquidity needs of some banks could sometimes be
the main cause of their specific waiting times (for example, small banks may satisfy
all their liquidity needs with only one sporadic loan from a big bank, causing a longer
waiting time).

4.1 Waiting time to recover loans

In this exercise, we choose a reference network and count the fraction of links of this
network that have been observed again after a certain number of days. We look at the
fraction of loans repeated after a certain number of newly observed days for NDL
(blue) and repos (red).

11 For the Kolmogorov–Smirnov one-sided test, the reported p-value was 0.001135.
12 No significant Kolmogorov–Smirnov distance.
13 A highly significant one-sided Kolmogorov–Smirnov distance for both cases.
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FIGURE 7 Empirical cumulative distribution functions for the times between loans.
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(a) NDL granted by small banks. (b) Repos by small banks. (c) NDL granted by medium banks. (d) Repos by medium
banks. (e) NDL granted by large banks. (f) Repos by large banks. The first column corresponds to new deposits and
loans, while the second column corresponds to new repo loans. The rows correspond to small, medium and large
banks. The color code is as follows: blue represents loans received by large banks, red represents loans received
by medium banks and green represents loans received by small banks.
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FIGURE 8 Fraction of links of the reference network that have been observed again after
a certain number of days (in blue, uncollateralized loans; in red and dashed, collateralized
loans).
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(a) First day of January 2011 and (b) first month of 2011 used as reference network.

In part (a) of Figure 8, the first day of 2011 is chosen as the reference network.
It can be seen that most of the links are observed again within a few days, with the
loans of the uncollateralized market (blue line) seemingly repeating faster than in the
collateralized market (red line).

Part (b) of Figure 8 shows the result using the sum of all networks in January 2011
as a reference network, so that the first day on the x-axis corresponds to the first day of
February 2011. Obviously, the accumulation is slower than in part (a) of Figure 8, but
the speed at which most of the loans are seen again is remarkable. Also, the difference
between the uncollateralized (blue) and the collateralized (red) markets is greater in
this case.

4.2 Fraction of loans repeated after different periods

In a similar exercise, we calculated, for each day and for both the collateralized and
the uncollateralized markets, the fraction of a day’s loans that were observed within
the next day, the next week, the next month and the next quarter. The results are shown
in Figure 9 on the next page.

As previously shown, the collateralized market (part (b) of Figure 9) seems to
repeat loans faster. However, an increase during the first half of the time span can be
observed for the number of repeated loans in the uncollateralized market (part (a) of
Figure 9), especially for the time windows of one day and one week (blue and red
lines, respectively).
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FIGURE 9 For each date, each line counts the fraction of observed loans that were
observed again within the next day (orange line), the next week (red line), the next month
(green line) and the next quarter (blue line).
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(a) NDL: uncollateralized market. (b) Repos: collateralized market

For both markets, many of the loans are repeated after one month, and the vast
majority are repeated after one quarter.

In conclusion, studying the waiting times across different markets can help us
understand the stability of the loans observed in a network in terms of how likely it is
that a loan will exist given that it has existed before. The comparison between layers
helps us to understand the different dynamics when collateral is present (repos layer)
and when it is not present (NDL layer). Last, differentiating the size of the lending
banks reveals valuable information with regard to the interaction and reliability of
links when the size of the banks involved is taken into account.

5 MEASURING PERSISTENCE AND STABILITY OF
RELATIONSHIPS

In this section, we investigate the different layers of the interbank network to find
relations between institutions that persist in consecutive natural days. Given that
there is a link present for a certain day, we are interested in discovering whether there
is a nonnegligible probability that the link will be present the next day (Nicosia et al
2013).

We explore three ways of measuring the persistence and stability of links across
time: topological overlap, variation and stability matrixes and similarity measures.
Remember that aij .tm/ will denote the .i; j / entry of the adjacency matrix A on day
tm (loans from i to j ), where m D 1; 2; : : : ; T .
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5.1 Topological overlap

Following Nicosia et al (2013) and Hidalgo and Rodriguez-Sickert (2008), given two
networks consecutive in time, the topological overlap of the neighborhood of i in
Œtm; tmC1� is defined as

TOi .A.tm/; A.tmC1// D

P
j aij .tm/aij .tmC1/q

Œ
P
j aij .tm/�Œ

P
j aij .tmC1/�

: (5.1)

Averaging over all days, we obtain the average topological overlap of i ’s neigh-
borhood, which can be thought of as the probability that an edge from i to one of
its neighbors persists across two consecutive days, or as the tendency of i ’s links to
persist across multiple days. If, instead of averaging over all days, we obtain the daily
average over all banks’ topological overlaps, we obtain a measure of the tendency of
all nodes’ links to persist across days tm and tmC1:

TO.A.tm/; A.tmC1// D
1

N

NX
iD1

TOi .A.tm/; A.tmC1//: (5.2)

Figure 10 on the next page shows the series for TOGm, where G corresponds to
one of the following layers: frepos; NDL; securities; ODLg. It can be seen that the
topological overlap across consecutive days is highest for the securities layer. Also,
it is interesting to note that the repos and NDL layers follow the same dynamics, but
repos seems to be consistently higher than NDL. In turn, NDL accounts for a great part
of the overlap of ODL, meaning that it is common for banks to make two new loans
on two consecutive days rather than a loan with a two-day term. In related works, we
have found that overnight loans dominate the unsecured market (Martínez-Jaramillo
et al 2014b).

5.2 Stability and variation matrixes

The following method is proposed in Bellenzier (2013) to quantify the persistence
of the edges in a time interval given different behaviors of a link on two consecutive
days. The stability matrix for day tm, denotedD.tm/ (m D 1; 2; : : : ; T �1), is defined
as follows:

dij .tm/ D

8̂̂<
ˆ̂:
�1 if ai;j .tm/ D ai;j .tmC1/ D 0;

1 if ai;j .tm/ D ai;j .tmC1/ D 1;

0 otherwise:

(5.3)

Bellenzier further proposes introducing new variables to quantify link activity
(when links either exist or change their status on two consecutive days), among oth-
ers. However, we are going to concentrate on using the link stability matrix, S , which
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FIGURE 10 Evolution of the topological overlap of the different layers.
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counts the number of consecutive days on which a link persists:

sij D

T�1X
tmD1jdij .tm/¤�1

dij .tm/: (5.4)

The histograms in Figure 11 on the facing page show the (standardized) nonzero
values of the S matrix for each of the different layers, ie, the fraction of consecutive
days for which a link persisted. Confirming what has been claimed before, the secu-
rities layer has the fattest tail, meaning that it has the highest fractions of persistent
links across two consecutive days. However, comparing it with the ODL layer, while
the highest probabilities correspond to securities, the more extreme cases (links that
persisted almost all of the time) are seen in the ODL layer. Comparing repos and
NDL, collateralized loans persisted more often than uncollateralized loans.

5.3 Similarity measures

A similarity-based approach, using the Jaccard index, was used to quantify the sim-
ilarity of networks that are one day apart (a Jaccard self-similarity with lag equal
to 1). According to Bargigli et al (2013), the Jaccard similarity can be interpreted as
the probability of observing a link in a network conditional on the observation of the
same link in the other network. In a banking system with n institutions, having an
adjacency matrix in two different time periods, A.tm/ and A.tmC1/, in which each
entry can have the values 0 or 1, we define the following metrics. M11 is the total
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FIGURE 11 Distribution of the standardized nonzero values of the link stability matrix for
different layers.
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number of entries for which

a
A.tm/
ij D a

A.tmC1/

ij D 1; 8i ¤ j 2 f1; 2; : : : ; ng:

M01 represents the total number of entries for which aA.tm/ij D 0 and

a
A.tmC1/

ij D 1; 8i ¤ j 2 f1; 2; : : : ; ng:
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FIGURE 12 Evolution of the Jaccard self-similarities of the different layers.
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M10 represents the total number of entries for which aA.tm/ij D 1 and

a
A.tmC1/

ij D 0; 8i ¤ j 2 f1; 2; : : : ; ng:

And finally, M00 represents the total number of entries for which aA.tm/ij D 0 and

a
A.tmC1/

ij D 0; 8i ¤ j 2 f1; 2; : : : ; ng:

The Jaccard index is equal to the ratio of the number of links present in both
matrixes to the total number of links present in any of the two matrixes:

J.A.tm/; A.tmC1// D
M11

M01 CM10 CM11

: (5.5)

The behavior in Figure 12 is similar to that observed in the topological overlaps
(Figure 10 on page 116), but the series seem to be more volatile before 2010, with the
securities layer being slightly lower for that period. The gap between the persistence
of repos and NDL, which was mentioned earlier, becomes more clear using the self-
similarity method.

6 OVERLAP OF LINKS ACROSS LAYERS

In this section, we are interested in finding the links present in different layers on
the same day. This is important because it may reveal information about relationships
between banks that would otherwise be ignored in the aggregated network, given that,
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when observing a link in the aggregated network, we cannot tell how many of the
layers had the link present.

This section presents the methods (which are merely a modification of those in
Section 5) that will be used to study the overlap of links. The analysis is designed
to compare networks corresponding to the same day, although we will discuss later
how changing the time window (currently equal to one day) can change the results
significantly. Results using both time windows will be shown in Section 8.

To evaluate the significance of the results that have the form of time series, compar-
isons with null models, similar to those in Maslov and Sneppen (2002), were made.
For each daily network of each layer, 100 matrixes were simulated by preserving the
out-degrees of all nodes and shuffling the endpoints of the nodes. To evaluate the
significance of the overlap of two layers, the metrics were calculated for 100 pairs
of networks (obtained from the 100 simulations of each of the layers), and observed
results (from real data) were then compared with the mean and standard deviation of
the “null” metric of overlap.

In conclusion, despite using a very direct method to detect overlap, we found that
relationships that occur simultaneously in two or even three layers on the same day
exist, which suggests an important funding relationship.

6.1 Overlap

Part (a) of Figure 15 on page 124 and part (a) of Figure 16 on page 126 count the
number of links that were present in two or three layers on the same day. For the series
pairs, the five combinations introduced earlier are shown in part (a) of Figure 15.

For the entries present in three layers at the same time (shown in part (a) of Fig-
ure 16), part (i) counts links that represent lending banks, which, given that they
already owned securities of the borrowing bank, funded that same counterparty with
both a repo transaction and an NDL, all on the same day. Part (ii) is analogous but
considers ODLs (which include NDL as well).

6.2 Topological overlap across layers

As mentioned, a slight modification of the approach introduced in Section 5 was used.
Instead of calculating the topological overlap between two networks of the same layer
one day apart, we calculated the overlap using two networks corresponding to the same
day for two different layers:

TO.G.tm/; G
0.tm// D

1

N

NX
iD1

TOi .G.tm/; G
0.tm//; (6.1)

www.risk.net/journal Journal of Network Theory in Finance



120 J.-L. Molina-Borboa et al

where G.tm/ ¤ G0.tm/ correspond to one of the following layers: frepos;NDL;
securities;ODLg. Part (a) of Figure 17 on page 127 shows the evolution of the
topological overlap for the five combinations of interest.

6.3 Stability and variation matrixes across layers

Similarly, we obtain stability and variation matrixes across layers by using two net-
works corresponding to the same day for two different layers. In the end, we obtain
similarity matrixes SA;B whose entries sA;Bij count the number of days in which the
link .i; j / was present in both layers, A and B .

The distributions of the nonzero values of the link stability matrixes are shown in
part (a) of Figure 18 on page 128.

6.4 Similarities across layers

In a similar way to (5.5), we can define the Jaccard index for two different layers at
the same period of time, G.tm/ and G0.tm/, in a banking system with n banks. Now
we have that M11 is the total number of entries for which

a
G.tm/
ij D a

G0.tm/
ij D 1; 8i ¤ j 2 f1; 2; : : : ; ng:

M01 represents the total number of entries for which aG.tm/ij D 0 and

a
G0.tm/
ij D 1; 8i ¤ j 2 f1; 2; : : : ; ng:

M10 represents the total number of entries for which aG.tm/ij D 1 and

a
G0.tm/
ij D 0; 8i ¤ j 2 f1; 2; : : : ; ng:

And finally, M00 represents the total number of entries for which aG.tm/ij D 0 and

a
G0.tm/
ij D 0; 8i ¤ j 2 f1; 2; : : : ; ng:

The Jaccard index for two different layers in the same period of time is calculated
as follows:

J.G.tm/; G
0.tm// D

M11

M10 CM10 CM11

: (6.2)

The time series shown in part (a) of Figure 19 on page 129 show the results.
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TABLE 1 The percentage of days in which the observed metric was more than three
standard deviations away from that day’s null model.

Layer OV (%) TO (%) SIM (%)

NDL versus repos 46 48 52
NDL versus securities 70 65 28
Repos versus securities 50 43 48
ODL versus repos 70 61 29
ODL versus securities 87 83 12

The metrics are the number of overlap links (OV), topological overlap (TO) and Jaccard similarity (SIM).

6.5 Comparison with null models

Table 1 compares the results with our simulations.

7 THE NEED FOR A TIME WINDOW AND ITS CONSEQUENCES

In order to study the overlap between layers, a one-day window may be too harsh due
to the high-frequency nature of our data. While in Section 5 we did find evidence of
persistence using daily information, the results of Section 6 and the determinants of
persistence (both shown in Section 8) suggest that potentially informative evidence
is not seen clearly when only daily information is used.

Consider a bank that lends to another bank for fifty consecutive days but alternates
between two different markets every day (day 1 in repos, day 2 in NDL, day 3 in
repos, day 4 in NDL and so forth). Our one-day window would not capture this
overlap between layers, which clearly exists and reveals an important relationship
between these two institutions.

While there are a handful of methods to summarize consecutive temporal graphs
into a static graph (Nicosia et al (2013) and Sharan and Neville (2007) provide a few
examples), the choice of an appropriate method and time window for financial data is
a difficult one. This is especially true if we are to construct adjacency matrixes (which
are the input for most of the topological metrics and require unweighted graphs) to
estimate similarity and persistence. If the window is chosen incorrectly, important
relationships could be underestimated, while isolated relationships could be deemed
significant.

Further, the appropriate time window could be different for different financial
systems or even layers of the same financial network. The time window has to be
such that, while being economically meaningful, it retains important topological and
temporal information. Figure 13 on the next page shows the cumulative density of
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FIGURE 13 Densities for cumulative matrixes starting on the first day of 2011.
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The blue line represents uncollateralized loans and the red, dashed line represents repo transactions.

the NDL (blue) and repos (red) layers from the first day of 2011 until the end of our
data set.14

On the basis of our experience, we believe that it is most adequate to study high-
frequency networks by aggregating them along the time dimension. One important
paper on the topic of time aggregation in networks is Delpini et al (2013). Similar
results in terms of changes in the studied metrics were found by Finger et al (2013),
who noted that

� yearly aggregation shows variation due to changes in the system (such as
changes in active banks),

� monthly aggregation is problematic because of monthly seasonality, as shown
by Iori et al (2008),

� quarterly aggregation seems to be appropriate for this type of study.

The plots of the cumulative densities (Figure 13) for both layers show a concave
downward shape, which suggests a decreasing rate in the appearance of new links.
However, the sensitivity of the time window is highlighted: a small period of time is
considered (less than fifty days, for example) because of the quick increase in density.

In this paper, for demonstrative purposes, a time window of five days will be
adopted since it represents one business week. This is small enough to capture short-
or medium-term relationships and persistences but large enough to smooth our high-
frequency information.

14 This period was chosen because it was not until 2011 that the number of banks in the system
became stable.
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FIGURE 14 Reciprocity index for a time window of five days (consider that more one-way
links are added as the window grows larger).
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7.1 Reciprocity

It is interesting to note the changes observed in reciprocity when considering a five-
day window, as shown in Figure 14. Compared with the daily window used to generate
Figure 2 on page 107, the density of outstanding deposits and loans is lower, given
the fact that, while there are more days to allow a relationship to become reciprocal,
the addition of new (nonreciprocal) loans pulls down the reciprocity index.

In addition, the reciprocities for the unsecured (NDL) and secured (repos) markets
are higher using this new five-day window compared with using daily windows.
Finally, it has been found that reciprocity is not consistently higher for either of these
two layers: there are periods (which last for a few months) in which it is higher for
one or the other.

8 RESULTS AND DETERMINANTS OF LINK PERSISTENCE,
STABILITY AND OVERLAP

In this section, results will be presented using both the daily and five-day time win-
dows. Additionally, scatterplots coupling link stability and banks’ characteristics are
included.

8.1 Overlap of links

Figure 15 on the next page and Figure 16 on page 126 show the number of link
overlaps on pairs of networks using both time windows.
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FIGURE 15 Evolution of the number of link overlaps between different pairs of layers.
(a) One-day time window.
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(i) NDL versus securities. (ii) NDL and repos. (iii) Securities versus ODL. (iv) Securities versus repos. (v) ODL versus
repos.

FIGURE 15 (b) Five-day time window.
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(i) NDL versus securities. (ii) NDL and repos. (iii) Securities versus ODL. (iv) Securities versus repos. (v) ODL versus
repos.
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Focusing on part (ii) in parts (a) and part (b) of Figure 15, changing the time window
helped us to find what we were looking for: relationships between banks in different
layers. When a daily window is used, there seems to be, on average, four to six loans
present in both markets, and the time series is significantly larger than when a five-
day time window is used. The daily window also reveals important information with
regard to the overlap of loans across layers. The same is true for part (i) in parts (a)
and (b) of Figure 16, where using a larger window makes it clear that banks exist
which own paper from another bank, lend to that bank using a secured loan and lend
to that same bank using an unsecured loan – all at the same time.

Comparing part (i) with part (iv) in parts (a) and (b) of Figure 15 on the facing page,
the overlap between the cross-holding of securities and the uncollateralized market
(NDL) seems to be larger than the overlap with the collateralized market (repos). It
also seems to grow more consistently.

8.1.1 Topological overlap across layers

In Figure 17 on page 127, it is interesting to note that, although a slight level increase
seems to appear in part (iii), changing the time window does not appear to signifi-
cantly increase the topological overlap of the lending banks’ neighborhoods. While
we demonstrated before that increasing the time window helps to detect more over-
lap between loans, the topological overlap shows that lenders’neighborhoods already
overlap enough using a daily window, so increasing it does not add much to the results.

8.1.2 Stability and variation matrixes across layers

Figure 18 on page 128 reveals interesting results and different stories depending on the
time window used. First, comparisons between pairs of layers in part (a) of Figure 18
on page 128 show that there is low stability in the overlap of NDL versus repos. Also,
if a lending bank holds paper from a borrowing bank, it is more likely to lend to it on
the same day through an uncollateralized loan (part (iv), NDL versus securities) than
through a collateralized loan (part (v), repos versus securities).

Second, increasing the time window shows that a large number of loans is present
in different pairs of layers in over 95% of the weeks observed. While using a daily
window does not allow us to identify these overlap loans, the new time window reveals
a true and consistent overlap across the complete time period.

From this result, we can understand the relevance of a temporal aggregation process
when unveiling persistence and overlap.

8.1.3 Similarities across layers

Figure 19 on page 129 shows that, in general, similarities between layers change
greatly over time, even when a larger time window is considered. An interesting fact

www.risk.net/journal Journal of Network Theory in Finance



126 J.-L. Molina-Borboa et al

FIGURE 16 Evolution of the number of link overlaps between different triplets of layers.
(a) One-day time window.
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FIGURE 16 (b) Five-day time window.
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is that the similarity measure seems to be decreasing for almost all pairs of layers. In
addition, the similarity in NDL versus securities (part (i) of parts (a) and (b)) seems
to remain stable for most of the time period, whereas the similarity in NDL versus
repos has consistently decreased over time.
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FIGURE 17 Evolution of the topological overlaps between different pairs of layers. (a) One-
day time window.
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FIGURE 17 (b) Five-day time window.
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FIGURE 18 Distribution of the standardized nonzero values of the link stability matrixes
for different layer combinations. (a) One-day time window.
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FIGURE 18 (b) Five-day time window.
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FIGURE 19 Evolution of the Jaccard index between different pairs of layers. (a) One-day
time window.
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FIGURE 19 (b) Five-day time window.
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8.2 Relation of stability with other variables

This subsection compares the stability of links (using the entries of the stability matrix
sij ) with different average characteristics of the banks across the time period.

Figure 20 on the facing page compares the entries of the stability matrix with the
involved institutions’ assets for (i) ODL, (ii) NDL and (iii) repos for both windows.

An interesting fact, which can already be seen in part (a) of Figure 20 on the facing
page but becomes clearer in part (b) of Figure 20, is that, in the unsecured market
(NDL), smaller banks tend to lend to larger banks more than the other way around
(in part (i) and part (ii), there are more points below the horizontal axis than above).
However, in the secured market (part (iii), repos) this does not appear to happen, as if
the collateral involved in the loan makes it easier for larger banks to lend to smaller
ones. Once again, this is more clearly seen when using a five-day time window, as
more relationships become stable in this case (because they are present at least once
every five days, rather than daily). Something that can be appreciated with a daily
window is that the most stable links in both markets came from loans made by banks
of smaller sizes.

Figure 21 on page 133 shows the relation to clustering coefficients in derivatives
for both time windows. Although other works have found a relationship between
persistence and reciprocity (such as Hidalgo and Rodriguez-Sickert (2008) or Clauset
and Eagle (2012)), not much can really be said in our case, other than that banks with
similar coefficients tend to have more stable relationships (although they are by no
means the only ones).

Figure 22 shows the relationship of a link’s stability with its reciprocity. For some
markets, these two variables seem to be related. It is interesting to note that, when-
ever there is a relationship between these variables, it is more common for stability
than reciprocity to be higher, especially when the time window is increased. This
is due to the fact that stability grows faster with time than reciprocity. This means
that, as the days go by, it is more likely for a loan to be repeated than to become
reciprocal.

9 CONCLUSIONS AND FURTHER WORK

While it is impossible to properly evaluate the likelihood of direct contagion in a
banking system without a comprehensive concept of exposure, it is also impossible to
understand and quantify the strength and persistence of bilateral relationships without
first considering the multiplex nature of the financial system.

In this research, despite our stringent requirements to measure link persistence and
overlap with daily data, we found evidence of link persistence and overlap between
layers. Additionally, with a simple time aggregation study the evidence became clear:
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FIGURE 20 Relation of stability to borrower’s and lender’s asset sizes (fraction of the
system’s assets). (a) One-day time window.
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the layer in which persistence and stability were most easily identified was the secu-
rities cross-holding network. This finding is relevant, as not many previous papers
have been able to identify such exposures or study this particular layer using such a
perspective. As mentioned, this fact can explain why banks that retain other banks’
securities show trust in the recipient banks’ health without exhibiting drastic changes
in confidence.
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FIGURE 20 (b) Five-day time window.
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Little correlation was found between the compositions of the cores in different
layers, implying that the most significant nodes in each market are different. This
finding has important implications for supervisors, as it shows that the identifica-
tion of important players should be executed by taking the multiplex rather than the
aggregated network into account.

By analyzing the waiting times between loans, we found that they are shorter
for big banks than for medium-sized and small banks in the unsecured market. This
phenomenon disappears in the secured lending market.Additionally, large banks lend
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FIGURE 21 (a) One-day and (b) five-day time windows.
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with shorter waiting times to medium-sized than to small banks, and small banks
resort to medium-sized banks for liquidity in the secured market. At the moment we
cannot tell whether this is a supply- or demand-driven phenomenon, given that small,
medium-sized and big banks all have different liquidity needs. Further investigation
is required here.

One implicit assumption in the study of financial contagion through interbank
markets is that the exposures network, once obtained or simulated, is static or at least
stable.After collecting all the empirical evidence from this research, we conclude that,
by decomposing the full exposures network, we can distinguish different properties
across the layers. First, the persistence of the securities cross-holding network is
the highest. That is because this layer governs a large part of the persistence for
the full exposures network, and banks’ reactions are more likely to occur in other
layers that possess more dynamic features than the securities cross-holdings network.
Second, there are relationships between institutions that cover all the layers in the
exposures network. This is very important, because they represent the links that should
be preserved in the models that incorporate banks’ reactions.
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FIGURE 22 (a) One-day time window.
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FIGURE 22 (b) Five-day time window.
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Among the tasks that remain are the following. First, we need to formally determine
a time window for the temporal aggregation process, since we have only started the
investigation of the time aggregation process and link persistence. Second, more work
needs to be done on the banks’temporal characteristics that determine link persistence
and overlap, such as capital ratio, nonperforming loans and return on assets. Finally,
we will seek a relationship between the waiting time for a new loan between a pair
of banks and their reciprocity index.
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