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Abstract. We investigate the application of a wavelet method of lines solution method to
financial PDEs. We demonstrate the suitability of a numerical scheme based on biorthogonal
interpolating wavelets to financial PDE problems where there are discontinuities or regions
of sharp transitions in the solution. The examples treated are the Black Scholes PDE with
discontinuous payoffs and a 3-dimensional cross currency swap PDE for which a speedup

over standard finite difference methods of two orders of magnitude is reported.

1 Introduction

What are wavelets ? Wavelets are nonlinear functions which can be scaled and translated to form
a basis for the Hilbert space L?(R) of square integrable functions. Thus wavelets generalize the
trignometric functions given by e**(s € R) which generate the classical Fourier basis for L2. Tt is
therefore not surprising that wavelet and fast wavelet transforms exist which generalize the time
to frequency map of the Fourier transform to pick up both the space and time behaviour of a func-
tion [8]. Wavelets have been used in the field of image compression and image analysis for quite
some time. Indeed the main motivation behind the development of wavelets was the search for
fast algorithms to compute compact representations of functions and data sets based on exploiting
structure in the underlying functions. In the solution of PDE’s using wavelets [4], [1], [15,16], [5]
functions and operators are expanded in a wavelet basis to allow a combination of the desirable
features of finite-difference methods, spectral methods and front-tracking or adaptive grid ap-
proaches. The advantages of using wavelets to solve PDE’s that arise in finance are that large
classes of operators and functions which occur in this area are sparse, or sparse to some high
accuracy, when transformed into the wavelet domain. Wavelets are also suitable for problems with
multiple spatial scales (which occur frequently in financial problems) since they give an accurate
representation of the solution in regions of sharp transitions and combine the advantages of both
spectral and finite-difference methods.

In this paper we implement a wavelet method of lines scheme using biorthogonal wavelets to solve



the Black Scholes PDE for option values with discontinuous payoff structures and a 3-dimensional
cross currency swap PDE based on extended Vasicek interest rate models. We demonstrate numer-
ically the advantages of using a wavelet based PDE method in solving these kind of problems. The
paper is organized as follows. In Section 2 we give a brief introduction to wavelet theory. In Sec-
tions 3 and 4 we give an explanation of wavelet based PDE methods and explain the biorthogonal
wavelet approach in more detail. Sections 5 and 6 contain respectively the problems and numerical
results for the Black Scholes and cross currency swap PDEs and Section 7 concludes and describes

research in progress.

2 Basic Wavelet Theory

We now give a brief introduction to wavelets for real valued functions of a real argument. Further
detail can be found in the cited references and [6] and we shall extend the concepts needed for

this paper to higher dimensions in the sequel.

Daubechies based wavelets
Consider two functions: the scaling function ¢ and the wavelet function 2.

The scaling function is the solution of a dilation equation
oo
$(x) = V2D hd(2z — k),
k=0

where ¢ is normalised so that ffooo ¢(z)dz = 1 and the wavelet function is defined in terms of the

scaling function as

P(x) = V2 grd(2z — k).

We can build up a orthonormal basis for the Hilbert space L*(R) of (equivalence classes of) square
integrable functions from the functions ¢ and ¢ by dilating and translating them to obtain the

basis functions:

¢iu(z) = 27129279z — k) = 279/%¢ (%) (1)

In the above equations j is the dilation or scaling parameter and k is the translation parameter. All
wavelet properties are specified through the coefficients H := {hj}32, and G := {g;}?2, which
are chosen so that dilations and translations of the wavelet 1);; form an orthonormal basis of

L%(R). In other words the 9; ; will satisfy

/ Yk (2) 1, m (x)dx = 6510km gk, l,m € Zy,



where Z :={0,1,2,...} and d;; is the Kronecker delta function.

Under these conditions for any function f € L?(R) there exists a set {d;i} such that

=Y Y dintikla), 3)
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It is usual to denote the spaces spanned by ¢; and 1;; over the parameter k with j fixed by

where

Vj = Spankez+¢j,k,

W; := spanyez ,Vj k-

In the expansion (3) functions with arbitrary small scales can be represented, however in practice
there is a limit on how small the smallest structure can be. (This could for example be dependent
on a required grid size in a numerical computation as we shall see below.) To implement wavelet
analysis on a computer, we need to have a bounded range and domain to generate approximations
to functions f € L*(R) and thus must limit H and G to finite sets termed filters. Approximation

accuracy is specified by requiring that the wavelet function v satisfies

/OO Y(z)z™dz =0 (4)

for m = 0,...,M — 1, which implies exact approximation for polynomials of degree M — 1. For
Daubechies wavelets [6] the number of coefficients or the length L of the filters H and G is related
to the number of vanishing moments M in (4) by 2M = L. In addition elements of H and G are
related by g, = (—=1)¥hy_ for k =0,... ,L—1 and the two finite sets of coefficients H and G are
known in the signal processing literature as quadrature mirror filters. The coefficients H needed
to define compactly supported wavelets with high degrees of regularity can be derived [6] and the
usual notation to denote a Daubechies based wavelet defined by coefficients H of length L is Dp.
Therefore on a computer an approximation subspace expansion would be in the form of a finite

direct sum of finite dimensional vector spaces as
Vo=W oW, &6 W3---aW; DV,

and the corresponding orthogonal wavelet series approximation to a continuous function f on a

compact domain is given by

ZdkaJk ZdJ 1,k (@)1, ( Zd1 K1,k (2 ZSJMka; (5)

where J is the number of multiresolution components (or scales) and k ranges from 1 to the number

of coefficients in the specified component. The spaces W; and V; are termed scaling function and



approzimation subspaces respectively. The coefficients sz, dsk,... ,d1  are termed the wavelet
transform coefficients and the functions ¢ and 1 are the approximating wavelet functions.
Some examples of basic wavelets are the Haar wavelet which is just a square wave (the indicator

function of the unit interval), the Daubechies wavelets [6] and Coiflet wavelets [2].

Biorthogonal wavelets

Biorthogonal wavelets are a generalization of orthogonal wavelets first introduced by Cohen,
Daubechies and Feauveau [3]. Biorthogonal wavelets are symmetric and do not introduce phase
shifts in the coeflicients. In biorthogonal wavelet analysis we have four basic function types ¢, 0, ¢
and 1. The functions ¢ and ¢ are termed mother and father wavelets and the functions ¢ and ¢
are the dual wavelets. The father and mother wavelets are used to compute the wavelet coefficients
as in the orthogonal case, but now the biorthogonal wavelet approzimation of a continuous function

on a compact domain is expressed in terms of the dual wavelet functions as
flz) ~ Z diha(@) + Z Ay (@)Ds-1,4(x) + - + Zdo,kizo,k(m) + Z siebrk-  (6)
k k k k

In signal processing ¢ and i are used to analyze the signal and qg and 7]} are used to synthesize
the signal. In general biorthogonal wavelets are not mutually orthogonal, but they do satisfy

biorthogonal relationships of the form

/¢j,k<73j',k' (z)dx = 8 j1 0k,

/ bj kbt k(x)dz =0
/%’,k(ﬁj,kr (x)dz =0

/ Vi pjr p (@) = 8 g -

3 Wavelets and PDE’s

Wavelet based approaches to the solution of PDE’s have been presented by Vasilyev et al [15,16],
Beylkin [1], Prosser and Cant [11], Cohen et al [4], Dahmen et al [5] and Xu and Shann [18].
There are two main approaches to the numerical solution of PDEs using wavelets. Consider the

most general form for a system of parabolic PDEs given by

ou

i F(z,t,u, Vu)

&(x,t,u, Vu) =0, (7)



which describe the time evolution of a vector valued function v and the boundary conditions
are possibly algebraic or differential constraints. The wavelet-Galerkin method assumes that the
wavelet coefficients are functions of time. An appropriate wavelet decomposition for each compo-
nent of the solution is substituted into (7) and a Galerkin projection is used to derive a nonlinear
system of ordinary differential-algebraic equations which describe the time evolution of the wavelet
coefficients. In a wavelet-collocation method (7) is evaluated at collocation points of the domain
of 4 and a system of nonlinear ordinary differential-algebraic equations describing the evolution of
the solution at these collocation points is obtained. If we want the numerical algorithm to be able
to resolve all structures appearing in the solution and also to be efficient in terms of minimising
the number of unknowns, the basis of active wavelets and consequently the computational grid for
the wavelet-collocation algorithm should adapt dynamically in time to reflect local changes in the
solution. This adaptation of the wavelet basis or computational grid is based on analysis of the
wavelet coefficients. The contribution of a particular wavelet to the approximation is significant
if and only if the nearby structures of the solution have a size comparable with the wavelet scale.
Thus using a thresholding technique a large number of the fine scale wavelets may be dropped in
regions where the solution is smooth. In the wavelet-collocation method every wavelet is uniquely
associated with a collocation point. Hence a collocation point can be omitted from the grid if
the associated wavelet is omitted from the approximation. This property of the multilevel wavelet
approximation allows local grid refinement up to a prescribed small scale without a drastic in-
crease in the number of collocation points. A fast adaptive wavelet collocation algorithm for two
dimensional PDE’s is presented in [15] and a spatial discretization scheme using bi-orthogonal
wavelets is implemented in [9-11]. The wavelet scheme is used in the latter to solve the reacting
Navier-Stokes equations and the main advantage of the approach is that when the solution is
computed in wavelet space it is possible to exploit sparsity in order to reduce storage costs and

speed up solution times. We will now explain the wavelet-collocation method in greater detail.

The biorthogonal wavelet approach
The main difference in using biorthogonal systems is that we have both primal and dual basis func-
tions derived from primal and dual scaling and wavelet functions. Biorthogonal wavelet systems

are derived from a paired hierarchy of approximation subspaces

Vo1 CVy;CVin
V,]_l C v,] C VJ+1. (8)
(Note that here increasing j denotes refinement of the grid, although some authors in the wavelet

literature use an increasing scale index j to indicate its coarsening.) For periodic discretizations

dim(V ) = 27. The basis functions for these spaces are the primal scaling function ¢ and the dual



scaling function ¢. Define two innovation spaces Wy and Wy such that

V=V, oWy

VJ+1::\7J @ W,] (9)

where V J+11l Wy and V 7L W . The innovation spaces so defined satisfy
oo oo B
DW:=L'® =PW (10)
=0 =0

and the innovation space basis functions are v and ).

Interpolating wavelet transform

The interpolating wavelet transform has basis functions

bik(x) = 92z — k)
Yin(x) = p(27H x — 2k — 1)
Gik(x) = 6(x — Tjk), (11)

where §(.) is the Dirac delta function. The wavelets are said to be interpolating because the primal

scaling function ¢ to which they are related satisfies

1 k=0,
o(k) =
0 K#0, k€Zy.
The primal scaling function can be defined through the use of the two scale relation
o) = D 9(¢/2)6(2x - €). (12)
§EL
The smoothness of the primal scaling function is dictated by its (M —1)*¢ degree polynomial span
which in turn depends on the M + 1 non-zero values of ¢(£/2). Fast transform methods for the
evaluation of the wavelet and scaling function coefficients are given in [12,14]. The projection of a

function f onto a space of scaling functions Vs is given (discretizing [0, 1]) by

97
PVJf('Z-) = Z sﬁ,kd)gk(m)a (13)
k=0

where sik is defined as < f, ¢ 7,k > in terms of a suitable inner product and #" is used to denote
a boundary or internal wavelet given by
L ( — -
jr@) k=0,...,M-1
$7%(®) =< pyp(x) k=N,...,2) =M (14)

Fe(®) E=27—M+1,27.



Fast biorthogonal wavelet transform algorithm

The projection of a function f onto a finite dimensional scaling function space V is given as

above by
Py, f( Z < f(u), by k(u) > ¢y (x)
= Zf (k/27) b3,k (2)
k
=D 55 xbak(@); (15)
k
where s_’; w = f(k/27). The coefficients at resolution level j must be derived using

Pw, f(z) = Py,,, f(z) — Py, f(x)
Y @) = X 1 mbii1m (@) = 2, 80 15n(2). (16)
An arbitrary wavelet coefficient df,m can be calculated from
df = J+1 2m+1 Z $jnd(m—n+1/2) = S;+1,2m+1 - Z ans_{,n7 (17)
where I' is a square matrix of size 27 x 27 for periodic discretizations defined by
In == ¢(m —n +1/2).

Because of the compact support of the primal scaling function this matrix has a band diagonal

structure and as before each primal scaling function satisfies a two scale relation
Z $(6/2)9(2z — ).

The values ¢(£/2) can be calculated using a explicit relation as in [10]. Irrespective of the choice
of primal scaling function the transform vector that arises from the wavelet transform will have a

structure of the form given below.

{350’ 35,15 35,2 e T '3§,2J—1}T
d
{dJ 1,007 =d§_1,2J—1_1 | 3571,0=3§—1,1 "'5§—1,2J—1_1}T
4
{dJ 1,007 " =d§—1,2J—1_1’| d];—z,o: "'d§—2,21—2_1 | 3];—2,0 o '3§—2,2J—2_1}T
4
{dJ 1,00°° ’d§ 1,27-1 1’| "'dngfl,O’ '”dg—P—l,ZJ—P—l—l | 8§7P71,0 o '5§—P—1,21—P—1—1}T
W, 1&8W; ;& W, 3P V, p

(18)



Algorithm complexity

The number of of floating point operations required for the fast biorthogonal wavelet transform
algorithm for P resolution levels is 2M 37, ,2¢ = 27-PM{2P+! — 1}. This comes from the
fact that we require 2M filter coefficients to define the primal scaling function ¢ which spans the
space of polynomials of degree less than M — 1. The calculation of the wavelet coefficients dﬁ 5 for
a given resolution j can be accomplished in 2(M — 1) + 1 floating point operations. The sub sam-
pling process for the scaling function coefficients s;, . requires a further 2/ operations and a total
of 291 M operations are required per resolution j. Thus for fixed J and P the complexity of the
fast interpolating wavelet transform algorithm is O(M) [12]. Since the finest resolution in a PDE

spatial grid of N points is J = log, N, for fixed M and P the complexity of the transform is O(N).

Decomposition of differential operators

If we define 8™ by

n dr
O (@) := Py, —— Py, f(a),

then repeated application of the approximation subspace decomposition gives us

J—-1

J-1
n a"
0y f(@) = Pry+ D Pwi | o [ Pvay + D0 Pw. | f(@). (19)
i=J—p i=J—p

For example, the decomposition of the first derivative operator % is given by

J-1 J-1
5= |Py,_, + Z Pw | | Py + Z Pw, |, (20)

i=J—p i=J—p
where 8y := WOLW ! and W and W ! are matrices denoting the forward and inverse transforms

with
9% = Py —d Py (21)
7 Tdg” VT

We can analyze 0% instead of 8; without loss of generality because the forward and inverse
transforms are exact up to machine precision. The matrix 8} has a band diagonal structure and
can be treated as a finite difference scheme for analysis. The biorthogonal expansion for % requires
information on the interaction between the differentiated and undifferentiated scaling functions
along with information about both the primal and dual basis functions. Using the sampling nature

of the dual scaling function 8} can be written as

1 J Vi d¢D
0y =2 Zsj,k% le=a—k (22)
a,k



and using equation (14) we get

L
27 Yok sik% le=a—k @5 o(x) k=0,...,M -1
1_
95 =42’ Ea,k Sﬁ,k% lz=a—k ¢J,Oé(x) k=M,... 52J -M (23)
R
27 Yk S Jomamk O o(z) k=27 — M +1,27,

The entire operator 6} can be determined provided the values of r((llz B = %g |z=a—k can be ob-

tained. An approach to determining filter coefficients for higher order derivatives is given in [10].

Extension to multiple dimensions

The entire wavelet multiresolution framework presented so far can be extended to several spatial
dimensions by taking straightforward tensor products of the appropriate 1D wavelet bases. The
imposition of boundary conditions on nonlinearly bounded domains is nontrivial, but these are
fortunately rare in derivative valuation PDE problems which are usually Cauchy problems on a
strip.

The fast biorthogonal interpolating wavelet transform used with wavelet collocation methods for
problems posed over d-dimensional domains exhibits better complexity than its alternatives. In-
deed, since one basis function is needed for each collocation point, using a spatial grid of n points
in each dimension there are N := n¢ points in the spatial domain to result in transform com-
plexity O(n?) — versus O(n?log, n) for the Fast Fourier Transform (where applicable), O(n??) for
an explicit finite difference scheme and O(n3?) for a Crank-Nicholson or implicit scheme (which

makes these methods impractical for d > 2, ¢f. [7]).

4 Wavelet Method of Lines

In a traditional finite difference scheme partial derivatives are replaced with algebraic approx-
imations at grid points and the resulting system of algebraic equations is solved to obtain the
numerical solution of the PDE. In the wavelet method of lines we transform the PDE into a vector
system of ODEs by replacing the spatial derivatives with their wavelet transform approximations
but retain the time derivatives. We then solve this vector system of ODEs using a suitable stiff
ODE solver. We have implemented both a fourth order Runge Kutta method and a method based
on the backward differentiation formula (LSODE) developed at the Lawrence Livermore Laborato-
ries [13]. The fundamental complexity of this method is O(7n?) for space and time discretizations

of size n and 7 respectively over domains of dimension d (¢f. §3, [13]).



An example

Consider a first order nonlinear hyperbolic transport PDE defined over an interval 2 = [z, 2] :

ou Ou

o _Ye u/p

N 6;L'+S x ¢ 0N

0

6—?=—XL(t) =
ou g

E—_X (t) T =Zr

The numerical scheme is applied to the wavelet transformed counterpart of the above equations

9 i) = 0Pt pihs e a g 00)

where pJ_l = (Pv s_p T Ez j_p Pw; ) and 8( ) is the standard decomposition of - defined
as pj }, d”fc pf }, In using the multiresolution strategy to discretize the problem we represent
the domain P + 1 times, where P is the number of different resolutions in the discretization,
because of the P wavelet spaces and the coarse resolution scaling function space Vyj_p, P > 1. In
the transform domain each representation of the solution defined at some resolution p should be

supplemented by boundary conditions and [12] shows how to impose boundary conditions in the

both the scaling function spaces and the wavelet spaces.

5 Financial Derivative Valuation PDEs

In this section we introduce briefly the PDEs for financial derivative valuation and the products we

have valued using the wavelet method of lines described above. More details may be found in [7,17].

Black Scholes products
We have applied wavelet methods to solve the Black Scholes PDE for a vanilla European call
option and two binary options. The Black Scholes quasilinear parabolic PDE is given by

80 1 2 ,0%C oC

&~z hild = 24
5 2 S 552 +rS— 55 —rC=0 (24)

where S is the stock price, o is volatility, r is the risk free rate of interest. We transform (24) to

the heat diffusion equation

ou _ d%u

E_@ for —OO<.Z'<OO7T>O

with the transformations

2
S = Ke,t—T——T
o2

C = 671/2(kfl)z71/4(k+1)2TKu(m’ 7)



where k = 2r/0?, K is the ezercise price and T is the time to maturity of the option to be valued.
The boundary conditions for the PDE depend on the specific type of option. For a vanilla Furopean

call option the boundary conditions are:
c,t)=0, C(S,t)~S as S — o0

C(S,T) = max(S — K, 0).

The boundary conditions for the transformed PDE are:

u(z,7) =0 as z — —oo,

2
el/2(k+1)z+1/4(k+1) T as T — 00,

u(z,T) =
u(:c,O) — max(el/2(k+1)zc _ el/2(k71)w,0)‘
The first type of binary option that we solved was the cash-or-nothing call option with a payoff
given by
II(S) = BH(S — K),

where H is the Heaviside function, i.e the payoff is B if at expiry the stock price S > K. The
boundary conditions for this option in the transformed domain are
u(z,7) =0 as x— —o0,

u(x,7) = ge%(k_l)w"‘%(kﬂ)z"

as T — 00,
u(z,0) = e%“—l)m%ﬂ(l@ﬁ - K).

The second binary option we solved was a supershare call [17] option that pays an amount 1/d if

the stock price lies between K and K + d at expiry. Its payoff is thus
1
II(s) = E(H(S—K) —H(S - K —d))

which becomes a delta function in the limit d — 0. The initial boundary condition for this option
is
1
u(z,0) = d—Ke%(k’l)z(H(Ke”” — K) - H(Ke* — K — d)).
For all of the above options the solution is transformed back to real variables using the transfor-

mation

C(S,t) = K3+ g3(1-k) o (k+1)*0*(T—1)y (100( S/ K), 1/20%(T — 1)),

where k = 2r/o2. There are closed form solutions for all the above options (see for example [17]).

The Black Scholes solution for the vanilla European call option is

C(S,t) = SN(dy) — Ke "T YN (dy)



_ log(S/K) + (r + 30*)(T - t)

o/ (T —t)

dl:

i log(S/K) + (r — $0*)(T — t)
2 o/(T — 1)

The solution for a cash or nothing call is

C(S,t) = Be ""T=Y N (dy).
The solution for the supershare option is

O(8,) = 2e T I(N(ds) = N(ds))

log(1 + %)

ds :=d» —
s ? oVT —t

Cross currency swap products

A cross currency swap is a derivative contract between two counterparties to exchange cash flows in
their respective domestic currencies. Such contracts are an increasing share of the global swap mar-
kets and are individually structured products with many complex valuations. With two economies,
i.e one domestic and one foreign, there are different term structure processes and risk preferences
in each economy and a rate of currency exchange between them. We will model the interest rates
in single factor a extended Vasicek framework.

To value any European-style derivative security whose payoff is a measurable function with re-
spect to a filtration Fr we may derive a PDE for its value. The domestic and foreign bond prices
and exchange rate are specified in terms of the driftless Gaussian state variables Xg4, Xy and Xg
whose corresponding processes X4, Xy and Xg are sufficient statistics for movements in the term
structure dynamics. Let V = V(X4, Xy, Xg,t) be the domestic value function of a security with
a terminal payoff measurable with respect to Fr and no intermediate payments, and assume that

VeC?! (]R3 X [O,T)). Then the normalised domestic value process, defined by

V() = 713;(” 2 (25)

satisfies the quasilinear parabolic PDE with time dependent coefficients given by

1 27 /% 27/ * 1
207V 6V+§HS

1 +1 5 02V g O°V* as OV fs O’V” ov*
2" ox3 27 ox?

aX2 0X.0X; 9X40Xs 9X,0Xs T ot

:0’

(26)



on R® x [0,T). Here the functions H5S, H¥  H® and H'S are defined by

H55(s) := G(s)Nj(s) + GF7(s)A7 (s) + 05(5) — 2pas(5)Ga(s)Aa(s)G s (5)As (s)
+2pas(s)Ga(s)Aa(s)os(s) — 2prs(s)Gr(s)As(s)os(s)

HY (s) := pas(s)Xa(s)As(s)

H(s) := Xa(s) [Ga(s)Ma(s) — pag (5)G1(5)As (5) + pas(s)os(s)]

H75(s) := Ap(s) [par (8)Ga(s)Aa(s) = G (s)As(s) + prs(s)os(s)] (27)

and the volatility is of the form

op(t,T) = [Ge(T) — Gr(t)]Me(t) k=4, f. (28)

1—e St

Gi(t) := & k=4d,f, (29)

for some mean reversion rates §; and £y and
)\k (t) = egkt/ik (t) k= d7 f7 (30)

where ki (t) is the prospective variability of the short rate. For the derivation of the PDE and
further details of the extended Vasicek model see [7]. For a standard European-style derivative
security we solve the PDE with the appropriate boundary conditions.

The most common type of cross-currency swap is the exchange of floating or fixed rate interest
payments on notional principals Zq and Z; in the domestic and foreign currencies respectively.
We can also have a short rate or diff swap where payments are swapped over [0,7] on a domestic
principal, with the floating rates based on the short rates in each country. A LIBOR currency swap
is a swap of interest rate payments on two notional principals where the interest rates are based
on the LIBOR for each country. The swap period [0,T] is divided into N periods and payments
are denoted by p;. Now we describe precisely the deal that we are going to value which differs
from that of [7].

Fixed-for-fixed cross-currency swap with a Bermudan option to cancel

The cross-currency swap tenor is divided into Ngp, coupon periods. The start and end dates
for these periods are given by Ty,...,Tn

cpn
dates T1,... ,Tn

cpn

and cashflows are exchanged at coupon period end
. Typically, the swap cashflows consist of coupon payments at annualized rates
on notional amounts Zg for the first currency Z; for the second currency. In addition, notional
amounts Z; and Z; may be exchanged at the swap start and/or end dates. The size of a coupon
payment is given by: coupon rate x notional amount x coupon period day count. Both interest
rates Ry and Rg are fized at the outset of the contract, as opposed to those for a LIBOR swap
where they are floating [7]. There is no path-dependence in the payoffs, i.e. the path taken is



not relevant because the payoff is fully determined by component values at the payment date.

Payments p; are made at at the end of each period at time ¢; of size
pj = 0; (S(t;)Rfo —-m — Zde) ,

where m is the margin to the issuing counterparty. This is the terminal condition for the period
[tj—1,t;)- The value of the deal is the sum of the present values of all payments.

When the contract has a Bermudan option to cancel, one of the counterparties is given an option
to cancel all the future payments at times ¢1,... ,t,. Typically t1,... ,t, are set a fixed number
of calendar days before the start date of each period, i.e t1 = Tn,,,—1-n — 4,... , TN,,.—1 — 4,
where A is the notification period. We assume that net principal amounts (Z4 — S(0)Zy)) are paid
at time 0 and at time ¢y if the option is not cancelled, or at time %4 if the option is cancelled.

The terminal condition at t, is given by
Vity) =6n (S(ty)Zs(1+ Ry) —m — Zg(Ry + 1)) (31)

When the option to cancel is exercised at t;, we exchange coupon payments due on T,,, 2 ni
and notional amounts. The holder of the option will terminate the deal if the expected future value

of the deal is less than the termination cost. Thus the decision at time #;41_a is to continue if
Paltierr — Aty ) V(Ekt1) < (S(tesr — A)Z Pr(thtr — Ay tyq) — Pa(tesr — A, b)) Za).

This yields the boundary condition

V(tkyr — 4) =

min{Pd(tk+1 — At )V (tk1), (S(terr — A)Zy Py(tgyr — Aty ) — Pa(tera — A:t1;+1)Zd)} (32)

This deal is valued by solving the PDE for the last period using the terminal condition (31) and
stepping backwards in time using the termination condition
Vitkr — 4) =

min{Pd(tk+1 = Aty )V (tkt1), (S(terr — A)Zp Pr(ti1 — A, tiyq) — Pa(tetr — 4, t,:+1)Zd)}

for earlier periods. We then add on the exchange of principals at time 0.

6 Numerical Results

The numerical results using a 1D and 3D implementation of the wavelet method of lines algorithm
and the LSODE stiff vector ODE solver [13] are given below. In each case the numerical deal values
are compared with a standard PDE solution technique and the known exact solution. Practical
speed-up factors are reported which increase with both boundary condition discontinuities and

spatial dimension.



European call option

Stock price: 10 Strike price: 10  Interest rate: 5%  Volatility: 20%  Time to maturity: 1 Year
The exact value of this option is: 1.04505.

Comparing tables 1 and 2 shows a speedup of 1.9.

Table 1. Wavelet Method of Lines Solution

Space Steps|Time Steps|Value |[Solution Time in Seconds
64 60 1.03515 .05
128 100 1.04220 .10
256 200 1.04502 13
512 200 1.04505 .30
1024 200 1.04505 .90

Table 2. Crank-Nicolson Finite Difference Method

Space Steps|Time Steps|Value |[Solution Time in Seconds
64 60 1.03184 .02
128 100 1.04184 .04
256 200 1.04426 .09
512 200 1.04486 .16
1024 200 1.04501 .30
2000 200 1.04505 .57

Cash-or-nothing call

The option with the same parameters as the European call has a payoff B x H(S — K), where
B := 3 is the cash given, with a single discontinuity.

The exact value of this option is: 1.59297.

Comparing tables 3 and 4 shows a speed up of 2.5.

Table 3. Wavelet Method of Lines Solution

Space Steps|Time Steps|Value |[Solution Time in Seconds
128 100 1.49683 .10
256 200 1.54904 13
512 200 1.59216 .30
1024 400 1.59288 1.02




Table 4. Crank-Nicolson Finite Difference Scheme

Space Steps|Time Steps|Value |Solution Time in Seconds
128 200 1.46296 .04

256 400 1.53061 .10

512 400 1.56391 .18

1024 400 1.58046 31

2048 800 1.58872 1.35

4096 800 1.59285 2.56

Supershare call

Stock price: 10 Strike price: 10  Parameter d: 3 Interest rate: 5%  Volatility: 20%

Time to maturity: 1 Year

The option pays an amount 1/d if the stock price lies between K and K + D i.e. the option has a
payoff 1/dx (H(S — K) — H(S — K — D)) with two discontinuities.

The exact value of this option is: 0.13855.

Comparing tables 5 and 6 shows a speed up of 4.9.

Table 5. Wavelet Method of Lines Solution

Space Steps|Time Steps|Value |Solution Time in Seconds

128 100 0.12796 .10
256 200 0.13310 .14
512 200 0.13808 30
1024 400 0.13848 1.04

Table 6. Crank-Nicolson Finite Difference Scheme

Space Steps|Time Steps|Value |Solution Time in Seconds

128 200 0.12369 .04
256 400 0.13290 .09
512 400 0.13435 .16
1024 400 0.13666 .34
2048 800 0.13787 1.35
4096 800 0.13800 2.56

8000 800 0.13835 5.11




Cross Currency Swap
Domestic fized rate: 10%, Foreign fized rate: 10%
The exact value of this option is: 0.0

Comparing tables 7 and 8 shows a speed up exceeding 81.

Table 7. Wavelet Method of Lines Solution

Discretization Value Solution Time in Seconds
20X 8X8X8 -0.00082 (1.2

20 X 16 X 16 X 16 -0.00052 |6.54

20 X 32 X 32 X 32 -0.00047 |40.40

40 X 64 X 64 X 64 -0.00034(410.10

100 X 128 X 128 X 128(-0.00028 {4240.30

160 X 256 X 256 X 256(-0.00025 [53348.10

Table 8. Explicit Finite Difference Scheme

Discretization Value Solution Time in Seconds
20X 8X8X38 -0.00109 |0.28

20X 16 X 16 X 16 -0.00101 |1.70

20 X 32 X 32 X 32 -0.00074 (16.82

40 X 64 X 64 X 64 -0.00058 (188.10

100 X 128 X 128 X 128|-0.00046 [2421.6
160 X 256 X 256 X 256|-0.00038(33341.8

7 Conclusions and Future Directions

The wavelet method of lines performs well on problems with one spatial dimension and disconti-
nuities or spikes in the payoff. For example in the supershare option the wavelet method requires
a lower discretization than the Crank Nicolson finite difference scheme for equivalent accuracy (3
decimal places), as the discontinuities in the payoff can be resolved better in wavelet space. We
also see that for the (prototype) cross currency swap PDE in 3 spatial dimensions the wavelet
method outperforms the (tuned) explicit finite difference scheme by approximately two orders of
magnitude — a very promising result. One of the important things to note is that O(N) wavelet
based PDE methods generalize O(N log N) spectral methods without their drawbacks. This lower
basic complexity feature of the wavelet PDE method makes it suitable to solve higher dimen-
sional PDEs. Further, to improve basic efficiency of the method we are currently implementing
an adaptive wavelet technique in which the wavelet coefficients are thresholded at each time step

(cf. §3). This should result in an improvement in both speed and memory usage because of sparse



wavelet representation. Such a technique has resulted in a further order magnitude speedup in

other applications [15]. Future work will thus involve applying the wavelet technique to solve cross

currency swap problems with two and three factor interest rate models for each currency to result

in solving respectively 5 and 7 spatial dimension parabolic PDEs.
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