Industry-University Research CollaborationsBest Practices

Julio A. Pertuze

Presented at Technology Management Policy Graduate Consortium – Cambridge, UK

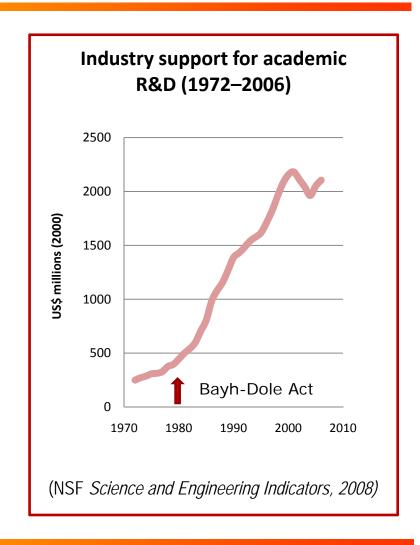
June, 2010

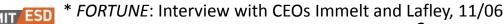
Advisors:

Prof. Edward M. Greitzer Dr. William A. Lucas

Massachusetts Institute of Technology **Engineering Systems Division**

Motivation


- Project funded by the Cambridge Massachusetts Institute (CMI)
- "The biggest challenge does not lie in the supply of ideas from universities, but the ability of industry to take advantage from university research"
 - Lambert Report on Business-University Collaboration
- "Building collaborative relationships with universities...is by far the best way to ensure they are responding to industry needs"
 - Lord Mandelson



Drivers for Industry-University Collaborations

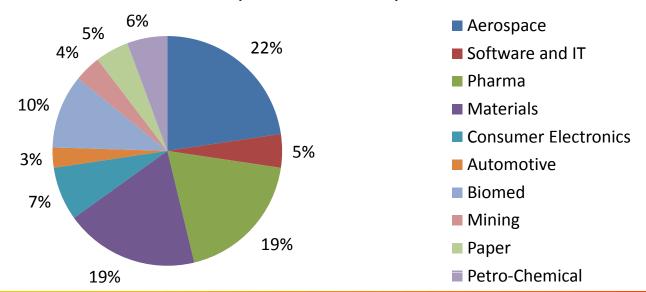
- Increasing difficulty for companies to do "all" necessary research
 - Industrial R&D budgets remaining constant, but shifting to development (Office of Science and Technology Policy, 2008)
- Move towards *open innovation* paradigm (Chesbrough, 2003)
 - Global view of R&D
 - Ideas sought from outside the company
 - "Reapplied with pride" just as important as "invented here"*
- More than 8 pieces of legislation in the U.S. (Bozeman, 2000)

The Problem

☐ Industry often dissatisfied with its ability to extract value from university collaboration

Yield Rate: "I would say realistically it's about 10-20%. We'd like it to be higher. There have been... [projects] where you'd think... it would've gone somewhere but it didn't for whatever reason." **Project Manager**

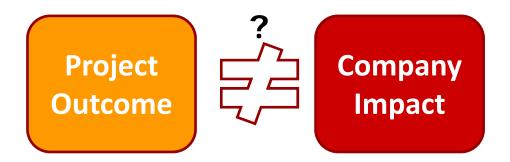
- "The problem is on the demand side"
 - Lambert Report (HM Treasury, 2003)
- ☐ Literature provides little on *actionable practices*
 - Abundant information on the benefits, but not on how to do it (Perkman & Walsh, 2007)
 - Lack of systematic information on project selection criteria, management processes to achieve positive impact for company


Research Objectives

- ☐ Indentify, in a manner that can be acted upon, the **best practices** for industry-university collaborations
 - Project selection criteria
 - Collaboration management
 - Uptake of research results
- ☐ Expected research results
 - Better understanding of the collaboration dynamics
 - Go beyond the recognition of problem: provide actionable solutions

Methodology

- Case Study research with multiple embedded levels of analysis (Yin, 2009)
 - Why are companies dissatisfied?
 - **How** can we increase the *impact* of university research?
- On-site interviews in 25 companies with experience in collaborations

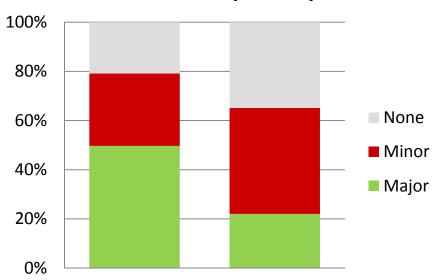


Research Framing

- Previous research is focused on collaboration outcomes
 - E.g. Patents, Publications, Licenses, Hires, etc. (Cohen et al., 2002)
- However, the success of a collaboration should be judged based **impacts** on company competitiveness
 - E.g. Tangible difference in products, processes, services, strategy

Collaboration Success Metrics

☐ Interviews with over 100 project managers , asked to evaluate:


1. Outcomes New Ideas/methods? Solutions to problems? IP (Inc. Software)? Steps taken to protect IP?

- ☐ Interviews with senior technology personnel who coordinate university research activities
 - Independently judge the project manager's assessment

The Outcome-Impact Gap

The Outcome-Impact Gap

Project Outcomes Company Impacts

Major Outcome

- Clear and significant potential benefit to the company
- Includes negative but useful results

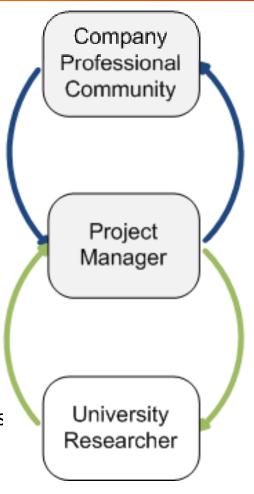
Major Impact

 Observable and generally agreed upon positive impact on company's competitiveness or productivity.

Leading Research Question:

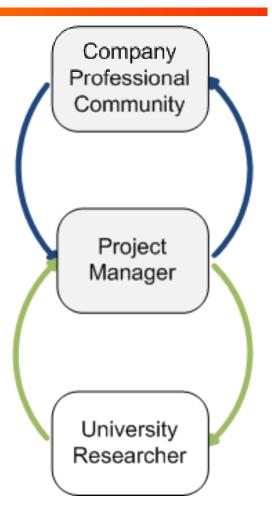
Why don't some research collaborations with interesting **outcomes** produce an **impact** on the company's productivity or competitiveness?

Defining Information for Closing the Gap


- Survey instrument composed of closed and open-ended questions
- ☐ Closed questions enabled **quantitative** analysis of practices
 - Activities/practices determined through interviews with managers of industry-university collaboration and literature
 - Practices organized into scales that capture collaboration attributes
 - Scales assessed statistically
- Open-ended questions to elaborate Case studies

Example: Boundary Spanning Activity

- □ Boundary Spanning Activity (Allen, 1977)
 - Primary process through which knowledge is transferred across organizations
 - It is performed by key individuals ("boundary agents") who identify and communicate new information and ideas.
- Our hypothesis
 - The boundary spanning activity of the project manager will have a positive effect on the collaboration's outcomes and impact



Measurement of Boundary Spanning Activity

- Created a scale by asking project managers the frequency at which:
 - Brought the project up in conversation with other individuals involved in R&D
 - Solicited suggestions from technical professionals about how the project could better fit their needs.
 - Telephoned university researchers for unscheduled discussions.
 - Used project ideas or results in discussions about future company technologies
- ☐ In total, 7 activities that define a single practice
 - Cronbach's alpha = .831 -> scale is reliable
- Scale positively correlated with
 - Outcomes (r=.267, p<.05)</p>
 - Impacts (r=.300, p<.001)</p>

Other Practices (Attributes) Analyzed...

- Quality of Relationships
 - Trust, previous relationships, informal contacts
- Professional Networks
 - Communities of practice
- Communications
 - Frequency, type (email, face-to-face, etc), vocabulary
- ☐ Geography (proximity)
- Project Characteristics
 - Duration, Budget, founding sources
 - Number of people involved in project
 - Strategic alignment
- Company Policies
 - Champions, PM support, resources
- ☐ Approximately 100 questions related to practices

Data Analysis Results

- Analysis of data led to **seven best practices** for university-industry collaboration project managers
- Data show these specific practices contribute to closing the outcomeimpact gap
- Taken together the practices provide a suite of actionable items to enhance project impact

Seven Best Practices

- Define the project's strategic context as part of the selection process
- 2. Select boundary spanning project managers
- Share, with the university team, the vision for how the collaboration can help the company
- 4. Invest in long-term relationships
- 5. Establish a strong communication linkage with the university team
- 6. Build broad awareness of project within the company
- 7. Support the work internally both *during* the actual contract and *afterwards*, until the research can be exploited

Summary of contributions

- The outcome of industry-university research collaboration does not always lead to an impact for the company
- We described research to determine project management behaviors linked to the gap between outcome and impact
- ☐ We presented **seven data driven best practices** to close this gap
- More information and case studies:

Pertuze, J., Calder, E., Greitzer, E., Lucas, W. "Best Practices for Industry-University Research Collaborations," *MIT Sloan Management Review*, Forthcoming July 2010.

Questions?

Julio Pertuze MIT- Engineering Systems Division pertuze@mit.edu

