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Abstract—There is reliable evidence that technical analysis,
as used by traders in the foreign exchange (FX) markets, has
predictive value regarding future movements of foreign exchange
prices. Although the use of artificial intelligence (AI)-based
trading algorithms has been an active research area over the last
decade, there have been relatively few applications to intraday
foreign exchange—the trading frequency at which technical
analysis is most commonly used. Previous academic studies have
concentrated on testing popular trading rules in isolation or have
used a genetic algorithm approach to construct new rules in an
attempt to make positive out-of-sample profits after transaction
costs. In this paper we consider strategies which use a collection
of popular technical indicators as input and seek a profitable
trading rule defined in terms of them. We consider two popular
computational learning approaches, reinforcement learning and
genetic programming (GP), and compare them to a pair of simpler
methods: the exact solution of an appropriate Markov decision
problem and a simple heuristic. We find that although all methods
are able to generate significant in-sample and out-of-sample
profits when transaction costs are zero, the genetic algorithm
approach is superior for nonzero transaction costs, although none
of the methods produce significant profits at realistic transaction
costs. We also find that there is a substantial danger of overfitting
if in-sample learning is not constrained.

Index Terms—Computational learning, foreign exchange (FX),
genetic algoriths (GA), linear programming, Markov chains, rein-
forcement learning, technical trading, trading systems.

I. INTRODUCTION

SINCE the era of floating exchange rates began in the early
1970s, technical trading has become widespread in thefor-

eign exchange(FX) markets. Academic investigation of tech-
nical trading however has largely limited itself to daily data.
Although daily data is often used for currency overlay strate-
gies within an asset-allocation framework, FX traders trading
continuously throughout the day naturally use higher frequency
data.

In this investigation, the relative performance of various op-
timization techniques in high-frequency (intraday) foreign ex-
change trading is examined. We compare the performance of
a genetic algorithm (GA) and a reinforcement learning (RL)
system to a simple linear program (LP) characterising a Markov
decision process (MDP) and a heuristic.

In Section II, we give a brief literature review of preceding
work in technical analysis. Sections III and IV then introduce
the GA and RL methods. The stochastic optimization problem
to be solved by all the compared methods is defined in Section
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V, while Sections VI–VIII describe in more detail how each ap-
proach can be applied to solve this optimization problem ap-
proximately. The computational experiments performed are out-
lined and their results given in Section IX. Section X concludes
with a discussion of these results and suggests further avenues
of research.

Reinforcement learning has to date received only limited at-
tention in the financial literature and this paper demonstrates
that RL methods show significant promise. The results also indi-
cate that generalization and incorporation of constraints limiting
the ability of the algorithms to overfit improves out-of-sample
performance, as is demonstrated here by the genetic algorithm.

II. TECHNICAL ANALYSIS

Technical analysis has a century-long history amongst invest-
ment professionals. However, academics have tended to regard
it with a high degree of scepticism over the past few decades
largely due to their belief in the efficient markets or random walk
hypothesis. Proponents of technical analysis had until very re-
cently never made serious attempts to test the predictability of
the various techniques used and as a result the field has remained
marginalized in the academic literature.

However, due to accumulating evidence that markets are less
efficient than was originally believed (see, for example, [1]),
there has been a recent resurgence of academic interest in the
claims of technical analysis. Lo and MacKinlay [2], [3] have
shown that past prices may be used to forecast future returns
to some degree and thus reject the random walk hypothesis for
United States stock indexes sampled weekly.

LeBaron [1] acknowledges the risk of bias in this research
however. Since various rules are applied and only the successful
ones are reported, he notes that it is not clear whether the returns
achieved could have been attained by a trader who had to make
the choiceof rules in the first place. LeBaron argues that to
avoid this bias it is best simply to look at rules that are both
widely used and have been in use for a long period of time.
Neelyet al. [4] use a genetic programming based approach to
avoid this bias and found out-of-sample net returns in the 1–7%
per annum range in currency markets against the dollar during
1981 to 1995.

Although there has been a significant amount of work in tech-
nical analysis, most of this has been based on stock market data.
However, since the early 1970s this approach to trading has
been widely adopted by foreign currency traders [4]. A survey
by Taylor and Allen [5] found that in intraday trading 90% of
respondents reported the use of technical analysis, with 60%
stating that they regarded such information as at least as impor-
tant as economic fundamentals. Neelyet al. [4] argue that this
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can be partly explained by the unsatisfactory performance of
exchange rate models based on economic fundamentals. They
cite Frankel and Rose [6] who state that no model based on
such standard fundamentals like money supplies, real incomes,
interest rates, and current-account balances will ever succeed in
explaining or predicting a high percentage of the variation in the
exchange rate, at least at short or medium-term frequencies.

A number of researchers have examined net returns due to
various trading rules in the foreign exchange markets [7], [8].
The general conclusion is that trading rules are sometimes able
to earn significant returns net of transaction costs and that this
cannot be easily explained as compensation for bearing risk.
Neely and Weller [9] note however that academic investigation
of technical trading has not been consistent with the practice
of technical analysis. As noted above, technical trading is most
popular in the foreign exchange markets where the majority of
intraday foreign exchange traders consider themselves technical
traders. They trade throughout the day using high-frequency
data but aim to end the day with a net open position of zero.
This is in contrast to much of the academic literature which has
tended to take much longer horizons into account and only con-
sider daily closing prices.

Goodhart and O’Hara [10] provide a thorough survey of past
work investigating the statistical properties of high-frequency
trading data, which has tended to look only at narrow classes of
rules. Goodhart and Curcio [11] examine the usefulness of resis-
tance levels published by Reuters and also examine the perfor-
mance of various filter rules identified by practitioners. Demp-
ster and Jones [12], [13] examine profitability of the systematic
application of the popular channel and head-and-shoulders pat-
terns to intraday FX trading at various frequencies, including
with an overlay of statistically derived filtering rules. In subse-
quent work [14], [15] upon which this paper expands, they apply
a variety of technical trading rules to trade such data (see also
Tan [16]) and also study a genetic program which trades com-
binations of these rules on the same data [17]. None of these
studies report any evidence ofsignificantprofit opportunities,
but by focussing on relatively narrow classes of rules their re-
sults do not necessarily exclude the possibility that a search over
a broader class would reveal profitable strategies. Gencayet al.
[18] in fact assert that simple trading models are able to earn
significant returns after transaction costs in various foreign ex-
change markets using high frequency data.

III. GENETIC ALGORITHMS

In recent years, the application of artificial intelligence (AI)
techniques to technical trading and finance has experienced sig-
nificant growth. Neural networks have received the most atten-
tion in the past and have shown varying degrees of success.
However recently there has been a shift in favor of user-trans-
parent, nonblack box evolutionary methods like GAs and in par-
ticular genetic programming (GP). An increasing amount of at-
tention in the last several years has been spent on these genetic
approaches which have found financial applications in option
pricing [19], [20] and as an optimization tool in technical trading
applications [17], [14], [4].

Evolutionary learning encompasses sets of algorithms that are
inspired by Darwinian evolution. GAs are population-based op-
timization algorithms first proposed by Holland [21]. They have
since become an active research area within the artificial intelli-
gence community and have been successfully applied to a broad
range of hard problems. Their success is in part due to their sev-
eral control parameters that allow them to be highly tuned to the
specific problem at hand. GP is an extension proposed by Koza
[22], whose original goal was to evolve computer programs.

Pictetet al.[23] employ a GA to optimize a class of exponen-
tially weighted moving average rules, but run into serious over-
fitting and poor out-of-sample performance. They report 3.6%
to 9.6% annual excess returns net of transaction costs, but as
the models of Olsen and Associates are not publicly available
their results are difficult to evaluate. Neely and Weller [9] re-
port that for their GA approach, although strong evidence of
predictability in the data is measured out-of-sample when trans-
action costs are set to zero, no evidence of profitable trading op-
portunities arise when transaction costs are applied and trading
is restricted to times of high market activity.

IV. REINFORCEMENTLEARNING

Reinforcement learning has so far found only a few financial
applications. The reinforcement learning technique is strongly
influenced by the theory of MDPs, which evolved from attempts
to understand the problem of making sequences of decisions
under uncertainty when each decision can depend on the pre-
vious decisions and their outcomes. The last decade has wit-
nessed the merging of ideas from the reinforcement learning and
control theory communities [24]. This has expanded the scope
of dynamic programming and allowed the approximate solution
of problems that were previously considered intractable.

Although reinforcement learning was developed indepen-
dently of MDPs, the integration of these ideas with the theory
of MDPs brought a new dimension to RL. Watkins [25]
was instrumental in this advance by devising the method of

-learning for estimating action-value functions. The nature
of reinforcement learning makes it possible to approximate
optimal policies in ways that put more effort into learning to
make good decisions for frequently encountered situations
at the expense of less effort for less frequently encountered
situations [26]. This is a key property which distinguishes
reinforcement learning from other approaches for approximate
solution of MDP’s.

As fundamental research in reinforcement learning advances,
applications to finance have started to emerge. Moodyet al.[27]
examine a recurrent reinforcement learning algorithm that seeks
to optimize an online estimate of the Sharpe ratio. They also
compare the recurrent RL approach to that of-learning.

V. APPLYING OPTIMIZATION METHODS TOTECHNICAL

TRADING

In this paper, following [15], [17], [14], we consider trading
rules defined in terms of eight popular technical indicators used
by intraday FX traders. They include both buy and sell signals
based on simple trend-detecting techniques such as moving av-
erages as well as more complex rules. The indicators we use are
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the price channel breakout, adaptive moving average, relative
strength index, stochastics, moving average convergence/diver-
gence, moving average crossover, momentum oscillator, and
commodity channel index. A complete algorithmic description
of these indicators can be found in [15], [14].

To define the indicators, we first aggregate the raw tick data
into (here) quarter-hourly intervals, and for each compute the
bar data—theopen, close, high, andlow FX rates. Most of the
indicators use only the closing price of each bar, so we will
introduce the notation to denote theclosingGBP:USD FX
rate (i.e., the dollar value of one pound) of bar(here we use
boldface to indicate random entities).

We define the market state at time as the binary string
of length 16 giving thebuy andsell poundsindications of the
eight indicators, and define the state space as the
set of all possible market states. Here a 1 represents a trading
recommendation for an individual indicator whose entry is oth-
erwise 0. In effect, we have constructed from the available tick
data a discrete-time data series: at time(the end of the bar
interval) we see , compute and must choose whether or not
to switch currencies based on the values of the indicators in-
corporated in and which currency is currently held. We con-
sider this time series to be a realization of a binary string valued
stochastic process and make the required trading decisions by
solving an appropriate stochastic optimization problem.

Formally, a trading strategy is a function
, , for some current position( , dollars,

or , pounds), telling us whether we should hold pounds ( )
or dollars ( ) over the next timestep. It should be noted that
although our trading strategiesare formallyMarkovian(feed-
back rules), some of our technical indicators require a number
of periods of previous values of to decide the corresponding
0-1 entries in . The objective of the trading strategiesused in
this paper is to maximize the expected dollar return (after trans-
action costs) up to some horizon:

(1)

where denotes expectation,is the proportional transaction
cost, and is chosen with the understanding that trading strate-
gies start in dollars, observe and then have the opportunity to
switch to pounds. Since we do not have an explicit probabilistic
model for how FX rates evolve, we cannot perform the expecta-
tion calculation in (1), but instead adopt the familiar approach of
dividing our data series into an in-sample region, over which we
optimize the performance of a candidate trading strategy, and an
out-of-sample region where the strategy is ultimately tested.

The different approaches utilized solve slightly different
versions of the in-sample optimization problem. The simple
heuristic and Markov Chain methods find a rule which takes as
input a market state and outputs one of three possible actions:
either “hold pounds,” “hold dollars” (switching currencies if
necessary) or “stay in the same currency.”

The GA and RL approaches find a rule which takes as input
the market state and the currency currently held, and chooses
between two actions: either to stay in the same currency or
switch. Thus the RL and GA method are given slightly more

information (their current position) than the heuristic and MDP
methods and we might thus expect them to perform better. The
GA method also has an extra constraint restricting the com-
plexity of the rules it can generate which is intended to stop
overfitting of the in-sample data.

VI. A PPLYING RL TO THE TECHNICAL TRADING PROBLEM

The ultimate goal of reinforcement learning based trading
systems is to optimize some relevant measure of trading system
performance such as profit, economic utility or risk-adjusted re-
turn. A standard RL framework has two central components;
an agent and an environment. The agent is the learner and de-
cision maker that interacts with the environment. The environ-
ment consists of a set of states and available actions for the agent
in each state.

The agent is bound to the environment through perception
and action. At a given time stepthe agent receives input,
which is representative of some state , where is the set
of all possible states in the environment. As mentioned in the
previous section, is defined here as being a combination of
the technical indicator buy and sell pounds decisions prepended
to the current state of the agent (0 for holding dollars and 1 for
pounds). The agent then selects an action where

telling it to hold pounds ( ) or dollars ( ) over
the next timestep. This selection is determined by the agent’s
policy ( , i.e., defined in our case as the trading strategy)
which is a mapping from states to probabilities of selecting each
of the possible actions.

For learning to occur while iteratively improving the trading
strategy (policy) over multiple passes of the in-sample data, the
agent needs a merit function that it seeks to improve. In RL, this
is a function of expected return which is the amount of return
the agent expects to get in the future as a result of moving for-
ward from the current state. At each learning episode for every
time-step the value of the last transition is communicated to
the agent by an immediate reward in the form of a scalar rein-
forcement signal . The expected return from a state is therefore
defined as

(2)

where is the discount factorand is the final time step.
Note that the parameter determines the “far-sightedness” of
the agent. If then and the agent myopically
tries to maximize reward only at the next time-step. Conversely,
as the agent must consider rewards over an increasing
number of future time steps to the horizon. The goal of the agent
is to learn over a large number of episodes a policy mapping of

which maximizes for all as the limit
of the approximations obtained from the same states at the pre-
vious episode.

In our implementation, the agent is directly attempting to
maximize (1). The reward signal is therefore equivalent to ac-
tual returns achieved from each state at the previous episode.
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This implies that whenever the agent remains in the base cur-
rency, regardless of what happens to the FX rate, the agent is
neither rewarded nor penalized.

Often RL problems have a simple goal in the form of a single
state which when attained communicates a fixed reward and
has the effect of delaying rewards from the current time pe-
riod of each learning episode. Maes and Brookes [28] show
that immediate rewards are most effective—when they are fea-
sible. RL problems can in fact be formulated with separate state
spaces and reinforcement rewards in order to leave less of a
temporal gap between performance and rewards. In particular
it has been shown that successive immediate rewards lead to ef-
fective learning. Mataric` [29] demonstrates the effectiveness of
multiple goals and progress estimators, for example, a reward
function which provides instantaneously positive and negative
rewards based upon “immediate measurable progress relative to
specific goals.”

It is for this reason that we chose to define the immediate
reward function (2) rather than to communicate the cumulative
reward only at the end of each trading episode.

In reinforcement learning the link between the agent and the
environment in which learning occurs is the value function.
Its value for a given state is a measure of how “good” it is for
an agent to be in that state as given by the total expected fu-
ture reward from that state under policy. Note that since the
agent’s policy determines the choice of actions subsequent
to a state, the value function evaluated at a state must depend
on that policy. Moreover, for any two policiesand we say
that is preferred to , written , if and only if ,

. Under suitable technical conditions there will
always be at least one policy that is at least as good as all other
policies. Such a policy is called an optimal policy and is the
target of any learning agent within the RL paradigm. To all op-
timal policies is associated the optimal value function, which
can be defined in terms of a dynamic programming recursion as

(3)

Another way to characterize the value of a stateis to con-
sider it in terms of the values of all the actionsthat can be taken
from that state assuming that an optimal policyis followed
subsequently. This value is referred to as the -value and is
given by

(4)

The optimal value function expresses the obvious fact that the
value of a state under an optimal policy must equal the expected
return for the best action from that state, i.e.,

The functions and provide the basis for learning algo-
rithms for MDPs.

-learning [25] was one of the most important breakthroughs
in the reinforcement learning literature [26]. In this method, the
learned action-value function directly approximates the op-
timal action-value function and dramatically simplifies the

analysis of the algorithm to enable convergence proofs. As a
bootstrapping approach,-learning estimates the-value func-
tion of the problem based on estimates at the previous learning
episode. The -learning update is the backward recursion

(5)

where the current state-action pair from
the previous learning episode. At each iteration (episode) of the
learning algorithm, the action-value pairs associated with all the
states are updated and over a large number of iterations their
values converge to optimality for (4). We note that there are
some parameters in (5): in particular, thelearning rate refers
to the extent with which we update the current-factor based
on future rewards, refers to how “far-sighted” the agent is
and a final parameter of the algorithm is the policy followed
in choosing the potential action at each time step.-learning
has been proven to converge to the optimal policy regardless of
the policy actually used in the training period [25]. We find that
following a random policy while training yields the best results.

In order for the algorithm to converge, the learning rate
must be set to decrease over the course of learning episodes.
Thus has been initially set to 0.15 and converges downwards
to 0.000 15 at a rate of , where is the
episode (iteration) number which runs from 0 to 10 000. The
parameter has been set to 0.9999 so that each state has full
sight of future rewards in order to allow faster convergence to
the optimal.

With this RL approach we might expect to be able to outper-
form all the other approaches on the in-sample data set. How-
ever on the out-of-sample data set, in particular at higher slip-
page values, we suspect that some form of generalization of the
input space would lead to more successful performance.

VII. A PPLYING THE GENETIC ALGORITHM

The approach chosen extends the genetic programming work
initiated in [14] and [17]. It is based on the premise that prac-
titioners typically base their decisions on a variety of technical
signals, which process is formalized by a trading rule. Such a
rule takes as input a number of technical indicators and gener-
ates a recommended position (long £, neutral, or long $). The
agent applies the rule at each timestep and executes a trade if
the rule recommends a different position to the current one.

Potential rules are constructed as binary trees in which the
terminal nodes are one of our 16 indicators yielding a Boolean
signal at each timestep and the nonterminal nodes are the
Boolean operatorsAND, OR, and XOR. The rule is evaluated
recursively. The value of a terminal node is the state of the
associated indicator at the current time; and the value of a
nonterminal node is the associated Boolean function applied to
its two children. The overall value of the rule is the value of
the root node. An overall rule value of one (true) is interpreted
as a recommended long £ position and zero (false) is taken
as a recommended neutral position. Rules are limited to a
maximum depth of four (i.e., a maximum of 16 terminals) to
limit complexity. An example rule is shown in Fig. 1. This
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definition of a rule generalizes that used in [17], [14] which
allows trees in the comb form of Fig. 1, but to depth 10.

The fitness score of such a ruleis defined as thetotal return
cumulated over the appropriate data period [cf. (1)], i.e.

(6)

The genetic algorithm is used to search the space of all such
rules and is tuned to favor rules that trade successfully (i.e.,
achieve high fitness scores) in the in-sample training period. An
initial population of 250 rules is randomly generated and each
rule is evaluated according to (6). A new population of rules is
generated from this in which high scoring rules are preferred to
low scoring rules. This bias means that the fitness scores of the
new population should be greater than those of the old popula-
tion. New rules are generated by two processes: crossover and
mutation.

To use crossover two parent rules are selected from the
current population. The selection process is biased toward fitter
(better performing) rules: all rules in the current population
are ranked in order of fitness score, and are chosen with
a probability linearly proportional to their rank. A random
subtree is chosen from each parent rule and these two subtrees
are swapped between the parent rules to create two new rules,
each of which inherits characteristics from both parents. This
process is shown in Fig. 2. Potential subtrees to swap are
checked to ensure that the resulting new rules would not exceed
the specified maximum tree depth. Two new rules meeting this
criterion are inserted into the new population. For mutation, a
single rule is selected from the current population (again biased
toward the better performers) and a random node is replaced
with a random node of the same type (e.g., anAND might
become anOR). The mutated rule is then inserted into the new
population.

New rules are generated using 75% crossover and 25% mu-
tation until a total of 250 new rules are generated, when the new
population is evaluated for fitness scores. The average score of
the new population should be greater than that of the old due
to the favoritism shown to the better performing rules in the old
population. This process is repeated 100 times (generations) and
thebest rule found during the entire run is selected as theoutput
of the genetic algorithm.

The rules found by this process exhibit a number of desirable
properties. First, with careful tuning of the GA they should per-
form well in-sample. Second, a rule can be understood by hu-
mans: it is clear what the rule does, even if it is not clear why it
does it. Thirdly, this structure limits (but does not prevent) how
much a rule can learn in detail (i.e.,overfit) the training data set.
It is to be expected that this enforced generalization will lead to
better out-of-sample performance with a possible reduction in
in-sample performance.

VIII. M ARKOV CHAIN AND SIMPLE HEURISTIC

In addition to the RL and GA methods we will consider two
alternative approaches. The first replaces the in-sample dataset

Fig. 1. An example rule.

Fig. 2. Genetic algorithm crossover.

with a Markov chain on a small set of market states and replaces
the problem of maximizing the profit made over the in-sample
period with that of maximizing a total expected discounted re-
turn assuming Markov dynamics. This approach is described in
detail in Section VIII-A.

The second method is a simpleheuristic: with each state we
associate a number (which will be interpreted as the expected
rise in the exchange FX rate over the nexttrading periods
for some ) and consider strategies which buy pounds if this
number exceeds one threshold, and sell pounds when it falls
below a second threshold. We then optimize overand the two
thresholds to maximize the in-sample profit. More details on this
method are given in Section VIII-B.

These two methods were used to benchmark the success of
the true computational learning approaches in maximizing the
in-sample profit. Neither are likely to attain the true optimum,
but they should perform reasonably well. The heuristic was
more successful at solving the in-sample problem with nonzero
transaction costs than any of the other approaches, but it does
not perform particularly well out-of-sample due to over-fitting.

A. A Markov-Chain Linear Programming Approximation

Recall that denotes the market-state at time(the values of
the indicator recommendations on which the trading decision at
time is based). In this section we will let denote the set of
all market states which occur in the in-sample dataset.

We will construct a controlled Markov chain on the set of
pairs where denotes a market state present in the
in-sample dataset and indicates
whether or not pounds are currently held. Thecontrolsat each
timestep are 0 or 1, indicating the currency we wish to hold over
the next timestep as before.

Denoting by the number of times state appears
in the in-sample dataset (excluding the final data-point), and
by the number of times state is immediately fol-
lowed by state , we define a controlled Markov chain ,
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, by fixing and choosing the prob-
ability of a transition from to using control
to be

For , we define an approximation to the ex-
pected dollar return over the next timestep given we are in state

and hold currency as

We are now in a position to replace the problem of maximizing
the in-sample return with the problem

(7)

where is a feedback map from the state-space of the Markov
chain to the set of controls and we treat the term
as zero (since we must start in dollars). The constantis a dis-
count factor, chosen arbitrarily to be equal to . This is an
approximation to the objective (1).

Since the set is quite small, this problem can be solved
exactly using the technique of linear programming. To see this,
observe that the solution to (7) is characterized by the optimal
value function defined for all as
the optimal value (1) when . The function
satisfies the dynamic programming recursion

(8)

whose solution is unique under various conditions (it suffices
that the Markov chain has a finite statespace and that
, which is the case here). But a solution to the system above

can be obtained by solving the linear program

subject to for all and

(9)

which must yield the required optimal value function. The
optimal action in state can be extracted from the
optimal value function by choosing any maximizing
the right-hand side of (8). The solution to the LP is found for
each in-sample period using the CPLEX commercial LP solver.

Fig. 3. Cumulative in-sample monthly returns at no slippage.

Fig. 4. Cumulative out-of-sample monthly returns at no slippage.

Fig. 5. Cumulative in-sample monthly returns at 1 bp slippage.

B. A Simple Heuristic

One objection to the method of the previous section is
that when transaction costs are large the solution obtained to
the problem in (7) above may perform badly over the actual
in-sample period; worse even than the trivial strategy ‘always
hold dollars’ with a return of 0. As an alternative, we consider
a heuristicdefined in terms of three parameters :

when (10)
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Fig. 6. Cumulative out-of-sample monthly returns at 1 bp slippage.

Fig. 7. Cumulative in-sample monthly returns at 4 bp slippage.

when (11)

The expected value in (10) and (11) is just the expected return
available if we held pounds for the nextdays given that the cur-
rent market state is. Since we do not have a stochastic process
model for FX rate movements, this expectation must also be es-
timated from the in-sample data (assuming the ergodic theorem
holds) as

where is the set .
For a several classes of stochastic process models for FX dy-

namics, the optimal strategy for both very low and very high
transaction costs has the form of (10) and (11), making it a plau-
sible heuristic in general.

The optimization of the three parameters of the heuristic is a
nonconvex multiextremal problem and for each in-sample pe-
riod is solved by a simple genetic algorithm.

IX. NUMERICAL EXPERIMENTS

The results reported below were obtained by applying the ap-
proaches described above to the GBP:USD exchange rate data

Fig. 8. Cumulative out-of-sample monthly returns at 4 bp slippage.

Fig. 9. Cumulative in-sample monthly returns at 8 bp slippage.

Fig. 10. Cumulative out-of-sample monthly returns at 8 bp slippage.

from January 1994 until January 1998 using a moving window
of one year for training (fitting) followed by one month out-of-
sample testing.

The cumulative (without reinvestment) returns over the
period are shown in odd-numbered Figs. 3–9 for selected
in-sample (fitting) cases and evenly-numbered Figs. 4–10 for
corresponding out-of-sample (testing) cases. The annualised
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TABLE I
OUT-OF-SAMPLE AVERAGE ANNUAL

RETURNS

average monthly returns are shown in Table I for the various
approaches in the out-of-sample case.

In-sample fitting performance has been shown for com-
pleteness to demonstrate the learning ability of the various
approaches. It is clear that on the in-sample data set, the
simple heuristic approach consistently outperforms all the
other methods except in the no slippage case, when all methods
were able to fit the data to essentially the same degree. The
out-of-sample test results demonstrate, however, that the
heuristic approach was in fact significantlyoverfittingthe data.

For the out-of-sample back-tests, we note that the genetic al-
gorithm and reinforcement learning approaches tended to out-
perform the others at lower slippage values. In order to gain
further insight into the overall best performing GA, a plot of
how often it inferred rules using each indicator for each slip-
page value is shown in Fig. 11. Fig. 12 shows the frequencies
with which the GA employed specific indicators over the en-
tire four year data period, aggregated for all slippage values and
into quarters, with considerable variability in the patterns evi-
dent. The GAs reduction in trading frequency with decreasing
transaction costs is demonstrated dramatically in Fig. 13. Sim-
ilar results apply to the other methods with the exception of the
heuristic, whose high trading frequency at realistic transaction
costs leads to its poor performance in out-of-sample back-tests.
Data on the dealing frequency of all the different approaches is
given in Table II in order to shed light on the risk profiles of
the different methods. These results are discussed further in the
final Section X.

In order to evaluate the relative risk-adjusted performance of
the trading models further, we now consider several risk mea-
sures found in the financial literature. A risk-adjusted measure
commonly used to evaluate portfolio models is the Sharpe ratio,
defined as

Sharpe Ratio (12)

The Sharpe ratio evaluations of our trading models, as shown
in Table III demonstrate that on the dataset used we are able to
gain significant risk-adjusted returns up to a slippage value of 1
bp. However the Sharpe ratio is numerically unstable for small
variances of returns and cannot consider the clustering of profit
and loss trades [13], [18]. Furthermore the Sharpe ratio penal-
izes strategies for upside volatility and its definition in terms of
summary statistics means that a strategy can appear to be suc-
cessful but in fact suffers from significant drawdown [6]. Max-
imum drawdown over a certain period of length
is defined as

(13)

Fig. 11. Indicators used by the genetic algorithm by slippage.

Fig. 12. Relative frequencies over time of indicators used by the genetic
algorithm.

Fig. 13. Genetic algorithm position duration by slippage.

TABLE II
OUT-OF-SAMPLE AVERAGE MONTHLY DEALING FREQUENCY
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TABLE III
OUT-OF-SAMPLE SHARPE RATIOS

TABLE IV
OUT-OF-SAMPLE DRAWDOWNS

TABLE V
OUT-OF-SAMPLE STIRLING RATIOS

where and are the total returns of the periods from
to and as defined by (6) respectively. In our casewas
defined as on a monthly basis and the mean over the out-of-
sample back-test period is reported in Table IV. We therefore
also quote theStirling ratio, defined as

Stirling Ratio (14)

which is the average monthly return divided by the maximum
drawdown within that month. This value averaged over the 48
monthly back-test periods is reported in Table V.

The current RL implementation requires about eight minutes
CPU time on a 650 MHz Athlon per single training opti-
mization (episode). The GA is implemented in the interpreted
language Scheme, but evaluation is parallelised over multiple
similar CPUs. It also takes about eight minutes CPU time
per optimization on a single machine. The Markov chain and
heuristic approaches execute in four seconds and approximately
four minutes, respectively.

X. DISCUSSION ANDCONCLUSION

In this paper we have developed three trading strategies based
on computational learning techniques and one simple heuristic
based on trading thresholds over a fixed horizon. The strategies
based on the genetic (programming) algorithm (GA) and rein-
forcement ( -) learning train at 15-min intervals on the buy-sell
signals from eight popular technical trading indicators—some
of which require a number of previous observations—and cur-
rent positions over a one year period of GBP:USD FX data,
while the Markov chain strategy uses theentireset of training
data to estimate the relative transition frequencies of the few

hundred signal states that occur within a given year. Each of
the four trading strategies is then evaluated out-of-sample at
15-min intervals on the next month of indicator signals and this
back-testing process is then rolled forward a month and repeated
for a total of 48 months.

It is evident that in-sample, all approaches were able to
infer successful trading strategies and also notable that the ge-
netic algorithm consistently underperforms the other methods
in-sample. This is undoubtably due to the constraint imposed on
the complexity of the rules which was specifically imposed to
avoid overfitting. By contrast, the non-GA approaches—in par-
ticular the trading threshold heuristic—may end up exploiting
noise in the in-sample data set. At zero-slippage (no costs of
trading), however, we find that all approaches are able to infer
similar strategies and perform similarly out-of-sample. There
is evidence that the non-GA approaches do in fact overfit as the
GA outperforms the other methods with nonzero transaction
costs in the out-of-sample cases up to 8 bp slippage.

The fact that the techniques investigated here return positive
results both in-sample and in out-of-sample back-tests implies
that there is useful information in technical indicators that can
be exploited. This is consistent with the tenets of technical anal-
ysis and contradictory to the efficient market hypothesis. Fur-
thermore, the GAs relatively good out-of-sample performance
demonstrates that using a combination of technical indicators
leads to better performance than using the individual indica-
tors themselves. In fact, Dempster and Jones [15], [14] demon-
strate that with a few exceptions these indicators are largely
unprofitable on the same data when considered in isolation.
Figs. 11 and 12 demonstrate that some indicators also convey
more information than others depending on the slippage value
and the market state. We note that the relative strength index
(buy/sell) indicators are not used at zero transaction costs but
as the slippage is increased, the GA tends to favor them. Indi-
cators such as price channel breakout, stochastics, and moving
average crossover (buy) are very important at zero slippage, but
the GA appears to disregard the information provided by them at
higher slippage values. At zero slippage the GA is able to infer
successful strategies without using the current position. How-
ever, at higher transaction costs, knowing the current position
becomes very important. This lends credence to the argument
that this extra position information tends to favor the RL and GA
approaches, since the Markov chain approach and the heuristic
did not have this information available to them.

The RL approach, the Markov chain and the heuristic all ex-
ploit the fact that of the market possible states only a few
hundred actually occur in the in-sample period. This number
is small enough that each state may be considered individually
when deciding a strategy. However, there are two problems with
such a rule when it is back-tested out-of-sample.

Firstly, we may encounter a state in the out-of-sample data
which was not present in the in-sample data. In that case some
arbitrary action must be made and both the RL and the Markov
chain method choose to hold their current position. This may be
a disadvantage if many new states are encountered and it also ig-
nores the fact that some new states may be very similar to states
which were present in the in-sample period. The genetic algo-
rithm on the other hand generates a trading rule in the in-sample
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training period whose structure tends to take the same actions in
similar states.

Secondly, there is a severe danger that these approaches
may learn too well (overfit) the specific in-sample data; in
other words the in-sample problem they attempt to solve istoo
specific. Indeed the simple heuristic method demonstrates this
quite clearly: it achieves excellent in-sample performance but
is mediocre out-of-sample and terrible at realistic transaction
costs. The limit on the complexity of the GA is an artificial
constraint which reduces the opportunity for the GA to overfit
while not prohibiting simple trading rules. This limit effectively
forces the GA to work withgeneralized(classes of specific)
states. Thus we hope to improve the current reinforcement
learning approach by forcing state generalization and also by
improving its convergence properties.

Another current avenue of research is to find constraints for
the in-sample optimization problem which force state general-
ization (such as the rule-complexity constraint in the GA ap-
proach), but for which a heuristic similar to that of Section
VIII-B can be applied.

A further goal is the exploration of generalization methods
in the context of a broader RL approach.Neuro-dynamic
programming(NDP) [24] attempts to combine neural networks
with the central ideas of dynamic programming in order to
address this goal. NDP’s employ parametric representations
of the value function (such as artificial neural networks) to
overcome the curse of dimensionality. The free parameters are
tuned using regression or stochastic approximation methods
used in combination with classical dynamic programming
methods. Further, Wilson’sX-classifier system[30] attempts to
merge ideas from reinforcement learning with those from the
Classifier System community in order to incorporate general-
ization into a -Learning-like framework. We also intend to
investigate this approach in the present context in the future.
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