Centre for Risk Studies Research Showcase 13 January 2015 Session 1: Cambridge Risk Framework

Developing Frameworks for Managing Cyber Catastrophe Risk

Centre for Risk Studies

Éireann Leverett

Senior Risk Researcher Ex-Pirate

Why isn't Cyber Solved Yet?

- Misaligned incentives
 - Who do you pay to hack you?
 - What do you do when they succeed?
- Race to the bottom
 - Time to market pressure for software, skip security!
- Invisible failures
 - Last time someone failed to log into your account?
- Tragedy of the commons
 - Who polices bandwidth usage? DDoS reflectors? Routing?
- No price discrimination on security/privacy
 - You chose your car because of the locks right?
 - Laptop? Operating System? Email provider?

Why is Cyber a Different/Similar Risk?

- It is a network of networks
- Physical laws (and metaphors) don't apply
- Man Made Peril
- Frequency & Severity poorly understood
- Rapidly changing trends
- Was cyber's effect on the global economy:
 - Revolutionary?
 - Disruptive?
- Why wouldn't the solutions be:
 - Revolutionary.
 - Disruptive.

Towards a Framework

- Mapping the 'shape' of cyber
- Managing latent legacy risk
- Adopting less risk
- Handling a crisis as a business or a nation
- Finding the systemic, endemic, risks
- Building risk management consortiums
- What is the data interface between re-insurers and tech-security companies?
- How do you measure vulnerability?

Adopt a metric: Leverett-Wightman Cost

We published a sample opportunity cost of finding a particular type of vulnerable device online in 2012

- 1. This metric is methodology and technology independent.
- 2. As costs for parallelisation fall this is incorporated into the metric.
- 3. As newer, faster scanners (such as ZMAP) are developed this is also included in the metric.
- 4. The density of vulnerability across a network space is factored into the metric.
- 5. Partial scans can still be used for metrics.
- 6. We understand the cost to attackers of finding opportunistic targets.
- 7. We understand the low cost to this methodology of defending.
- 8. We understand the change over time in the lifecycle of exposure and vulnerability.
- 9. It naturally translates a technical problem into an economic one ready for debate and policy discussion.

Catastrophe Models

- A Risk Assessment Model for Cyber Attacks on Information Systems
 - [Patel & Zaveri 2010]
- Identifying, Understanding, and Analysing Critical Infrastructure Interdependencies
 - [Rinaldi, Peerenboom, Kelly 2001]
- Modelling interdependencies between the electricity and information infrastructures
 - [Laprie, Kanoun, Kaâniche 2007]
- Towards modelling the impact of cyber attacks on a smart grid
 - [Kundur, Feng, Mashayekh, Liu, Zourntos and Butler-Purry 2008]

A Cyber Crisis Management Framework

Has Civilisation Been Here Before?

- The golden age of piracy
 - 1480-1800
- A contested sea
 - Disruption
 - Damage
 - Theft
- Rapid changes in frequency and severity
- Information Asymmetry
- Companies caught between nations

We Solved This Before

- Nation State
- Organised Crime
- Hacktivist
- Jurisdiction
- Attribution
- Legal Uncertainty
- Companies as a battle ground for nations
- Trade risk
- Misunderstood attacker incentives

A Map, a Watch, a Sextant, and a Shipping Forecast.

Not all solutions are technical.

Risk management of a technical commons.

Whose job is it?

How do we manage 'the interim period'?

